Abstract

The implementation and engineering of bright and coherent solid state quantum light sources is key for the realization of both on chip and remote quantum networks. Despite tremendous efforts for more than 15 years, the combination of these two key prerequisites in a single, potentially scalable device is a major challenge. Here, we report on the observation of bright single photon emission generated via pulsed, resonance fluorescence conditions from a single quantum dot (QD) deterministically centered in a micropillar cavity device via cryogenic optical lithography. The brightness of the QD fluorescence is greatly enhanced on resonance with the fundamental mode of the pillar, leading to an overall device efficiency of η = (74 ± 4) % for a single photon emission as pure as g(2)(0) = 0.0092 ± 0.0004. The combination of large Purcell enhancement and resonant pumping conditions allows us to observe a two-photon wave packet overlap up to ν = (88 ± 3) %.

© 2016 Optical Society of America

1. Introduction

Building compact and bright solid state sources of on-demand and Fourier-limited single photons is a major challenge in engineering quantum emitters and solid state microcavities [1]. Such sources are of crucial importance for establishing optical quantum networks on- and off chip [2–4], to enable quantum teleportation [5, 6] and to implement building blocks for quantum repeater networks [7]. Among the most promising candidate for solid state single-photon emitters are epitaxially grown semiconductor quantum dots (QDs). Due to their near-unity quantum efficiency and spontaneous emission lifetimes in the lower ns range they allow for operation frequencies in the GHz range. As InAs or InP QDs are embedded in a high refractive index medium and thus suffer from total internal reflection, improving the extraction efficiency of the single photon flux out of the crystal is crucial and can be established via various designs [8]. Thus far, microcavities [9,10], lensing [11–13] and waveguiding approaches [14–17] have been most successfully applied to this long standing problem, and single photon sources with extraction efficiencies in excess of 70 % [14] have been reported. The indistinguishability of the emitted photons, however, which is an equally important characteristics of a quantum light source for the above mentioned applications, is a parameter which is harder to maximize. Indistinguishable photons share all spectral characteristics, including polarization and color. Furthermore, the characteristic destructive quantum interference between photons leaving separate output ports on a beamsplitter can only be established if the single photons impinge the splitter simultaneously, and if their wave packet overlap equals unity. Equal timing requires an excitation technique which minimizes time jittering of the emission event, while maximizing the wave packet overlap requires close-to Fourier limited photons. In principal, the latter can be achieved more easy using the Purcell effect to enhance the emission rate of the emitter [18]. While single photon streams can be generated from a single quantum dot under non-resonant or quasi-resonant excitation conditions, it has been recognized that resonance fluorescence excitation is the most suitable configuration to simultaneously minimize time jittering and maximize coherence [19,20].

In recent works, we discussed the successful implementation of resonant excitation to trigger streams of single [21] and highly indistinguishable [22] photons. These devices were, however, based on a random alignment of QD and cavity. Thus the effort to find a device which combines the criteria of brightness and coherence is painstaking and not very practicable for scalable applications. To circumvent this limitation, in our current work we choose a deterministic technique to put a coherent, pre-selected QD in the maximum of the optical field in a micropillar cavity. The resulting device, operated deeply in the Purcell regime, yields an overall device efficiency of η = (74±4) % of resonance fluorescence single photons and an extraction efficiency of ηLin = (37±2) % of linearly polarized single photons. The coherence of the resonance fluorescence photons is measured via Hong-Ou-Mandel type interference experiments resulting in a maximal two-photon wave packet overlap of up to ν = (88 ± 3) %.

