Abstract

We generated a 12.5-GHz-spacing optical frequency comb that can be resolved over 100 THz, from 1040 to 1750 nm, without spectral mode filtering. To cover such a broad spectrum, we used electro-optic modulation of single frequency light and line-by-line pulse synthesis to produce a clear pulse train and subsequent spectral broadening in highly nonlinear fibers (HNLFs). We numerically and experimentally investigated a configuration of the HNLFs and find that a two-stage broadening through different HNLFs is required when using limited pulse energy at a high repetition rate. We designed and fabricated solid silica-based HNLFs with small zero-dispersion wavelengths to obtain strong spectral broadening, especially at the shorter wavelengths. The individual lines of the proposed frequency comb are resolvable with high contrast over the entire spectral range. The results described in this paper should lead to the development of multicarrier sources for wavelength-division-multiplexing communication and super-multi-point frequency calibration for spectrometers, especially in astrophysics.

© 2016 Optical Society of America

1. Introduction

Optical frequency metrology has been expanded by the significant development of optical frequency combs (OFCs), which provide stable and accurate frequency synthesis. An OFC based on a Ti:sapphire laser was first reported in [1,2] and an all-fiber OFC was later developed by using a fiber-based femtosecond laser and a silica-based highly nonlinear fiber (HNLF) to enhance stability and robustness [3,4]. Following these developments came diverse applications including frequency measurement, spectroscopy, distance measurement, and optical clocks [5]. In these applications, the oscillator repetition rates, which correspond to the line spacing of the OFCs, are determined by the oscillator lengths and are usually less than several hundred MHz. These small repetition rates are preferable for self-referencing stabilization because strong temporal confinement of power with a long repetitive period can easily generate an octave bandwidth through nonlinear effects. Despite the large bandwidth, the fine spacing blocks direct access to the individual lines, such as for separating each line by using a high-dispersion grating. Heterodyne detection is often used to access individual comb lines, and multi-heterodyne measurements made by using the dual comb scheme can resolve the signals from each comb line over the entire spectrum [6,7].

Meanwhile, wide-spacing OFCs have attracted significant attention because of the advantages they offer over the fine-spacing OFCs including high intensities for individual lines and the capability of separating individual lines. These advantages have led to diverse applications, such as multi-carrier sources for wavelength-division-multiplexing (WDM) communication [8], line-by-line pulse shaping [9,10], interferometry [11], and calibration of astronomical spectrographs [12–15]. In particular, the capability of resolving individual lines is a distinctive feature compared with fine-spacing OFCs because it provides access to the individual lines in a simple manner and allow us to explore applications of multi-carrier sources for dense WDM communication and super-multi-point spectrograph calibration in astrophysics. These applications require spectrally broad OFC with mode spacing as wide as 10 GHz for super-multi-point calibration which is required to detect small Doppler shifts from the stars and to discover exo-planets. One approach for such OFC generation is to filter out unwanted comb lines from a fine-spacing broadband OFC [13]. Fine-spacing OFCs with broad bandwidths are easily generated by using the high pulse energy of low-repetition-rate pulsed-laser sources. After the broadening, a high-finesse broadband Fabry–Pérot filter (FPF) strongly suppresses the neighboring lines over the entire spectral range. However, this approach nullifies the advantage of a wide-spacing OFC (i.e., high-intensity lines) by concentrating the total power into a small number of the lines. In addition to this problem, applying this method to the entire spectral bandwidth is difficult, so the unwanted lines remain. In some applications, including optical interferometric measurements and optical spectroscopy, these residual lines may produce inaccurate signals that can be problematic.

