Abstract

We propose a nonlocal scheme for preparing a distributed steady-state entanglement of two atoms trapped in separate optical cavities coupled through an optical fiber based on the combined effect of the unitary dynamics and dissipative process. In this scheme, only the qubit of one node is driven by an external classical field, while the other one does not need to be manipulated by an external field. This is meaningful for long distance quantum information processing tasks, and the experimental implementation is greatly simplified due to the unilateral manipulation on one node and the process of entanglement distribution can be avoided. This guarantees the absolute security of long distance quantum information processing tasks and makes the scheme more robust than that based on the unitary dynamics. We introduce the purity to characterize the mixture degree of the target steady-state. The steady entanglement can be obtained independent of the initial state. Furthermore, based on the dissipative entanglement preparation scheme, we construct a quantum teleportation setup with multiple nodes as a practical application, and the numerical simulation demonstrates the scheme can be realized effectively under the current experimental conditions..

© 2017 Optical Society of America

1. Introduction

Quantum entanglement plays a crucial role in performing quantum information processing [1, 2]. From a fundamental perspective, it is a nonclassical effect which is indispensable for understanding fundamental quantum physics. From a technological perspective, it is useful for enhanced measurement techniques and is the basic requirement for transferring quantum information between different nodes in a quantum network. The preparation and storage of the entanglement between distant quantum nodes leaves a great challenge due to environmental decoherence as well as the imperfection of quantum system itself [3].

Recently, the system of atom-cavity-fiber [4–6] has been attracted much attentions due to the application in long distance and large-scale quantum information processing, such as distributed quantum computation [7, 8], quantum entanglement preparation [9–14], and the quantum communication [15]. For these unitary-dynamics-based schemes, atomic spontaneous emission, cavity decay and the fiber loss are three main dissipative factors which would affect the practical efficiency of these schemes. Traditionally, dissipation is considered as a detrimental effect in quantum information processing, however, recent theories and experiments show an interesting fact that the dissipation can be used as resources for quantum computation and entanglement generation [16–47]. In contrast with the unitary-dynamics-based schemes, here the dissipation plays a positive role in the preparation process so that the entanglement is robust against decoherence. Furthermore, since the entangled state appears as a steady-state, it is unnecessary to introduce an additional unitary feedback mechanism to stabilize it. Another merit of this approach is that we do not require specifying the initial state and controlling the evolution time accurately. Particularly, In 1999, Plenio et al. and Cabrillo et al. proposed schemes to prepare entanglement via dissipation [16, 17]. Immediately afterward, several schemes were suggested to study the entanglement in dissipative quantum system. In 2011, Kastoryano et al. proposed a dissipative scheme for preparing a maximally entangled state of two -type atoms trapped in one optical cavity [18], whose results are better than that based on the unitary dynamics. Subsequently, Shen et al. generalized this scheme to the coupled cavity system [32, 34] and atom-cavity-fiber system [33]. In 2013, Reiter et al. [45] demonstrated that two transmon qubits can be driven into the steady Bell state by combining the effective two-photon process induced by microwave driving with the photon loss. In 2014, Zheng et al. proposed two schemes to prepare the maximal entanglement between two atoms coupled to a decaying resonator [35,47]. All of the previous schemes need to use four or more classical fields to drive two qubits simultaneously, and relative amplitudes and phases of the driving fields applied to different qubits should be accurately set. Moveover, the experimental demonstrations of dissipative preparation of entanglement has also been reported in ion traps [44, 49], superconducting circuits [52], and the collective spin degrees of freedom of large atomic ensembles [48].

In this paper, we propose a feasible scheme to prepare and stabilize a maximally entangled Bell state in separate optical cavities coupled through an optical fiber, where only one qubit is needed to be driven by two classical fields with well-chosen frequencies. With currently achievable experiment parameters, the numerical simulation demonstrates that the distributed steady-state entanglement can be obtained with high fidelity, purity and CHSH correction. Compared with previous schemes [47], the present one does not require simultaneous driving to both qubits, which is a basic requirement to perform state transfer and quantum gate operation between separate nodes of a quantum network. Different from the Ref. [35], the present one generalize the idea that two atoms are trapped in a single cavity to the case when two atoms trapped into two separate cavities connected through an optical fiber. It is significant for quantum networks since only one unilateral driving on the qubit in one node is required with classical fields.

The organization of the rest paper is as follows: In Sec. 2, we present the details of our model and show the master equation describing the dynamics of the open dissipative system in Lindblad form. In Sec. 3, we first expatiate the system’s dressed state subspace. Then, a steady Bell state is generated by using the classical laser fields to drive one qubit within the dressed space. Furthermore, we assess the performance of this scheme through numerically calculating the fidelity, purity and Clauser-Horne-Shimony-Holt (CHSH) correlation, respectively. In Sec. 4, we construct a quantum teleportation scheme with multiple nodes and calculate the variation of the fidelity of teleportation with the increasing of the node number n. Finally, we present the conclusions inferred from this paper in Sec. 5.

2. Theoretical model

We consider a atom-cavity-fiber coupling system consisting of two distant cavities connected by a single-transverse-mode optical fiber, as shown in Fig. 1. Each atom has ground state |g〉 and excited state |e〉 with the corresponding energies 0 and ω0, respectively. The atomic transition |g〉 → |e〉 is coupled resonantly to the cavity mode with the coupling constant g, and the first atom driven by two off-resonance optical lasers with corresponding detuning Δk (k = 1, 2). In the short fiber limit /(2πc) ≤ 1, where L is the length of the fiber and ν is the decay rate of the cavity field into a continuum of the fiber modes, only one fiber mode essentially interacts with the cavity modes. For simplicity, we assume the interaction between cavity mode and fiber mode is resonant. Thus, in a rotating frame, the Hamiltonian of the system could be written as (setting ħ = 1 throughout this paper) H = H0 + Hc,f + Ha,c + Hcl,