2. Experimental setup and Hong-Ou-Mandel interference

The experimental setup for the resonant excitation of such a QD cavity system consist of a linearly polarized Ti:Sapphire laser (repetition rate 82 MHz, pulse length τ ≈ 1.3 ps) which is coupled into the beam path via a 92/8 Pellicle beamsplitter. The micropillar sample is mounted on the coldfinger of a lHe flow cryostat and the emitted light from the sample is collected with a microscope objective (NA= 0.42) and coupled into a single mode fiber. A second linearpolarizer in front of the fiber coupler is orientated perpendicular to the laser polarization and selects the detected polarization axis of the QD signal. After spectrally filtering the emission with a 1500linesmm grating, we either detect the signal on a charged-coupled device (CCD) or we couple it into a fiber. The single photon statistics are measured via a fiber-coupled Hanbury Brown and Twiss setup. For the two-photon interference experiments, we divide each laser pulse into two equal pulses with 2 ns delay. The interference experiments are carried out with an unbalanced free beam Mach-Zehnder-interferometer, where the two arms exactly compensate the separation between two consecutive emitted photons. We measure the second order auto-correlation of this interferometer via two single photon sensitive Silicon based avalanche photo diodes at the exit ports of the second 50/50 beamsplitter.

3. Sample growth and insitu lithography

Figure 1 depicts a sketch of the fabrication scheme which we applied to fabricate our aligned QD-micropillar device, in a similar approach as discussed by Dousse et al. [23]. The process starts from a planar cavity structure grown via means of molecular beam epitaxy (MBE). It consists of 25.5 (15) λ/4-thick AlAs/GaAs mirror pairs which form the lower (upper) distributed Bragg reflector (DBR). The DBR mirrors sandwich a λ-thick GaAs cavity with a single layer of low density In(Ga)As QDs. To shift the emission wavelength of the QDs to the 900 nm range, we performed an in-situ partial capping and annealing step. A silicon δ-doping was introduced 10 nm below the QD layer to stochastically charge the single QDs with an excess electron. The sample is spin-coated with a conventional photo resist for optical lithography (sensitive in the ultra violet to blue spectral range) and mounted on the cold finger of a lHe flow cryostat. We excite the sample with a green, SM-fiber coupled, continuous wave laser (λ = 532 nm) to pump the QDs without exposing the resist. After selecting a bright, resolution limited single QD line, as shown in Fig. 1(b), we maximize the signal to ensure that the QD is located in the center of the laser spot. An additional SM-fiber coupled, violet laser (λ = 405 nm), which beam path is identically to the one of the green laser is used to expose the photo resist. Via varying the exposure time, we can control the diameter of the exposed area with sub-micron precision and thus can match the optical resonance to the emission frequency of the QD. Subsequent to this cryogenic optical lithography step, we deposit a BaF/Cr hard mask and after lift-off, the mask pattern is transferred into the sample via electron-cyclotron-resonance reactive-ion-etching. Next, the sample is planarized by a transparent polymer to stabilize the pillars and protect them from sidewall oxidation, and the hard mask is fully removed in an ultra sonic bath. With this technique, we observe a yield of approximately 20 % to match the emission wavelength between QD and fundamental mode below 15–20 K. The deviation from an ideal fabrication process is mainly due to slight shifts of the QD emission over several cooling and heating cycles and within the etching process altering the strain environment of the QD.

 figure: Fig. 1

Fig. 1 Schematic drawing of the deterministic device fabrication: (a) We excite the planar structure with a green laser to pump the QDs without exposing the photo resist. (b) We select a single, bright QD line and optimize the signal. (c) After exposing the photoresist with a violet laser, we etch the micropillar into the planar structure. (d) The result is a bright, background free, Purcell-enhanced single QD line.

Download Full Size | PPT Slide | PDF

4. Experimental results

In the following, we discuss the emission characteristics of a micropillar with a diameter of d = 3 µm (Q=5930, cavity linewidth γC = 232 µeV). Figure 2(a) shows a series of spectra acquired under non-resonant excitation and for varying temperature. We observe a clear signature of weak light matter coupling with a strong enhancement of the QD emission for spectral resonance between QD and fundamental optical mode. To determine the Purcell enhancement of the system, we carried out time-resolved µ-photoluminescence measurements (tRes ≈ 40 ps).

 figure: Fig. 2

Fig. 2 (a) Temperature dependent spectras of an insitu defined micropillar with a diameter of d ≈ 3 µm under above bandgap excitation. A strong enhancement on spectral resonance between fundamental mode (FM) and QD due to the Purcell effect is observed. (b) Time resolved measurements on and off resonance reveal a Purcell factor of FP = 5.8 ± 0.2.