Conversely, a direct generation that uses high-repetition-rate pump pulse does not have such a drawback. The direct-generation method requires pulses at a high-repetition rate, which are not easily obtained in picosecond or sub-picosecond duration. A fiber laser requires a specially fabricated high-gain fiber to obtain mode locking in a short cavity to deliver a fundamental repetition rate that exceeds 10 GHz. To obtain such the pulses, different approaches have been studied, including an optical-pulse synthesis scheme [16,17], an electro-optic modulator (EOM) scheme [18], and a mode-filtering scheme [14,19]. Although these schemes produce short pulses at high repetition rates, two main problems remain for strong spectral broadening. First, each high-repetition-rate pulse has low energy and low peak power. A pulse with high repetition rate spreads the total available power over a larger number of pulses resulting in low peak power that prevents the generation of OFCs with broad spectral coverage with the limited output power available from optical amplifiers. Pulse compression is effective in the optical-pulse-synthesizer (OPS) and EOM schemes to enhance peak powers. Second, solid silica-based HNLFs have large dispersion at short wavelengths. In visible wavelength, photonic crystal fibers that have high nonlinearity with flexible dispersion design capability have been generally used for broad and wide-spacing OFC generation [15,19]. Meanwhile, solid silica-based HNLFs have mainly been developed for the optical communication band around 1550 nm and their zero-dispersion wavelengths (ZDWs) are mainly in this band [20]. Solid silica-based HNLFs can be spliced with low loss to the output fibers of pulse sources and are suitable for stable and robust OFC generators. To the longer-wavelength side of the ZDWs, the dispersion of HNLFs is relatively small. In contrast, to the shorter-wavelength side, the dispersion drastically increases due to the material dispersion of silica-glass.

Therefore, the strong spectral broadening at high repetition rates presents significant difficulties. Thus, to obtain strong spectral broadening, the dispersion profile in the propagation direction is often changed. A commonly used dispersion profile in the propagation direction decreases the dispersion at the pump wavelength for adiabatic pulse compression and subsequent spectral broadening [21,22]. This type of fiber only supports fundamental soliton compression, thereby limiting the injection power, and prevents large spectral coverage from being obtained. Therefore, novel HNLFs must be designed and fabricated to produce ultra-broadband OFCs.

In this work, we realize such an OFC by using the direct-generation method spanning over 100 THz (from 1040 to 1750 nm) with a 12.5 GHz spacing. To obtain such a broad spectrum, we introduced a waveguide-type OPS for accurate pump-pulse generation [17,23,24] and designed and fabricated solid silica-based HNLFs whose ZDWs range from 1300 to 1430 nm. The results of numerical simulation indicate that a single HNLF cannot create such a spectral coverage given the limited peak power, so we introduced two HNLFs, each with a different ZDW, in a cascade configuration. We increased the dispersion at the pump wavelength, by giving the second HNLF a larger anomalous dispersion than the first HNLF. This configuration provides ultrabroad spectral coverage of resolvable lines by an optical spectrum analyzer (OSA) from 1040 to 1750 nm with a wide-mode spacing of 12.5 GHz, while requiring only limited peak pump power.

2. Experimental setup

Figure 1 shows a schematic illustration of the experimental setup used to generate a 12.5-GHz-spacing broadband OFC. The broad OFC was generated from a pump pulse that was created by a continuous-wave laser followed by two phase modulators and an OPS. The intense pump pulse was generated by a two-stage amplification scheme with noise-rejection filters comprising a band-pass filter (BPF) and FPF. To enhance the peak intensity, the pulse was compressed by a pulse compressor based on a comb-like-profiled fiber (CPF). Finally, to broaden the pulse spectrum, it was launched into two-cascaded HNLFs with differing characteristics.

 figure: Fig. 1

Fig. 1 Experimental setup for broadband OFC generation with 12.5 GHz spacing. LN: lithium niobate, Rb Osc.: rubidium oscillator, SG: signal generator, EDFA: erbium-doped fiber amplifier, AWG: arrayed-waveguide grating, BPF: band-pass filter, FPF: Fabry–Pérot filter, HNLF: highly nonlinear fiber.

Download Full Size | PPT Slide | PDF

We now present some details of the setup and experimental conditions. The center frequency of the pump pulse was stabilized by introducing a frequency-stabilized laser whose frequency was locked to an absorption line of hydrogen cyanide (HCN) gas. The laser frequency was 193.5449 THz (1548.955 nm) and was stabilized within ± 200 kHz. The linewidth of the laser was approximately 1 MHz. We generated a 12.5-GHz-spacing frequency comb for use as seed light for pulse synthesis. This comb is referred to as the “seed comb” and was generated by a seed-comb generator, which was composed of two phase modulators, one of which was driven by a microwave signal at 12.5 GHz and the other by a microwave signal at 25.0 GHz that was frequency doubled from the 12.5 GHz signal. The signal generator that produced the 12.5 GHz signal used a rubidium-oscillator frequency reference to precisely define the frequency spacing. The seed comb spectrum had ~25 lines within a −20-dB-level bandwidth and was designed to synthesize 4-ps-wide transform-limited Gaussian pulses.