H0=i=1,2ω0|eiei|+j=A,Bωaajaj+ωbbb,
Hc,f=ν(baA+baB)+H.c.,
Ha,c=g(S1aA+S2aB)+H.c.,
Hcl=k=1,2ΩkeiωktS1+H.c.,
where S1=|e1g1| and S2=|e2g2|, |ei〉 and |gi〉 are the excited and ground states of the ith qubit, respectively. aj and aj denote the annihilation and creation operators for the optical mode of cavity j, respectively. b and b denote the annihilation and creation operators for the fiber mode, respectively. Ωk and ωk represent the amplitude and frequency of the kth driving field, respectively. ωa and ωb denote the frequencies of cavity mode and fiber mode, respectively. In order to investigate dynamics of the system further, we introduce the non-local bosonic modes
c=22(aAaB),c1=12(aA+aB+2b),c2=12(aA+aB2b),
corresponding frequencies ωa, ωa+2ν and ωa2ν. These modes are not coupled with each other, but interact with the atoms because of the contributions of the cavity fields. To simplify the dynamics of the system, In the interaction picture with respect to H0 + Hc,f, the Hamiltonian describing the atom-cavity interaction is
Ha,c=12g(ei2νtc1+ei2νtc2+2c)S1+12g(ei2νtc1+ei2νtc22c)S2+H.c.,
meanwhile, under the condition of |ν| ≫ g, the bosonic mode c is resonant with the two qubits, while the bosonic modes c1 and c2 is largely dispersive with the two qubits. Therefore, the interaction Hamiltonian of atom-cavity reduces to
Ha,c=22g(S1S2)c+H.c..

 

Fig. 1 Experimental setup and level diagram of the atoms. Two atoms resonantly interact with quantized field, respectively. The first atom is driven by two classical fields. γ, κ, and β denote the atomic spontaneous emission rate, cavity decay rate and fiber loss rate, respectively.

Download Full Size | PPT Slide | PDF

Dissipation, which can occur via the fiber loss, atomic spontaneous emission and cavity decay, is a requisite component in the current scheme. The states in two-excitation subspace would be transformed to the corresponding states in one-excitation and zero excitation subspace via dissipation. The dynamics of the open dissipative system in Lindblad form could be described by the master equation

ρ^˙=i[ρ^,H]+12j[2L^jρ^L^j(L^jL^jρ^+ρ^L^jL^j)],
where j is the so-called Lindblad operators governing dissipation. Specifically, in the current scheme the Lindblad operators can be expressed as L^β=βb, L^κ1=κaA, L^κ2=κaB, L^γ1=γ|gAAe| and L^γ2=γ|gBBe|. β describes the dissipation induced by the fiber loss. L^κ1=κaA and L^κ2=κaB describe the dissipation induced by the leakage of cavity A and cavity B, respectively. L^γ1=γ|gAAe| and L^γ2=γ|gBBe| describe the dissipation induced by the spontaneous emission of atom in cavity A and B, respectively. Since cavity A and cavity B are distant from each other, the dissipation processes are spatially separated.

3. Preparation of the distributed entanglement

3.1. Dressed states

The spectroscopy of the system is well described by the dressed states, i.e., the eigenstates of the Hamiltonian H0 + Hc,f + Ha,c, as shown in Fig. 2. Here, we use them to see clearly the roles of Hcl after choosing appropriate laser driving and detuning. We define the excitation number operator of the total system Ne=i=1,2(|eiie|+aiai)+bb. In Table 1, the eigenstates and corresponding eigenvalues of zero and single excitation subspaces are shown with the notation

|Φ0=|g1,g2|0,0,0,|Φ10=|ϕ+|0,0,0,|Ψ1=|g1,g2|0,0,1,|Ψ1+=|g1,g2|0,1,0,|Φ1±=12[|ϕ|0,0,0±|g1,g2|1,0,0],
with |ϕ±=1/2(|e1,g2±|g1,e2). In Table 2, the eigenstates and corresponding eigenvalues of two excitation subspace are shown with the notation
|Ψ2=|ϕ+|0,0,1,|Ψ2+=|ϕ+|0,1,0,|Ψ2,±1=12[|ϕ|0,0,1±|g1,g2|1,0,1],|Ψ2,±2=12[|ϕ|0,1,0±|g1,g2|1,1,0],|Φ20=|ϕ+|1,0,0,|Φ21=|g1,g2|0,1,1,|Φ22=13(|g1,g2|2,0,0+2|e1,e2)|0,0,0,|Φ2±=12[(|ϕ)|1,0,0±13(2|g1,g2|2,0,0|e1,e2|0,0,0)].

Under the weak excitation condition and if the initial state is in the zero excitation subspace, we can safely discard the subspace with excitation number greater than or equals two, and |Φ10 is the maximal entanglement we want to prepare for the two distributed atoms.

 

Fig. 2 Schematic diagram for the dressed state of the atom-cavity-fiber coupling system.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. The eigenstates and eigenenergies of the Hamiltonian H0 + Hc,f + Ha,c within the zero and single excitation subspaces.

Tables Icon

Table 2. The eigenstates and eigenenergies of the Hamiltonian H0 + Hc,f + Ha,c within the two-excitation subspace.

3.2. Roles of the classical laser field

Under the dressed state picture, The Hamiltonian Hcl can be rewritten as

Hcl=k=1,2[12Ωkeiωkt(|Φ1+|Φ1)Φ0|+12Ωkeiωkt|Φ10Φ0|+12Ωkeiωkt|Φ2Φ1|+12Ωkeiωkt(|Φ2,1+|Φ2,+1)Φ1|+12Ωkeiωkt|Φ2+Φ1+|+12Ωkeiωkt(|Φ2,2+|Φ2,+2)Φ1+|(16Ωkeiωkt|Φ22+12Ωkeiωkt|Φ20)(Φ1|+Φ1+|)+24Ωkeiωkt(|Φ2+|Φ2+)(Φ1|Φ1+|)+13Ωkeiωkt|Φ22Φ10|+H.c.].
We focus the discussion on the interaction picture with respect to the Hamiltonian H0 + Hc,f + Ha,c that expressed by the eigenvectors and eigenvalues in zero, one and two excitation subspace. By choosing the detunings Δ1 = ω0ω1 and Δ2 = ω2ω0 equal to g, only five resonant transitions can occur, i.e. |Φ0|Φ1, |Φ1+|Φ20 and |Φ1+|Φ22 induced by the driving field Ω1, |Φ1|Φ20 and |Φ1|Φ22 driven by the driving field Ω2, while all other transitions between arbitrary two dressed states are largely detuned.