Download Full Size | PPT Slide | PDF

The time-depended emission of the saturated QD is plotted in Fig. 2(b). Via fitting the decay curve for spectral resonance between QD and cavity with a biexponential decay we can extract the lifetime of the QD exciton as Ton = (168 ± 5) ps. While the origin of the biexponential decay is not fully clarified, we suggest that an off resonant contribution of the same emitter (via another charge state) is a reasonable assumption [24]. The lifetime for a spectral detuning of Δ = EXEC = −2.7 meV≈ 12·γC is measured to be Toff = (1140 ± 19) ps. This leads to a Purcell factor of FP=ToffTon1=5.8±0.2, under the common assumption that suppression of spontaneous emission off resonance is insignificant in our case.

Full inversion of the two level system can be established most efficiently under strictly resonant pumping: Figure 3(a) shows the integrated QD emission taken from the CCD of our setup to avoid laser induced errors from a lowered signal to laser ratio for high pumping strength. We observe an oscillating behaviour which is a signature for the pulsed resonant driving of the system [25]. The fit is a damped sinusoidal function, which is characteristic for the pulsed resonant driving of a two-level system which is coupled to a phonon bath [26]. For π-pulse excitation, we observe count rates on the CCD up to 1.3 million counts per second. In order to extract the overall device efficiency of our QD micropillar device from this measurement, we carefully calibrated our setup revealing a setup efficiency for the detected linear polarization of ηSetup = (2.1 ± 0.1) %. Therefore, our device yields an overall efficiency of η = (74 ± 4) %. This value is comparable to the reported state of the art values for single QD-based light sources. However, we note that it is significantly larger than any other value reported thus far for a deterministically inverted quantum dot via resonant pumping. For possible applications, the figure of merit of such a device is the number of linear polarized photons emitted by the SPS. For our device, this number is half of the overall device efficiency which leads to an efficiency of linear polarized photons of ηLin = (37 ± 2) %. In order to compare our results to the maximal achievable extraction efficiency of a micropillar with the same specifications, we simulated our structure using an eigenmode expansion technique [27]. We assumed an oxidation of 75 nm of the AlAs layer, as well as a 130 nm thick SiO2-layer on the sidewalls of the micropillar induced by the reactive ion etching process on a silicon sample holder [28]. This leads to a maximum extraction efficiency of 75 % for a 3 µm diameter pillar, which compares very well with our measured efficiency. Without the AlAs oxidation and the SiO2-surface, the calculated efficiency is slightly decreased to approx. 72 % resulting from a slight increase of the cavity mode volume. The high brightness, and comparably large setup efficiency allows us to record quasi background free single photon correlation charts via a fiber coupled Hanbury Brown and Twiss setup with very good signal to noise ratios on the minute scale. Figure 3(b) shows the recorded coincidence histogram for π-pulse excitation. The vanishing peak around τ ≈ 0 ns is a clear signature of the non classical light emission from the QD. We fit each pulse with a two sided exponential decay convolved with a Gaussian distribution, where the width is the time resolution (tRes ≈ 520 ps) of our setup. This allows us to extract a value of g(2)(0) via dividing the area of the central peak by the average area of the surrounding peaks, which amounts to g(2)(0) = 0.0092 ± 0.0004. These results unambiguously proof pure and bright single photon emission from a deterministically prepared exciton state.

 figure: Fig. 3

Fig. 3 (a) Measured source efficiency and count rate on the monochromator CCD versus the pulse area of the driving laser field for spectral resonance between QD and cavity mode. The fit is a damped sinusoidal function. We extract an overall device efficiency of η = (74 ± 4) %. (b) 2nd order auto-correlation histogram for pulsed resonant excitation with a π-pulse. We extract a g(2)-value as low as g(2)(0) = 0.0092 ± 0.0004.