The pulse synthesis was done by using the following procedure: After compensating for loss of the seed-comb generator by an EDFA (EDFA1), the seed comb generated by using the above procedure was input into an OPS. The OPS contains all the elements needed for pulse synthesis based on frequency-domain parallel modulation in a single silica-based planar waveguide. In this work, the OPS had an arrayed-waveguide grating (AWG) with 51 output waveguides spaced 12.5 GHz apart, with each one possessing an intensity and phase modulators. Each line of the seed comb was separated into the different output waveguides of the AWG and independently modulated in intensity and phase. A mirror deposited onto an end facet of the substrate reflected the lines back to the input port and combined the all of the lines. By monitoring the EDFA2 output with an OSA and an autocorrelator, the intensity and the phase spectra of the comb were manipulated to form 4-ps-wide transform-limited Gaussian pulses [23,24]. This pulse synthesis scheme enabled us to match a pump pulse to the subsequent setup. Generally, the pulses distort in EDFAs due to the nonlinearity and dispersion caused by the intense pulse power and long fiber length and this distortion affects the subsequent pulse compression and spectral broadening.

We amplified the pulse by using a two-stage amplification scheme to suppress the EDFA noise. The first-stage EDFA (EDFA2) amplified the pulses up to ~100 mW and the second-stage EDFA (EDFA3) amplified the pulses up to ~4 W. Between the EDFAs, we inserted a BPF to prevent amplification of amplified-spontaneous-emission (ASE) noise from EDFA2 in EDFA3. After the second-stage amplification, we eliminated the ASE noise of the pump pulse by using a FPF with a finesse and an insertion loss of ~200 and 0.7 dB, respectively. The moderately high finesse of 200 was sufficient to suppress noise because we did not use it for mode filtering.

After amplification and noise suppression, we compressed the pump pulse to enhance its peak power and thereby obtain strong spectral broadening. The pulse compressor was based on CPF technology [25]. Another popular approach for pulse compression is adiabatic pulse compression, which uses a dispersion-decreasing fiber. In general, this approach can deliver a clean, compressed pulse with small pedestals. However, it adiabatically compresses the first-order soliton, so this approach cannot be applied to high-power-pulse compression. Therefore, we used the CPF, which is designed for high-power pulses. The pulse compressor was designed to compress the input pulse of a 4-ps-wide Gaussian pulse to a pulse width of about 200 fs. The compressor output was then inputted into two cascaded HNLFs (HNLF1 and HNLF2). The splicing loss between the single-mode-fiber (SMF) and the HNLF1 was ~0.5 dB and one between the HNLFs was ~0.2 dB. The HNLF1 and the HNLF2 had dispersion parameters of 3.5 and 13.8 ps/(nm·km) and nonlinear coefficients of 26 and 23.9 (W·km)−1 at 1550 nm. The parameters of the HNLFs are described in detail in section 4, which discusses the simulation. The output from the HNLFs was attenuated by 20 dB and subsequently was led to the OSA.

3. Experimental results

3.1 Pulse generation and pulse compression

In this section, we present the results of pulse generation and the subsequent spectral broadening. Figure 2 shows the optical spectra and the intensity-autocorrelation traces of the synthesized and compressed pulses. Initially, a 4-ps-wide-Gaussian, almost-chirp-free pulse was synthesized. The time-bandwidth-product (TBP) of the synthesized pulse was 0.464 ( = 0.117 THz × 3.96 ps), which is close to the value of 0.441 for a transform-limited Gaussian pulse. The autocorrelation trace of the compressed pulse, shown in red in Fig. 2(b), was shorter than 350 fs FWHM and the inferred pulse width was 230 fs assuming a sech2 shape. The TBP of the compressed pulse was approximately 0.3 assuming a sech2 pulse. The compression enhanced the peak power of the pulse by a factor of 18 from 40 to ~700 W.

 figure: Fig. 2

Fig. 2 (a) Spectra and (b) autocorrelation traces of synthesized and compressed pulses.