3.3. Preparation process

The processes for producing and stabilizing the Bell state are shown in Fig. 3, we here require the atomic spontaneous emission to be much slower than other dynamical processes. Besides, the generation of the steady-state is independent of the initial states. If the system is initially in the ground state |Φ0〉, it will be driven by the classical field Ω1 to one-excitation dressed state |Φ1 and then to |Φ20 and |Φ22 by classical field Ω2. The photon loss results in the decaying channel |Φ20|Φ10=|ϕ+|0,0,0. The state |Φ10 is decoupled from the qubit-resonator coupling and cavity decay and is unaffected by the drives due to off-resonant, so it is a steady-state. On the other hand, the state |Φ22 decays to the one-excitation dressed state |Φ1±, repumped by the classical field Ω1 to |Φ20 and |Φ22. With the coherent driving and dissipation processes continuing, the population of dressed state |Φ22 will decline gradually until all of qubit population is driven to the Bell state |Φ10. If the system is initially in |e1, g2〉 |0, 0, 0〉 or |g1, e2〉 |0, 0, 0〉, which can be regarded as a superposition of the one-excitation dressed states |Φ10 and |Φ1±. As has been shown, the populations of |Φ1± are finally transferred to the steady-state due to coherent driving and dissipation process. For initial state |e1, e2〉 |0, 0, 0〉, the strong qubit-resonator coupling results in the transfer of population to the states |ϕ〉 |1, 0, 0〉 and |g1, g2〉 |2, 0, 0〉. Due to dissipation, these two state continuously decay to |ϕ〉 |0, 0, 0〉 and |g1, g2〉 |1, 0, 0〉, respectively, the specific superposition of the dressed states |Φ1+ and |Φ1, which will be driven to the steady-state finally.

 

Fig. 3 Processes for producing and stabilizing Bell state. The interaction between system and environment is characterized by the photon loss and atomic spontaneous emission with the rates κ and γ, respectively.

Download Full Size | PPT Slide | PDF

3.4. Performance of the scheme

In this part, we present numerical simulation of the full dynamics of the whole system. The most common way to assess the quality of the steady-state is fidelity which is defined as F(t) =Tr[(|ϕ+〉 〈ϕ+| ⊗ Ic) ρ̂t→∞] with |ϕ+〉 being the desired state and ρ̂t→∞ being the practical steady-state density matrix.

The premise of locality and realism implies some constraints on the statistics of two spatially separated particles, which is known as Bell inequalities [50]. On that basis, CHSH correlation [51]. The system state violates Bell inequality when the CHSH correlation rises above 2, and quantum mechanisms predicts CHSH correlation S(t) equals 22 for the maximal violation limit. The CHSH correlation S(t) is defined as

S(t)=Tr[(𝒪CHSH)ρ(t)],
with respect to evolution time, where 𝒪CHSH is defined as
𝒪CHSH=σy,1σy,2σx,22+σx,1σy,2σx,22+σx,1σy,2σx,22σy,1σy,2σx,22.

We also introduce purity to characterize mixture degree of the target steady-state entanglement which is defined through reduced density operators as

𝒫(t)=Tr[ρ^(t)2].
If the system is in a pure state, the purity is precisely unit.

To verify the feasibility of the scheme, we set |Φ0〉 = |g1, g1〉 |0, 0, 0〉 as the initial state, and solve the master equation numerically in zero, one and two excitation subspace. In our scheme, the decay rate of cavity field modes need to be far larger than the spontaneous emission rate of qubits, i.e. γκ, the coupling to the cavity modes should be much stronger than the coupling to the driving field, i.e. Ω1, Ω2g, and the decay rate of cavity field modes and fiber mode should be comparable with weak driving strengths, i.e. κ, β ≃ Ω1, Ω2. With these assumptions, we can efficiently generate and protect the Bell state |ϕ+〉. We choose a set of feasible experimental parameters in a recent circuit QED experiment [52]: χ/2π ≃ 6 MHz, κ/2π ≃ 1.7 MHz, T1 ≃ 9 μs, where T1 is the qubit energy relaxation time, and χ = g2/Δ, with Δ being the qubit-resonator detuning. It is reasonable to set Δ = 10g in this dispersive qubit-resonator interaction system, yielding g/2π ≃ 60MHz, κ1 = κ2 ≃ 2.8 × 10−2g, β = 1.5 × 10−2g and γ ≃ 2.72 × 10−4g. The optimized Rabi frequencies are taken as Ω1 = 0.080g and Ω2 = 0.035g. These parameters are feasible in experiment for a number of quantum optical and solid state systems, for instance: ion traps systems [44,49], superconducting circuit QED systems [52], and plasmonic systems [53–55]. Especially, for the future implementation of quantum information with cold atoms, since the qubits need to be confined within the waist of the cavity mode in cavity QED model, and this can be realized with cold atoms trapped in a far detuned optical dipole trap [56, 57] or optical lattice [58–60], which can be mapped into a cavity QED model as our scheme utilized.

With these parameters, in Fig. 4(a) we plot the evolutions of the experimental fidelity versus the steady-state |Φ10 and initial state |Φ0〉. The result shows that the desired state could be prepared with fidelity more than 90% when the evolution time equals 1500/g. In Fig. 4(b), we optimized the dissipative factors and Rabi frequencies of the drivings by taking γ = 1.75 × 10−5g, κ1 = 1.6×10−2g, κ2 = 2.8×10−2g, β = 0.67×10−2g, Ω1 = 0.025g, Ω2 = 0.045g, with these optimized parameters, the optimal fidelity for steady Bell state is about 97.24% when the evolution time equals 3500/g. It is shown that the evolution time needed to arrive at the steady-state increases with the decreasing of Ω1 and Ω2 and the corresponding fidelity decreases with the increasing of γ. This can be explained as follows, when Ω1 and Ω2 are decreased, the unitary dynamics becomes slower and the time to reach stabilized state increases. On the other hand, the transition from the Bell state to the ground state is strongly suppressed as γ decreases, thus the fidelity increases.