Download Full Size | PPT Slide | PDF

In order to test the coherence of consecutive emitted single photons from our device, we split the excitation pulses in a train of two pulses with 2 ns separation. The emitted photons are then coupled into an unbalanced Mach-Zehnder-interferometer. One arm of the interferometer is precisely adjusted to compensate the delay between the two photons. If the early photon takes the long arm of the interferometer and the late photon the short path, both meet each other at the second 50/50 beam splitter where they can interfere if they are indistinguishable. Via an additional λ/2-wave plate, we can rotate the polarization in one arm of the interferometer by 90° to make the two photons distinguishable. Figure 4(a) and 4(b) show the measured coincidence histograms for parallel and orthogonal polarization of the photons for driving the system with a π/4-pulse. The suppression of the central peak in Fig. 4(a) is a clear proof, that our device is capable as a source for single and highly coherent photons. In order to extract the degree of in-distinguishability, we fit each histogram by a sum of five two sided exponential functions, each convoluted with a Gaussian distribution. For the fitting procedure, we keep the time constant of the exponential decay fixed to the measured lifetime of the QD transition, which was shown in Fig. 2(b). Via the expression v=1AparallelAorthogonal we can extract the two-photon interference visibility ν from our fit results which reveals a raw visibility of νraw = (84 ± 3) %. When taking into account the imperfections of the 50/50 beamsplitter (R/T 1.1), the contrast of the Mach-Zehnder-interferometer ((1 − ε) = 0.98) and the slight deviation from a non zero g(2)(0)-value (g(2) = 0.0092 ± 0.0004), we can use the expressions given by Santori et al. [29] to correct the two-photon interference visibility which results in a corrected value of νcorr. = (88 ± 3) %. This number compares favourably to previously reported values from deterministically fabricated QD based quantum light sources [12,30]. When we pump the system with a π-pulse, we obtain the coincidence histogram shown in Fig.4(c). Via applying the same fitting and correction procedure as above, we observe a slight decrease of the two-photon wave packet overlap to νcorr. = (73 ± 1) % for π-pulse excitation, most likely as a consequence of power induced dephasing of the system via coupling of the QD to longitudinal acoustic phonons. Figure 4(d) shows the measured and corrected interference visibility as a function of the pulse area and summarizes the measurements we discussed before.

 figure: Fig. 4

Fig. 4 Measured two-photon interference (TPI) histograms for (a) parallel polarization of both photons and driving the system with a π/4-pulse and (b) orthogonal polarization. We fit each histogram with a sum of five two sided exponential functions each convolved with a Gaussian distribution and extract a visibility of ν = (88 ± 3) %. (c) We observe a slight decrease of the TPI visibility to (73±1) % for π-pulse excitation. (d) Summary of the TPI visibility versus the pulse area.

Download Full Size | PPT Slide | PDF

5. Conclusions

In conclusion, we have discussed the implementation of a QD based single photon source based on a micropillar aligned to a pre-selected QD via cryogenic optical lithography. Ideal lateral alignment leads to a close to ideal coupling of the QD to the fundamental mode of the micropillar, characterized by a large Purcell factor of FP = 5.8 ± 0.2. As a result, we observe bright emission of single photons with an overall efficiency of η = (74 ± 4) % ((37 ± 2) %for linearly polarized single photons) and single photons statistics close to perfection with g(2) = 0.0092 ± 0.0004 under pulsed resonance fluorescence conditions. In a Hong-Ou-Mandel interference experiment, we tested the indistinguishability of the emitted photons revealing a two-photon wave packet overlap as high as ν = (88 ± 3) % for exciting the QD with a π/4-pulse. We believe that our work represents a significant step towards advanced solid state quantum optics experiments based on single, indistinguishable photons. Furthermore, the possibility to combine very efficient mode coupling and photon interference in aligned, microstructured devices is very encouraging for the implementation of integrated quantum dot based quantum circuits. As a next step one could also implement a reduction of the coupling to leaky modes to achieve an overall device efficiency close to 100 % [31, 32]. The efficiency of linear polarized photons could be increased via fabricating elliptically shaped pillars to enhance the emission rate of one polarisation [33].