Download Full Size | PPT Slide | PDF

3.2 Spectral broadening in two-stage HNLF configuration

We launched the compressed pulse described in the previous section into the HNLFs and obtained the spectrum shown in Fig. 3 (black solid curve). The spectrum from the simulation is also shown in Fig. 3 (red dashed curve). The wavelength range of the experimental spectrum is limited at 1700 nm in longer wavelength side because of the measurement range of the OSA. The experimental spectrum corresponds to the calculated spectrum. We confirmed resolvable comb-lines are spanning at least up to 1750 nm using a different type of OSA (not shown). Figures 4(a) and 4(b) show spectra expanded around wavelength ranges of 1040 and 1300 nm, respectively, revealing clearly separated 12.5-GHz-spacing comb-modes. The OFC had over 15 dB contrast over the entire wavelength range, although the contrast measurement was limited by the resolution of the OSA, especially in the shorter-wavelength range. The asymmetry of the line spectrum is an artifact of the OSA characteristics.

 figure: Fig. 3

Fig. 3 Nonlinearly broadened comb spectrum. The black solid line is experimentally obtained spectrum and the red dashed line is spectrum calculated by numerical simulation.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Comb spectra expanded around (a) 1040 nm, and (b) 1300 nm, and (c) spectrum of the heterodyne signal at 1565 nm.

Download Full Size | PPT Slide | PDF

To verify the comb contrast free from the OSA resolution, we made heterodyne measurements at 1565 nm. Figure 4(c) shows the resulting heterodyne spectrum. The spectral component near the wavelength was filtered by a BPF and combined with a beam from a local oscillator consisting of a semiconductor distributed-feedback (DFB) laser. The linewidth of the local oscillator was less than 100 kHz. The combined beams were detected by a photodetector with a transimpedance amplifier and the spectrum of the beat signal was measured by an electric spectrum analyzer. Both the detector and the analyzer had 8 GHz bandwidths. Because the local oscillator was not frequency locked, the spectral profiles were not clean and symmetric. The contrast of the beat signal exceeded 35 dB. The dynamic range of the measured contrast was mainly limited by the system noise level and saturation of the photodetector. Please note the bandwidth of the spectrum does not directly express the linewidth of the line at the wavelength because the local oscillator has relatively wide linewidth and its frequency was not locked. The spectral width of the beat signal was ~1 MHz and we did not observe linewidth broadening through the nonlinear process. From a similar experiment at 1310 nm, we have confirmed that a beat signal had ~30 dB and ~2 MHz. The contrast is comparable to the optical spectrum. Although the frequency of the local oscillator was not locked and its linewidth was ~1 MHz, linewidth of a line at 1310 nm was comparable to the FSLD linewidth. At shorter wavelength, e.g. 1 μm range, we could not measure a heterodyne signal because of our equipment limitation.

4. Discussion

4.1 Simulation method and effect of wavelength dependence of nonlinear coefficient

To obtain a deeper understanding of the spectral broadening and HNLF configuration, we describe the simulation and experimental results in this section. We calculated the pulse evolution through the fiber configuration from the EDFA3 input to HNLF2 output (see in Fig. 1). The simulation was based on the split-step Fourier method (SSFM) [26], which is commonly used to simulate nonlinear spectral broadening. The SSFM may be applied to the generalized-nonlinear Schrödinger equation, which is expressed as