 

Fig. 4 The fidelity of states |Φ0〉 and |Φ10 versus the dimensionless parameter gt for the initial state |Φ0〉 by solving the full master equation. In (a) the experimental parameters are chosen as Ω1 = 0.080g, Ω2 = 0.035g, ν = 20g. And the dissipative factors are chosen as γ/g = 2.72 × 10−4, κ1 = κ2 = 2.8 × 10−2g, β = 1.5 × 10−2g. The inset of (b) is plotted with the optimized parameters: Ω1 = 0.025g, Ω2 = 0.045g and ν = 20g. And the dissipative factors: γ = 1.75 × 10−5g, κ1 = 1.6 × 10−2g, κ2 = 2.4 × 10−2g and β = 0.67 × 10−2g.

Download Full Size | PPT Slide | PDF

With the experimental parameters and optimized parameters mentioned above, we plot the CHSH correlation and the purity of the target steady-state as a function of the evolution time, as shown in Fig. 5. The Numerical simulation in Fig. 5(a) shows that the system is reasonably stabilized to the target steady-state, with the experimental CHSH correlation about 2.532 and the optimal CHSH correlation about 2.731, which are both clearly exceeding the maximum value of 2 allowed by the local hidden variable theories. One can see from Fig. 5(b) that the evolution curve of experimental purity and optimal purity exhibit a valleys in the regime 0< t <500/g. This is due to the fact that the coherent driving is dominant in the early stage of evolution, it leads to the system to be in a mixture of a variety of quantum states. With the increasing of evolution time, the competition between the coherent driving and dissipation reaches a balance, and the target steady-state can be stabilized with the experimental purity about 83% and the optimal purity about 94%.

 

Fig. 5 The CHSH correlation and the purity of the qubit steady-state as a function of the time with the experimental parameters(the bule solid curve) and optimized parameters(the red solid curve), which are chosen as the same as Fig. 4.

Download Full Size | PPT Slide | PDF

Besides, to verify the robustness of the scheme for the driving amplitudes, we plot the fidelity and purity of the target steady-state as a function of the Rabi frequencies Ω1 and Ω2 in Fig. 6(a) and Fig. 6(b), respectively. The result shows that both the fidelity and purity are higher than 90% and 80% within a wide range of Rabi frequencies, demonstrating the scheme is insensitive to deviations of these control parameters. It is worth noting that we have introduced the non-local bosonic modes in Eq. (5) to simplify the dynamics of the system under the condition of ν = 20g, by which we may safely eliminate the bosonic modes c1 and c2 in that they are largely dispersive with the two qubits. In Fig. 6(c), the fidelity of the desired state versus ν and evolution time shows that the robustness of the scheme against the variations of the coupling strength between the cavity mode and the fiber mode, in which the fidelity can reach 88.47% even when the parameter is taken as ν = 7.85g. Taking the parameters γ = 2.72 × 10−4g, ν = 20g, Ω1 = 0.080g and Ω2 = 0.035g, the fidelity of the steady-state as a function of cavity leakage rate κ and fiber loss rate β is shown as the Fig. 6(d). Numerical simulation shows that the fidelity is insensitive to variation of the fiber loss rate β. This is due to the fact that for the large detuning case the two qubits exchange energy only with one bosonic mode c which is independent of the fiber mode, hence the dissipation dynamics is dominated by cavity leakage rate κ, while the effect of fiber loss rate β can be approximately neglected for the dissipation dynamics of the whole system under the condition βg.

 

Fig. 6 The fidelity (a) and purity (b) of the target steady-state as a function of the parameters Ω1/g and Ω2/g with the initial state |Φ0〉 at the time 1×104/g. The parameters are chosen as ν = 20g. (c) The fidelity of the desired state versus ν and evolution time with the initial state |Φ0〉. The parameters are chosen as Ω1 = 0.080g, Ω2 = 0.035g. Figures (a), (b) and (c) are plotted with the dissipative factors γ = 2.72×10−4g, κ1 = κ2 = 2.8×10−2g, β = 1.5 × 10−2g. (d) The fidelity of the target steady-state as a function of cavity leakage rate κ and fiber loss rate β with the initial state |Φ0〉 at the time 1×104/g. The parameters are chosen as ν = 20g, Ω1 = 0.080g, Ω2 = 0.035g, and qubit spontaneous emission rate γ = 2.72 × 10−4g.

Download Full Size | PPT Slide | PDF

4. Quantum teleportation based on distributed steady state entanglement

In this section, as a practical application of our dissipative entanglement preparation scheme in quantum communication, we construct a quantum teleportation setup with multiple nodes as shown in Fig. 7. Suppose that each node is initially prepared in the distributed entangled steady state |ϕ+〉, the fidelity and purity can be higher than 90% and 80% under the condition of experimental parameters, respectively. The unknown quantum state (referred to as a) to be teleported in Alice’s hands is |φa = α|ga + β|ea, where α and β are unknown parameters with |α|2 + |β|2 = 1. By using the standard teleportation procedure [61, 62], Bob could deterministically recover the unknown state only by some local operations (I2, σx2, σz2, σx2σz2 on atom2. In the following the atomic state at Bob’s side as an unknown quantum state which can be teleported from the first node to the nth node by performing same operation. We numerically calculate the fidelity of teleportation within the first node by the formula

FT=φ|2I201|a,1ρ^T|01a,1I2|φ2+φ|2σx200|a,1ρ^T|00a,1σx2|φ2+φ|2σz211|a,1ρ^T|11a,1σz2|φ2+φ|2σx2σz210|a,1ρ^T|10a,1σx2σz2|φ2=0.9415,
where |φ2 is the ideal state which should be teleported to Bob, and ρ̂T = U[|φaaφ| ⊗ Trc,f[ρ̂t→∞]]U, in which ρ̂t→∞ being the entanglement steady-state density matrix, Trc,f represents a partial trace over the degrees of freedom of cavity field modes and fiber mode for ρ̂t→∞, and U = [HaI1I2][CNOTa,1I2] indicates the Hadamard operation on the unknown qubit |φa and the CNOT operation on the control qubit |φa and target qubit atom1. From Eq. (15), we can easily obtain a analytical expressions of the fidelity of quantum teleportation scheme with multiple nodes FTn=(0.9415)n, which shows an exponential decay with the increasing of node number n. In Fig. 8, we plot the fidelity as a function of the number of the nodes. We see that, when the node number exceeding 3, the value of fidelity is lower than 80%, if the node number exceeding 11, the value of fidelity is lower than 50%. As we have shown, as long as the node number not more than 3, our quantum teleportation scheme can be realized effectively under current experimental conditions.