Note: During the submission of this work, we became aware of a similar work [34].

Acknowledgments

The authors thank A. Wolf for performing the etching, planarization and lift-off steps in the lithography scheme. We acknowledge financial support by the State of Bavaria and the German Ministry of Education and Research (BMBF) within the projects Q.com-H and the Chist-era project SSQN. Y.-M. H. acknowledges support from the Sino-German (CSC-DAAD) Postdoc Scholarship Program. Support from the Danish Research Council for Technology and Production via the Sapere Aude project LOQIT (DFF - 4005-00370) is gratefully acknowledged. This publication was supported by the Open Access Publication Fund of the University of Wuerzburg.

References and links

1. P. Michler, Single Semiconductor Quantum Dots (Springer, 2009). [CrossRef]  

2. P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010). [CrossRef]  

3. J. H. Kimble, “The quanutm internet,” Nature 453, 1023–1030 (2008). [CrossRef]   [PubMed]  

4. C. P. Dietrich, A. Fiore, M. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards dense and fully-functional quantum photonic integrated circuits,” arXiv preprint http://arxiv.org/abs/1601.06956 (2016).

5. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013). [CrossRef]  

6. W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013). [CrossRef]   [PubMed]  

7. A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015). [CrossRef]  

8. N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron . 19, 1–16 (2013). [CrossRef]  

9. E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001). [CrossRef]  

10. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002). [CrossRef]   [PubMed]  

11. S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014). [CrossRef]   [PubMed]  

12. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015). [CrossRef]   [PubMed]  

13. L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015). [CrossRef]   [PubMed]  

14. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

15. J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010). [CrossRef]  

16. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012). [CrossRef]   [PubMed]  

17. M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014). [CrossRef]   [PubMed]  

18. P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013). [CrossRef]  

19. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013). [CrossRef]  

20. C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361. [CrossRef]  

21. S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015). [CrossRef]  

22. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016). [CrossRef]   [PubMed]  

23. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008). [CrossRef]  

24. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007). [CrossRef]   [PubMed]  

25. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002). [CrossRef]   [PubMed]  

26. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

27. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001). [CrossRef]  

28. S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009). [CrossRef]  

29. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]   [PubMed]  

30. O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013). [CrossRef]   [PubMed]  

31. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001). [CrossRef]   [PubMed]  

32. T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014). [CrossRef]   [PubMed]  

33. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006). [CrossRef]  

34. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. LanzillottiKimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near optimal single photon sources in the solid state,” Nature Photon., http://arxiv.org/abs/1510.06499 (2016). [CrossRef]  

References

  • View by:

  1. P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
    [Crossref]
  2. P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
    [Crossref]
  3. J. H. Kimble, “The quanutm internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  4. C. P. Dietrich, A. Fiore, M. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards dense and fully-functional quantum photonic integrated circuits,” arXiv preprint http://arxiv.org/abs/1601.06956 (2016).
  5. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
    [Crossref]
  6. W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
    [Crossref] [PubMed]
  7. A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
    [Crossref]
  8. N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
    [Crossref]
  9. E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
    [Crossref]
  10. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  11. S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
    [Crossref] [PubMed]
  12. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
    [Crossref] [PubMed]
  13. L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
    [Crossref] [PubMed]
  14. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
  15. J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
    [Crossref]
  16. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [Crossref] [PubMed]
  17. M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref] [PubMed]
  18. P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
    [Crossref]
  19. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
    [Crossref]
  20. C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
    [Crossref]
  21. S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
    [Crossref]
  22. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
    [Crossref] [PubMed]
  23. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
    [Crossref]
  24. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
    [Crossref] [PubMed]
  25. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
    [Crossref] [PubMed]
  26. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).
  27. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
    [Crossref]
  28. S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
    [Crossref]
  29. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref] [PubMed]
  30. O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [Crossref] [PubMed]
  31. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
    [Crossref] [PubMed]
  32. T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
    [Crossref] [PubMed]
  33. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
    [Crossref]
  34. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. LanzillottiKimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near optimal single photon sources in the solid state,” Nature Photon., http://arxiv.org/abs/1510.06499 (2016).
    [Crossref]

2016 (1)

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

2015 (4)

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

2014 (3)

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

2013 (6)

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
[Crossref]

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

2012 (1)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

2010 (3)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
[Crossref]

2009 (1)

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

2008 (2)

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

J. H. Kimble, “The quanutm internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

2007 (1)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

2006 (1)

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

2002 (3)

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

2001 (3)

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Abram, I.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Abstreiter, G.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Arnold, C.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Atature, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Badolato, A.

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Baets, R.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Bakkers, E. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Beham, E.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Bennett, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Bichler, M.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Bloch, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Burger, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Chan, K. H. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Chen, M.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

Chin, Y.

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Daraei, A.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Davanco, M.

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

de Vasconcellos, S.M.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Delteil, A.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Ding, X.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

Dousse, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Duan, Z.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

Faelt, S.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

Fallahi, P.

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Farrer, I.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Findeis, F.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Forchel, A.

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Fox, A. M.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Franke, H.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Fry, P. W.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Galopin, E.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Gao, W.

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Gao, W.-b.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

Gazzano, O.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Gerard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Gerhardt, S.

Gold, P.

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Golnik, A.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Grard, J. M.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Gregersen, N.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
[Crossref]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Grundmann, M.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Gschrey, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Guimãres, P. S. S.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

He, Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

He, Y.-M.

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

Heindel, T.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

Heinrich, J.

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Höfling, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Hommel, D.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Hopkinson, M.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Huggenberger, A.

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

Hughes, S.

P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
[Crossref]

Imamoglu, A.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Imamolu, A.

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Jakubczyk, T.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Kaer, P.

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
[Crossref]

Kamp, M.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Kimble, J. H.

J. H. Kimble, “The quanutm internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Kistner, C.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Kossacki, P.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Kruger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Kruse, C.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Lanco, L.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Lemaître, A.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

LindskovHansen, S.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Lu, C.-Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Lucamarini, M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Maier, S.

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Manin, L.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Michler, P.

P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
[Crossref]

Miguel-Sanchez, J.

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Moreau, E.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Mork, J.

N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
[Crossref]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Mørk, J.

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Nielsen, T. R.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Nilsson, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Nowak, A.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Pacuski, W.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Pan, J.-W.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Pan, L.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Rao, V. S. C. M.

P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
[Crossref]

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Reinecke, T. L.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Reitzenstein, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Ritchie, D. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Robert, I.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Rodt, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Sagnes, I.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Salter, C. L.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Sanvitto, D.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Sapienza, L.

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schmidt, R.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schmidt-Grund, R.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Schnauber, P.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schneider, C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, and M. Kamp, “Bright single photon source based on self-aligned quantum dot–cavity systems,” Opt. Express 22, 8136–8142 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

Schulze, J. H.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Sciesiek, M.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Seifried, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Senellart, P.

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Shields, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Skiba-Szymanska, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Skolnick, M. S.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Smolenski, T.

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Srinivasan, K.