Az+α2A+k2ik1βkk!Atk=iγ(1+iω0t)[A(z,t)×R(t')|A(z,tt')|2dt']
where A is the envelope of the pulse electric field and ω0 is a center frequency of the input pulse. The fiber loss, dispersion, and nonlinear coefficient are α, β, and γ, respectively. We take into account the fiber dispersion up to eighth order (β8). R(t) expresses the response function of the silica fibers, including the instantaneous electronic and delayed Raman contributions:
R(t)=(1fR)δ(t)+fR[(fa+fc)ha(τ)+fbhb(τ)].
In Eq. (2), fR determines the contribution ratio between the electric response and the Raman response. As opposed to a simple Lorentzian model, we used the Raman response function that fits more accurately to the response function of the silica fiber. This function is composed of isotropic [faha(τ)] and anisotropic [fbhb(τ) + fcha(τ)] Raman response parts where fa, fb, and fc determine the contribution ratio (fa + fb + fc = 1). The Raman response function is composed of ha and hb which are expressed as
ha(τ)=τ1(τ12+τ22)exp(τ/τ2)sin(τ/τ1),hb(τ)=[(2τbτ)/τb]exp(τ/τb).
We chose the parameters τ1 = 12.2 fs, τ2 = 32 fs, τb = 96 fs, fa = 0.75, fb = 0.21 and fc = 0.04. The details of this function are described in [27]. To precisely calculate the broad spectra, we must consider how the HNLF characteristics depend on wavelength, including a nonlinear coefficient. The nonlinear coefficient γ is expressed as
γ=n2ω0cAeff
and is proportional to frequency and inversely proportional to effective area (Aeff). The quantities c and n2 are the optical velocity and the nonlinear index coefficient of the fibers, respectively. For the pump at 1550 nm, the pulse experiences 50% greater nonlinear coefficient at 1000 nm without considering the wavelength dependence of Aeff. The calculated wavelength dependence of dispersions and nonlinear coefficients from the HNLF structures are described in detail in the next subsection.

Figure 5 shows how the wavelength dependence of the nonlinear coefficient affects spectral broadening. The red dashed curve is identical to the result shown in Fig. 3. The black solid curve shows the simulation results calculated with a constant nonlinear coefficient over the entire spectral range (the other simulation parameters were the same as for the red curve). The two spectra significantly differ in the short-wavelength range because of the large difference of the nonlinear coefficients at the range. Thus, the wavelength dependence of the nonlinear coefficient should be considered when calculating the ultrawide bandwidth.

 figure: Fig. 5

Fig. 5 Spectra calculated by using different nonlinear coefficient profiles of HNLFs. Black solid line is for a constant nonlinear coefficient and red dashed line is for a wavelength-dependent nonlinear coefficient in wavelength (also shown in Fig. 3).

Download Full Size | PPT Slide | PDF

4.2 Spectral broadening in first-stage HNLF

We assumed in the simulation that the initial pulse is a transform-limited Gaussian pulse with 4 ps duration because the synthesized pulse had almost ideal TBP for chirp-free Gaussian pulses. After the compression, the pulse was launched into the two cascaded HNLFs. Figures 6(a) and 6(b) show the wavelength dependence of dispersions and nonlinear coefficients for our in-house-designed HNLFs, which had ZDWs of 1430, 1380, 1325 and 1303 nm, respectively. Hereafter, we denote these fibers as HNLF1430, HNLF1380, HNLF1325, and HNLF1303, respectively. The calculated values of the dispersion parameters and the nonlinear coefficient at 1550 nm are summarized in Table 1. The nonlinear coefficients of the HNLFs were calculated from cross-sectional designs of the HNLFs assuming a cross-phase-modulation-based measurement involving a linearly polarized beam [28]. The shorter ZDW a HNLF has, the higher dispersion and the smaller nonlinear coefficient the HNLF has at 1550 nm.

 figure: Fig. 6

Fig. 6 Calculated parameters of fabricated HNLFs. (a) dispersion, (b) nonlinear coefficient.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Characteristics of in-house-designed HNLFs and simulation results for spectral bandwidth.

The first HNLF must have low dispersion at the pump wavelength to support spectral expansion before temporal pulse broadening. For wide spectral broadening, dispersion near zero over a wide spectral range is better. As shown in Fig. 6, although the dispersion at the pump wavelength is small, the dispersion is larger at shorter wavelengths, mainly because of the material dispersion of silica glass. Therefore, the fiber configuration is one of the most important elements for spectral broadening when peak power is limited.