 

Fig. 7 Schematic diagram for implementation of quantum teleportation scheme with multiple nodes. The information of unknown qubit can be teleported from the first node to the nth node. The dashed box denotes the first node to teleport an unknown quantum state from Alice to Bob. The dotted boxes means that two qubits belong to the same participant. The grey box in the bottom left is a quantum circuit of teleportation for the first node. Here H represents a Hadamard operation, σx, σz are the Pauli operators representing local qubit-flip operation, and I is the identity operator.

Download Full Size | PPT Slide | PDF

 

Fig. 8 Fidelity of teleportation scheme with multiple nodes as a function of node number n.

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we have put forward an efficient scheme to prepare the distributed two-atom maximal entanglement Bell state in the atom-cavity-fiber system via the cavity decay. In our scheme only one qubit needs to be driven by classical control fields and during the preparation process, there is no requirement of the phase difference between these two classical field. This is meaningful for the long distance quantum information processing tasks, such as quantum teleportation and quantum dense coding, which can be greatly simplified for the experimental implementation since the entanglement distribution process can be saved and only one qubit is required to be operated by the either of parties, this guarantees the absolute security of long distance quantum information processing tasks and makes the scheme more robust than that based on the unitary dynamics. With the experimental parameters the fidelity, purity and CHSH correction of the distributed steady-state entanglement could reach up to 91%, 83% and 2.532, respectively. And the distributed entanglement is robust against the fluctuations of the Rabi frequencies of the classical field. As a practical application, quantum teleportation scheme with multiple nodes can be constructed, we also discussed the variation of the fidelity of teleportation with the increasing of node number n. Our quantum teleportation scheme can be realized effectively under the current experimental conditions when the number of nodes not more than 3. We hope that our work may be useful for the distributed quantum information processing tasks in the near future.

Funding

National Natural Science Foundation (NSFC) (11564041, 11165015, 11264042, 11465020, 61465013); Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project (20160519022JH).

References and links

1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935). [CrossRef]  

2. E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften 23, 823 (1935). [CrossRef]  

3. C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003). [CrossRef]   [PubMed]  

4. J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997). [CrossRef]  

5. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997). [CrossRef]  

6. P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012). [CrossRef]  

7. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]   [PubMed]  

8. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]  

9. S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003). [CrossRef]   [PubMed]  

10. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007). [CrossRef]  

11. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007). [CrossRef]  

12. X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008). [CrossRef]  

13. W. A. Li and L. F. Wei, “Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics,” Opt. Express 20, 13440–13450 (2012). [CrossRef]   [PubMed]  

14. L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012). [CrossRef]   [PubMed]  

15. S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999). [CrossRef]  

16. M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999). [CrossRef]  

17. C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999). [CrossRef]  

18. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011). [CrossRef]   [PubMed]  

19. F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012). [CrossRef]  

20. J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011). [CrossRef]  

21. L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011) [CrossRef]  

22. K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011). [CrossRef]   [PubMed]  

23. A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010). [CrossRef]  

24. D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009). [CrossRef]  

25. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002). [CrossRef]  

26. F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003). [CrossRef]   [PubMed]  

27. F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006). [CrossRef]  

28. C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008). [CrossRef]  

29. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008). [CrossRef]  

30. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009). [CrossRef]  

31. G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009). [CrossRef]  

32. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011). [CrossRef]  

33. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012). [CrossRef]  

34. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

35. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014). [CrossRef]   [PubMed]  

36. X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012). [CrossRef]  

37. S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014). [CrossRef]  

38. S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014). [CrossRef]   [PubMed]  

39. S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015). [CrossRef]  

40. S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015). [CrossRef]  

41. E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013). [CrossRef]   [PubMed]  

42. D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013). [CrossRef]  

43. A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013). [CrossRef]   [PubMed]  

44. Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013). [CrossRef]   [PubMed]  

45. F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013). [CrossRef]  

46. R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013). [CrossRef]  

47. S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014). [CrossRef]  

48. H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011). [CrossRef]   [PubMed]  

49. J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011). [CrossRef]   [PubMed]  

50. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195 (1964).

51. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969). [CrossRef]  

52. S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013). [CrossRef]   [PubMed]  

53. A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]   [PubMed]  

54. M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012). [CrossRef]  

55. A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013). [CrossRef]   [PubMed]  

56. D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999). [CrossRef]  

57. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000). [CrossRef]  

58. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998). [CrossRef]  

59. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999). [CrossRef]  

60. E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002). [CrossRef]   [PubMed]  

61. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993). [CrossRef]   [PubMed]  

62. G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
    [Crossref]
  2. E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften 23, 823 (1935).
    [Crossref]
  3. C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).
    [Crossref] [PubMed]
  4. J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
    [Crossref]
  5. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
    [Crossref]
  6. P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
    [Crossref]
  7. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [Crossref] [PubMed]
  8. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [Crossref]
  9. S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
    [Crossref] [PubMed]
  10. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
    [Crossref]
  11. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
    [Crossref]
  12. X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
    [Crossref]
  13. W. A. Li and L. F. Wei, “Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics,” Opt. Express 20, 13440–13450 (2012).
    [Crossref] [PubMed]
  14. L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
    [Crossref] [PubMed]
  15. S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
    [Crossref]
  16. M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
    [Crossref]
  17. C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
    [Crossref]
  18. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
    [Crossref] [PubMed]
  19. F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
    [Crossref]
  20. J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
    [Crossref]
  21. L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011)
    [Crossref]
  22. K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
    [Crossref] [PubMed]
  23. A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010).
    [Crossref]
  24. D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
    [Crossref]
  25. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
    [Crossref]
  26. F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
    [Crossref] [PubMed]
  27. F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006).
    [Crossref]
  28. C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008).
    [Crossref]
  29. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
    [Crossref]
  30. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
    [Crossref]
  31. G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
    [Crossref]
  32. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
    [Crossref]
  33. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
    [Crossref]
  34. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).
  35. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
    [Crossref] [PubMed]
  36. X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
    [Crossref]
  37. S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
    [Crossref]
  38. S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
    [Crossref] [PubMed]
  39. S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
    [Crossref]
  40. S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
    [Crossref]
  41. E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
    [Crossref] [PubMed]
  42. D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013).
    [Crossref]
  43. A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
    [Crossref] [PubMed]
  44. Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
    [Crossref] [PubMed]
  45. F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
    [Crossref]
  46. R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
    [Crossref]
  47. S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014).
    [Crossref]
  48. H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
    [Crossref] [PubMed]
  49. J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
    [Crossref] [PubMed]
  50. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195 (1964).
  51. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
    [Crossref]
  52. S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
    [Crossref] [PubMed]
  53. A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
    [Crossref] [PubMed]
  54. M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
    [Crossref]
  55. A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
    [Crossref] [PubMed]
  56. D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
    [Crossref]
  57. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
    [Crossref]
  58. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
    [Crossref]
  59. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
    [Crossref]
  60. E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
    [Crossref] [PubMed]
  61. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [Crossref] [PubMed]
  62. G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
    [Crossref]