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Stevenson, R. M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Stobbe, S.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Strauss, M.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

Strittmatter, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Stufler, S.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Suffczynski, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Sun, Z.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

Tahraoui, A.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Thoma, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Timpson, J. A.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Togan, E.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Unsleber, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, C. Schneider, S. Maier, Y.-M. He, S. Gerhardt, C.-Y. Lu, J.-W. Pan, M. Kamp, and S. Höfling, “Deterministic generation of bright single resonance fluorescence photons from a purcell-enhanced quantum dot-micropillar system,” Opt. Express 23, 32977–32985 (2015).
[Crossref]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Vinck, H.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Ward, M. B.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

Wei, Y.-J.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Whittaker, D. M.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Worschech, L.

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

Wu, D.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

Yao, P.

P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
[Crossref]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zrenner, A.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

ACS Nano (1)

T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors,” ACS Nano 8, 9970–9978 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimãres, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94, 061108 (2009).
[Crossref]

E. Moreau, I. Robert, J. M. Grard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Appl. Phys. Lett. 96, 211117 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

N. Gregersen, P. Kaer, and J. Mork, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron.  19, 1–16 (2013).
[Crossref]

Laser Photon. Rev. (1)

P. Yao, V. S. C. M. Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4, 499 (2010).
[Crossref]

Nat. Commun. (5)

W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, and A. Imamolu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Kruger, J. H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

L. Sapienza, M. Davanco, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

O. Gazzano, S.M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Nat. Nano. (1)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nano. 8, 213–217 (2013).
[Crossref]

Nat. Phys. (1)

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2015).
[Crossref]

Nature (4)

J. H. Kimble, “The quanutm internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref] [PubMed]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Nature Photon. (2)

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nature Photon. 7, 311–315 (2013).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).

New J. Phys. (1)

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity qed systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Phys. Rev. Lett. (5)

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. LindskovHansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Other (5)

P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
[Crossref]

C. P. Dietrich, A. Fiore, M. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards dense and fully-functional quantum photonic integrated circuits,” arXiv preprint http://arxiv.org/abs/1601.06956 (2016).

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” in Engineering the Atom-Photon Interaction, (Springer International Publishing, 2015), pp. 343–361.
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. LanzillottiKimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near optimal single photon sources in the solid state,” Nature Photon., http://arxiv.org/abs/1510.06499 (2016).
[Crossref]

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic drawing of the deterministic device fabrication: (a) We excite the planar structure with a green laser to pump the QDs without exposing the photo resist. (b) We select a single, bright QD line and optimize the signal. (c) After exposing the photoresist with a violet laser, we etch the micropillar into the planar structure. (d) The result is a bright, background free, Purcell-enhanced single QD line.
Fig. 2
Fig. 2 (a) Temperature dependent spectras of an insitu defined micropillar with a diameter of d ≈ 3 µm under above bandgap excitation. A strong enhancement on spectral resonance between fundamental mode (FM) and QD due to the Purcell effect is observed. (b) Time resolved measurements on and off resonance reveal a Purcell factor of FP = 5.8 ± 0.2.
Fig. 3
Fig. 3 (a) Measured source efficiency and count rate on the monochromator CCD versus the pulse area of the driving laser field for spectral resonance between QD and cavity mode. The fit is a damped sinusoidal function. We extract an overall device efficiency of η = (74 ± 4) %. (b) 2nd order auto-correlation histogram for pulsed resonant excitation with a π-pulse. We extract a g(2)-value as low as g(2)(0) = 0.0092 ± 0.0004.
Fig. 4
Fig. 4 Measured two-photon interference (TPI) histograms for (a) parallel polarization of both photons and driving the system with a π/4-pulse and (b) orthogonal polarization. We fit each histogram with a sum of five two sided exponential functions each convolved with a Gaussian distribution and extract a visibility of ν = (88 ± 3) %. (c) We observe a slight decrease of the TPI visibility to (73±1) % for π-pulse excitation. (d) Summary of the TPI visibility versus the pulse area.

Metrics