To select the first HNLF, we calculated the spectral broadening by using each HNLF. The pulse-compression part is identical to the previous simulations. The splicing loss between the SMF and the HNLFs was assumed to be 0.5 dB as per the experimental value. The simulated spectra, which were normalized by their respective peak intensities, are shown in Fig. 7. The lengths of the HNLFs were set to where the generated spectra had largest −40-dB-level bandwidth. Table 1 summarizes the results. At 46 cm, HNLF1430 generated the widest bandwidth of 88.7 THz. The other HNLFs had dispersions closer to zero at shorter wavelengths, but the dispersion was too large at the pump wavelength to obtain strong broadening.

 figure: Fig. 7

Fig. 7 Simulation result for spectral broadening with various fibers.

Download Full Size | PPT Slide | PDF

To experimentally optimize the fiber configuration, we measured the spectra from various lengths of HNLF1430. Figure 8(a) shows the spectra measured for different HNLF1430 lengths. Only the envelopes of the spectra are shown. The spectra simulated under the same conditions are shown in Fig. 8(b). The experimentally obtained spectra correspond well to the simulated spectra, which supports the validity of the HNLF configuration. The long fiber generates a dispersive wave at 1200 nm and decreases the spectral intensity around 1300 nm. The formation of the dispersive wave indicates the collapse of a pulse in the temporal waveform [29]. To obtain a spectrally flat comb and further broadening of the shorter-wavelength side, the optimal length of the fiber should be about 50 cm based on the results of experiment and simulation.

 figure: Fig. 8

Fig. 8 Spectral envelope for various lengths of HNLF1430 in first position. (a) experiment, (b) simulation.

Download Full Size | PPT Slide | PDF

4.3 Spectral broadening in second-stage HNLF

For further spectral expansion toward shorter wavelengths, we numerically and experimentally investigated spectral broadening in a second HNLF. From the results presented in Table 1 and Fig. 8, we selected HNLF1430 for the first HNLF and then connected the subsequent HNLFs, which had shorter ZDWs in the second position. Figure 9(a) and 9(b) show the experimental and simulation results of the OFC envelope generated by using the various second-stage HNLFs. Because we connected HNLF1 and HNLF2 by splicing, the length of HNLF1430 was slightly changed when we measured each spectrum in Fig. 9(a). In spite of this length difference, the length of the fiber was close to 50 cm. The loss at the splice between the HNLFs was less than 0.2 dB. The simulation conditions, including the pump-pulse characteristics, were identical to those used in the aforementioned simulations. In the present simulation, the first HNLF, HNLF1430, was set 50 cm long and the splicing loss between the first and second HNLF was 0.2 dB. The second HNLFs (HNLF1380, HNLF1325, HNLF1303), were 20, 17, and 15 cm long, as in the experiment.

 figure: Fig. 9

Fig. 9 Spectra generated by using different second-stage HNLFs. The first HNLF was the 50-cm-long HNLF1430, and the lengths of HNLF1380, HNLF1325, and HNLF1303 were 20, 17, and 15 cm, respectively. Panel (a) shows experimental results and panel (b) shows the results of simulation.

Download Full Size | PPT Slide | PDF

The spectra obtained experimentally and by simulation match well. The small discrepancy is probably due to differences in the length of HNLF1430 due to the various splicings. In the simulation result, there is little difference in the longer wavelength side from the pump wavelength. In the shorter-wavelength region (from 1200 nm), a shorter the ZDW for the HNLF leads to the generation of a shorter-wavelength component. However, the spectral density of the component generated in the second HNLF decreases for short ZDWs. Spectral expansion toward shorter wavelength and strong spectral density are tradeoffs because the HNLFs with shorter ZDWs have a smaller nonlinear coefficient, as summarized in Table 1. The short-ZDW fiber thus has less dispersion between 1000 and 1200 nm, where the spectral component is generated through the HNLF. Although the small dispersion can create more spectral broadening, the small nonlinear coefficient decreases the spectral density in the given wavelength region. Therefore, from 1000 to 1100 nm, a tradeoff exists between the spectral coverage and spectral density. Finally, we selected HNLF1325 as the second HNLF and obtained the spectrum shown in Fig. 3, which covers over 100 THz (>700 nm from 1040 to 1750 nm) with a wide mode spacing of 12.5 GHz.