2015 (2)

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

2014 (4)

S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

2013 (9)

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013).
[Crossref]

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
[Crossref]

A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

2012 (7)

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
[Crossref]

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

W. A. Li and L. F. Wei, “Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics,” Opt. Express 20, 13440–13450 (2012).
[Crossref] [PubMed]

L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012).
[Crossref] [PubMed]

2011 (8)

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011)
[Crossref]

K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
[Crossref] [PubMed]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

2010 (1)

A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010).
[Crossref]

2009 (3)

D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[Crossref]

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
[Crossref]

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

2008 (3)

C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008).
[Crossref]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

2007 (3)

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

2006 (2)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006).
[Crossref]

2003 (3)

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[Crossref] [PubMed]

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).
[Crossref] [PubMed]

2002 (2)

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[Crossref]

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

2000 (1)

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

1999 (5)

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

1998 (2)

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
[Crossref]

1997 (2)

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195 (1964).

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften 23, 823 (1935).
[Crossref]

Alharbi, A. F.

A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010).
[Crossref]

Angelakis, D. G.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Beige, A.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195 (1964).

Benatti, F.

F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006).
[Crossref]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Bhaktavatsala Rao, D. D.

D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013).
[Crossref]

Blatt, R.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Bose, S.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Bowler, R.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Brassard, G.

G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
[Crossref]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Braun, D.

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[Crossref]

Braunstein, S. L.

G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
[Crossref]

Brennen, G. K.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

Briegel, H.-J.

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

Bruder, C.

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

Büchler, H. P.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

Busch, J.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Buttner, H.

C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008).
[Crossref]

Cabrillo, C.

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

Calarco, T.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

Carr, A. W.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Caves, C. M.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

Chang, D. E.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Charron, E.

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

Chen, L. B.

Chen, M. F.

Chen, X. Y.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Cheng, L. Y.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Chwalla, M.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Cirac, J. I.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
[Crossref] [PubMed]

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
[Crossref]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Clark, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Cleve, R.

G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Dalla Torre, E. G.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

De, S.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Demler, E.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Deutsch, I. H.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

Devoret, M. H.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Diehl, S.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

Ding, C. L.

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Feist, J.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Ficek, Z.

A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010).
[Crossref]

Floreanini, R.

F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006).
[Crossref]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[Crossref] [PubMed]

Frunzio, L

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Gaebler, J. P.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Gao, S. Y.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

García-Fernández, P.

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

García-Vidal, F. J.

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

Gardiner, C. W.

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

Girvin, S. M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

Gu, M.

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

Gu, Y. J.

Gullans, M.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Guo, J. L.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

Guo, Q.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

Hatridge, M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Hennrich, M.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Hinds, E. A.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Horhammer, C.

C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Huelga, S. F.

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

Irvine, W. T. M.

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).
[Crossref] [PubMed]

Ivanov, S. S.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Jakche, D.

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

Jaksch, D.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

Jensen, K.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Jessen, P. S.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

Johansson, G.

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Kantian, A.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

Kastoryano, M. J.

F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Kimble, H. J.

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

Kimble, H.J.

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Knight, P. L.

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

Kraus, B.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

Krauter, H.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Leghtas, Z.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Leibfried, D.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Li, F. L.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

Li, H. R.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

Li, J. H.

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

Li, P. B.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

Li, W. A.

Lin, Y.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Liu, J. B.

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

Lü, X. Y.

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

Lukin, M. D.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Ma, S. L.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

Mabuchi, H.

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Mancini, S.

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011)
[Crossref]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Martín-Cano, D.

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

MartínMoreno, L.

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

Memarzadeh, L.

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011)
[Crossref]

Micheli, A.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

Mies, F.

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

Mirrahimi, M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Mølmer, K.

D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013).
[Crossref]

Monz, T.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Moreno, E.

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

Müller, M.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Muschik, C. A.

K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
[Crossref] [PubMed]

Muschik, C.A.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Narla, A.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Nie, J.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

Nigg, D.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Otterbach, J.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Parkins, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[Crossref]

Peng, A.

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Petersen, J. M.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Petruccione, F.

R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
[Crossref]

Piani, M.

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[Crossref] [PubMed]

Plenio, M. B.

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Polzik, E. S.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Porras, D.

A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

Reiter, F.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Roos, C. F.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Saffman, M.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Schindler, P.

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

Schmiedmayer, J.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

Schrödinger, E.

E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften 23, 823 (1935).
[Crossref]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Shankar, S.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Shao, X. Q.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

Shen, L. T.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Shi, P.

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Simon, C.

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).
[Crossref] [PubMed]

Sinayskiy, I.

R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
[Crossref]

Sliwa, K. M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Song, H. S.

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

Song, J.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

Sørensen, A. S.

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Spiller, T. P.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Su, S. L.

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

Sweke, R.

R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
[Crossref]

Tan, T. R.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Tejedor, C.

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

Thompson, J. D.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Tiecke, T. G.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

Tiesinga, E.

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

Tornberg, L.

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

Torosov, B. T.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Vacanti, G.

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

van Enk, S. J.

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

Verstraete, F.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
[Crossref]

Vollbrecht, K. G. H.