4.4 Spectral broadening in three- and four-stage configurations

In the experiment, we used HNLFs in two-stage configuration to expand optical spectrum especially to shorter wavelength. In this section, we discuss whether three- or four-stage configurations can expand further comparing to the two-stage configuration. Here, we show simulation results of three- and four-stage spectral broadening in Fig. 10. The two-stage configuration result is also shown in Fig. 10 (red dashed curve). As already examined in section 4.2, we selected a 50-cm-long HNLF1430 as a first HNLF. In the simulation, we selected HNLFs with shorter ZDW in latter stages. Configurations of the HNLFs were in four cases; case 1: HNLF1430-1325-1303, case 2: HNLF1430-1380-1325, case 3: HNLF1430-1380-1303, and case 4: HNLF1430-1380-1325-1303. Each lengths of the HNLFs are set where the spectral coverages were widest in each cases. Refer to a figure caption of Fig. 10 for each HNLF lengths. These spectra have steep cut-offs at short wavelength edge. Comparing to the two-stage configuration result, the spectra from three- and four-stage configurations cannot significantly exceed the spectral coverage of two-stage configuration. From these simulation results, we decided to use the two-stage configuration for simplicity and reliability in our experiment.

 figure: Fig. 10

Fig. 10 Calculated spectrum generated by using different configurations of HNLFs. The first HNLF was the 50-cm-long HNLF1430. Red-dashed: The second HNLF was the 17-cm-long HNLF1325. Black-solid (case 1): The second and third HNLF were 8-cm-long HNLF1325 and 10-cm-long HNLF1303. Blue-solid (case 2): The second and third HNLF were 3-cm-long HNLF1380 and 10-cm-long HNLF1325. Purple solid (case 3): The second and third HNLF were 5-cm-long HNLF1380 and 10-cm-long HNLF1303. Green-solid (case 4): The second, third and fourth HNLF were 5-cm-long HNLF1380, 3-cm-long HNLF1325 and 10-cm-long HNLF1303. (a) whole spectrum, (b) magnified spectrum from 1000 nm to 1100 nm.

Download Full Size | PPT Slide | PDF

HNLF1430 at the first-stage generates spectrum down to 1200 nm. At the wavelength range, the HNLFs have different dispersions as shown in Fig. 6(a), so a selection of the second-stage HNLF is important. Meanwhile, the HNLFs has almost same dispersions around 1050 nm range where the spectrum from second-stage output has a spectral peak and generates weak dispersive waves at the wavelength range. Therefore, cascading three or more numbers of HNLFs is not effective for further spectral coverage.

5. Summary

In this paper, we demonstrate the direct generation of an OFC whose spectrum spanning over 100 THz with a 12.5-GHz spacing and large comb contrast. We produced a seed comb with a 12.5-GHz spacing and synthesized a pump pulse by using a line-by-line pulse-shaping technique. Our cascaded-HNLF configuration that the HNLFs’ dispersion increased in the propagation direction further expanded the OFC bandwidth at the shorter wavelengths compared with the configuration comprising a single HNLF. We numerically simulated the fiber configuration and found that spectral broadening at the shorter wavelengths is difficult when using a single HNLF and limited pump-pulse power. Inserting a second HNLF with a shorter ZDW than the first HNLF further expands the spectral edge but introduces a tradeoff between the bandwidth and intensity of the spectral components. The OFC lines obtained in this work were well resolved by an OSA with high contrast. The simulation result shows that three or more numbers of HNLFs with cascading configuration is not effective for further spectral broadening. These results should lead to various applications, including a multi-carrier source for WDM communication and super-multi-point calibration of spectrographs.

Acknowledgments

The authors are grateful to Dr. Motohide Tamura, Dr. Takayuki Kotani, and Dr. Jun Nishikawa at the National Astronomical Observatory of Japan for their helpful suggestions and discussions. The authors are also grateful to Shota Suzuki, Yoichi Tanaka, Yosuke Mizuno, Hiroyuki Ishizu, and Tsukasa Kokubo at Tokyo University of Agriculture and Technology for their technical support. A part of this work was financially supported by JSPS KAKENHI Grants No. 23360029 and No. 26286057 from the Japan Society for the Promotion of Science.