K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
[Crossref] [PubMed]

Vool, U.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Vuletic, V.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Wang, H. F.

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

Wang, H.-F.

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Wasilewski, W.

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Wei, L. F.

Williams, C.

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

Wineland, D. J.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Wolf, M. M.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
[Crossref]

Wootters, W.K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Wu, H. Z.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Xia, Y.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

Yang, Z. B.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

X. Y. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and M. F. Chen, “Engineering W-type steady states for three atoms via dissipation in an optical cavity,” J. Opt. Soc. Am. B 29, 1535–1540 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Yin, Z. Q.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

Zhang, S.

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

Zheng, C. H.

Zheng, S. B.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Preparation of two-qubit steady entanglement through driving a single qubit,” Opt. Lett. 39, 6046 (2014).
[Crossref] [PubMed]

S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Zoller, P.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Eur. Phys. J. D (1)

S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H.-F. Wang, and S. Zhang, “Preparation of entanglement between atoms in spatially separated cavities via fiber loss,” Eur. Phys. J. D 69, 123 (2015).
[Crossref]

Europhys. Lett. (3)

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[Crossref]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

F. Benatti and R. Floreanini, “Entangling oscillators through environment noise,” J. Phys. A 39, 2689 (2006).
[Crossref]

J. Phys. B (1)

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. B. Zheng and L. T. Shen, “Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator,” J. Phys. B: At. Mol. Opt. Phys. 47, 055502 (2014).
[Crossref]

Nat. Phys. (2)

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).
[Crossref]

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation,” Nat. Phys. 5, 633 (2009).
[Crossref]

Nature (3)

J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with trapped ions,” Nature 470, 486–491 (2011).
[Crossref] [PubMed]

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature 504, 415–418 (2013).
[Crossref] [PubMed]

Naturwissenschaften (1)

E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften 23, 823 (1935).
[Crossref]

New J. Phys. (2)

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Driving two atoms in an optical cavity into an entangled steady state using engineered decay,” New J. Phys. 14, 053022 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Phys. Rev. A (16)

X. Y. Lü, J. B. Liu, C. L. Ding, and J. H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[Crossref]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59, 2659 (1999).
[Crossref]

M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[Crossref]

C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025 (1999).
[Crossref]

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85, 042306 (2012).
[Crossref]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

A. F. Alharbi and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010).
[Crossref]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011)
[Crossref]

C. Horhammer and H. Buttner, “Environment-induced two-mode entanglement in quantum Brownian motion,” Phys. Rev. A 77, 042305 (2008).
[Crossref]

F. Reiter, L. Tornberg, G. Johansson, and A. S. Sørensen, “Steady-state entanglement of two superconducting qubits engineered by dissipation,” Phys. Rev. A 88, 032317 (2013).
[Crossref]

R. Sweke, I. Sinayskiy, and F. Petruccione, “Dissipative preparation of large W states in optical cavities,” Phys. Rev. A 87, 042323 (2013).
[Crossref]

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[Crossref]

S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, “Simplified scheme for entanglement preparation with Rydberg pumping via dissipation,” Phys. Rev. A 92, 022328 (2015).
[Crossref]

Phys. Rev. Lett. (22)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108 (1998).
[Crossref]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).
[Crossref]

E. Charron, E. Tiesinga, F. Mies, and C. Williams, “Optimizing a phase gate using quantum interference,” Phys. Rev. Lett. 88, 077901 (2002).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

D. D. Bhaktavatsala Rao and K. Mølmer, “Dark entangled steady states of interacting rydberg atoms,” Phys. Rev. Lett. 111, 033606 (2013).
[Crossref]

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. MartínMoreno, C. Tejedor, and F. J. García-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[Crossref] [PubMed]

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
[Crossref]

A. Gonzalez-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in Solid-State quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

D. Jakche, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via Cold Controlled Collisions,” Phys. Rev. Lett. 82, 1975 (1999).
[Crossref]

H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[Crossref]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[Crossref] [PubMed]

K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011).
[Crossref] [PubMed]

S. Clark, A. Peng, M. Gu, and S. Parkins, “unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[Crossref] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Physica D (1)

G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Physica D 120, 43 (1998).
[Crossref]

Physics (Long Island City, N. Y.) (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195 (1964).

Quantum Inf. Comput. (1)

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Cooling distant atoms into steady entanglement via coupled cavities,” Quantum Inf. Comput. 13, 281 (2013).

Sci. Rep. (1)

S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, “Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay,” Sci. Rep. 4, 7566 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup and level diagram of the atoms. Two atoms resonantly interact with quantized field, respectively. The first atom is driven by two classical fields. γ, κ, and β denote the atomic spontaneous emission rate, cavity decay rate and fiber loss rate, respectively.
Fig. 2
Fig. 2 Schematic diagram for the dressed state of the atom-cavity-fiber coupling system.
Fig. 3
Fig. 3 Processes for producing and stabilizing Bell state. The interaction between system and environment is characterized by the photon loss and atomic spontaneous emission with the rates κ and γ, respectively.
Fig. 4
Fig. 4 The fidelity of states |Φ0〉 and | Φ 1 0 versus the dimensionless parameter gt for the initial state |Φ0〉 by solving the full master equation. In (a) the experimental parameters are chosen as Ω1 = 0.080g, Ω2 = 0.035g, ν = 20g. And the dissipative factors are chosen as γ/g = 2.72 × 10−4, κ1 = κ2 = 2.8 × 10−2g, β = 1.5 × 10−2g. The inset of (b) is plotted with the optimized parameters: Ω1 = 0.025g, Ω2 = 0.045g and ν = 20g. And the dissipative factors: γ = 1.75 × 10−5g, κ1 = 1.6 × 10−2g, κ2 = 2.4 × 10−2g and β = 0.67 × 10−2g.
Fig. 5
Fig. 5 The CHSH correlation and the purity of the qubit steady-state as a function of the time with the experimental parameters(the bule solid curve) and optimized parameters(the red solid curve), which are chosen as the same as Fig. 4.
Fig. 6
Fig. 6 The fidelity (a) and purity (b) of the target steady-state as a function of the parameters Ω1/g and Ω2/g with the initial state |Φ0〉 at the time 1×104/g. The parameters are chosen as ν = 20g. (c) The fidelity of the desired state versus ν and evolution time with the initial state |Φ0〉. The parameters are chosen as Ω1 = 0.080g, Ω2 = 0.035g. Figures (a), (b) and (c) are plotted with the dissipative factors γ = 2.72×10−4g, κ1 = κ2 = 2.8×10−2g, β = 1.5 × 10−2g. (d) The fidelity of the target steady-state as a function of cavity leakage rate κ and fiber loss rate β with the initial state |Φ0〉 at the time 1×104/g. The parameters are chosen as ν = 20g, Ω1 = 0.080g, Ω2 = 0.035g, and qubit spontaneous emission rate γ = 2.72 × 10−4g.
Fig. 7
Fig. 7 Schematic diagram for implementation of quantum teleportation scheme with multiple nodes. The information of unknown qubit can be teleported from the first node to the nth node. The dashed box denotes the first node to teleport an unknown quantum state from Alice to Bob. The dotted boxes means that two qubits belong to the same participant. The grey box in the bottom left is a quantum circuit of teleportation for the first node. Here H represents a Hadamard operation, σx, σz are the Pauli operators representing local qubit-flip operation, and I is the identity operator.
Fig. 8
Fig. 8 Fidelity of teleportation scheme with multiple nodes as a function of node number n.

Tables (2)

Tables Icon

Table 1 The eigenstates and eigenenergies of the Hamiltonian H0 + Hc,f + Ha,c within the zero and single excitation subspaces.

Tables Icon

Table 2 The eigenstates and eigenenergies of the Hamiltonian H0 + Hc,f + Ha,c within the two-excitation subspace.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H 0 = i = 1 , 2 ω 0 | e i e i | + j = A , B ω a a j a j + ω b b b ,
H c , f = ν ( b a A + b a B ) + H . c . ,
H a , c = g ( S 1 a A + S 2 a B ) + H . c . ,
H cl = k = 1 , 2 Ω k e i ω k t S 1 + H . c . ,
c = 2 2 ( a A a B ) , c 1 = 1 2 ( a A + a B + 2 b ) , c 2 = 1 2 ( a A + a B 2 b ) ,
H a , c = 1 2 g ( e i 2 ν t c 1 + e i 2 ν t c 2 + 2 c ) S 1 + 1 2 g ( e i 2 ν t c 1 + e i 2 ν t c 2 2 c ) S 2 + H . c . ,
H a , c = 2 2 g ( S 1 S 2 ) c + H . c . .
ρ ^ ˙ = i [ ρ ^ , H ] + 1 2 j [ 2 L ^ j ρ ^ L ^ j ( L ^ j L ^ j ρ ^ + ρ ^ L ^ j L ^ j ) ] ,
| Φ 0 = | g 1 , g 2 | 0 , 0 , 0 , | Φ 1 0 = | ϕ + | 0 , 0 , 0 , | Ψ 1 = | g 1 , g 2 | 0 , 0 , 1 , | Ψ 1 + = | g 1 , g 2 | 0 , 1 , 0 , | Φ 1 ± = 1 2 [ | ϕ | 0 , 0 , 0 ± | g 1 , g 2 | 1 , 0 , 0 ] ,
| Ψ 2 = | ϕ + | 0 , 0 , 1 , | Ψ 2 + = | ϕ + | 0 , 1 , 0 , | Ψ 2 , ± 1 = 1 2 [ | ϕ | 0 , 0 , 1 ± | g 1 , g 2 | 1 , 0 , 1 ] , | Ψ 2 , ± 2 = 1 2 [ | ϕ | 0 , 1 , 0 ± | g 1 , g 2 | 1 , 1 , 0 ] , | Φ 2 0 = | ϕ + | 1 , 0 , 0 , | Φ 2 1 = | g 1 , g 2 | 0 , 1 , 1 , | Φ 2 2 = 1 3 ( | g 1 , g 2 | 2 , 0 , 0 + 2 | e 1 , e 2 ) | 0 , 0 , 0 , | Φ 2 ± = 1 2 [ ( | ϕ ) | 1 , 0 , 0 ± 1 3 ( 2 | g 1 , g 2 | 2 , 0 , 0 | e 1 , e 2 | 0 , 0 , 0 ) ] .
H cl = k = 1 , 2 [ 1 2 Ω k e i ω k t ( | Φ 1 + | Φ 1 ) Φ 0 | + 1 2 Ω k e i ω k t | Φ 1 0 Φ 0 | + 1 2 Ω k e i ω k t | Φ 2 Φ 1 | + 1 2 Ω k e i ω k t ( | Φ 2 , 1 + | Φ 2 , + 1 ) Φ 1 | + 1 2 Ω k e i ω k t | Φ 2 + Φ 1 + | + 1 2 Ω k e i ω k t ( | Φ 2 , 2 + | Φ 2 , + 2 ) Φ 1 + | ( 1 6 Ω k e i ω k t | Φ 2 2 + 1 2 Ω k e i ω k t | Φ 2 0 ) ( Φ 1 | + Φ 1 + | ) + 2 4 Ω k e i ω k t ( | Φ 2 + | Φ 2 + ) ( Φ 1 | Φ 1 + | ) + 1 3 Ω k e i ω k t | Φ 2 2 Φ 1 0 | + H . c . ] .
S ( t ) = Tr [ ( 𝒪 CHSH ) ρ ( t ) ] ,
𝒪 CHSH = σ y , 1 σ y , 2 σ x , 2 2 + σ x , 1 σ y , 2 σ x , 2 2 + σ x , 1 σ y , 2 σ x , 2 2 σ y , 1 σ y , 2 σ x , 2 2 .
𝒫 ( t ) = Tr [ ρ ^ ( t ) 2 ] .
F T = φ | 2 I 2 01 | a , 1 ρ ^ T | 01 a , 1 I 2 | φ 2 + φ | 2 σ x 2 00 | a , 1 ρ ^ T | 00 a , 1 σ x 2 | φ 2 + φ | 2 σ z 2 11 | a , 1 ρ ^ T | 11 a , 1 σ z 2 | φ 2 + φ | 2 σ x 2 σ z 2 10 | a , 1 ρ ^ T | 10 a , 1 σ x 2 σ z 2 | φ 2 = 0.9415 ,

Metrics