References and links

1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000). [CrossRef]   [PubMed]  

2. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000). [CrossRef]   [PubMed]  

3. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004). [CrossRef]   [PubMed]  

4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004). [CrossRef]   [PubMed]  

5. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010). [CrossRef]  

6. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002). [CrossRef]   [PubMed]  

7. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef]   [PubMed]  

8. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006). [CrossRef]  

9. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]  

10. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010). [CrossRef]  

11. S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012). [CrossRef]   [PubMed]  

12. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]  

13. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008). [CrossRef]   [PubMed]  

14. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef]   [PubMed]  

15. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012). [CrossRef]   [PubMed]  

16. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

17. K. Kashiwagi, H. Ishizu, Y. Kodama, and T. Kurokawa, “Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation,” Opt. Express 21(3), 3001–3009 (2013). [CrossRef]   [PubMed]  

18. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013). [CrossRef]   [PubMed]  

19. R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013). [CrossRef]   [PubMed]  

20. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]  

21. K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18(12), 1780–1792 (2001). [CrossRef]  

22. K. Kashiwagi, S. Suzuki, Y. Tanaka, T. Kotani, J. Nishikawa, H. Suto, M. Tamura, and T. Kurokawa, “400-nm-Spanning Astro-Comb Directly Generated from Synthesized Pump Pulse with Repetition Rate of 12.5 GHz,” in Conf. Lasers Electro-Optics (OSA, 2013), p. CTu1I.1.

23. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006). [CrossRef]  

24. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009). [CrossRef]  

25. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008). [CrossRef]  

26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

27. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006). [CrossRef]   [PubMed]  

28. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20(9), 988–990 (1995). [CrossRef]   [PubMed]  

29. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef]   [PubMed]  

References

  • View by:

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  2. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
    [Crossref] [PubMed]
  3. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
    [Crossref] [PubMed]
  5. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  6. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  7. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  8. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006).
    [Crossref]
  9. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  10. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  11. S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
    [Crossref] [PubMed]
  12. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
    [Crossref]
  13. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  14. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
    [Crossref] [PubMed]
  15. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref] [PubMed]
  16. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).
  17. K. Kashiwagi, H. Ishizu, Y. Kodama, and T. Kurokawa, “Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation,” Opt. Express 21(3), 3001–3009 (2013).
    [Crossref] [PubMed]
  18. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013).
    [Crossref] [PubMed]
  19. R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
    [Crossref] [PubMed]
  20. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
    [Crossref]
  21. K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18(12), 1780–1792 (2001).
    [Crossref]
  22. K. Kashiwagi, S. Suzuki, Y. Tanaka, T. Kotani, J. Nishikawa, H. Suto, M. Tamura, and T. Kurokawa, “400-nm-Spanning Astro-Comb Directly Generated from Synthesized Pump Pulse with Repetition Rate of 12.5 GHz,” in Conf. Lasers Electro-Optics (OSA, 2013), p. CTu1I.1.
  23. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
    [Crossref]
  24. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
    [Crossref]
  25. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008).
    [Crossref]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  27. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
    [Crossref] [PubMed]
  28. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20(9), 988–990 (1995).
    [Crossref] [PubMed]
  29. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [Crossref] [PubMed]

2013 (3)

2012 (2)

S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

2010 (3)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

2009 (3)

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

2008 (3)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008).
[Crossref]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

2006 (3)

2004 (2)

2002 (1)

2001 (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18(12), 1780–1792 (2001).
[Crossref]

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

1995 (1)

Abe, M.

Agrawal, G. P.

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Araujo-Hauck, C.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Choi, S.

S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
[Crossref] [PubMed]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

D’Odorico, S.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Dekker, H.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Diddams, S. A.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Fermann, M. E.

Fischer, M.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Hartl, I.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Holzwarth, R.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Hong, F.-L.

Huang, C.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Hundertmark, H.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Inaba, H.

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008).
[Crossref]

Ishizawa, A.

Ishizu, H.

Jiang, Z.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Jørgensen, C. G.

Kärtner, F. X.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Kashiwagi, K.

K. Kashiwagi, H. Ishizu, Y. Kodama, and T. Kurokawa, “Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation,” Opt. Express 21(3), 3001–3009 (2013).
[Crossref] [PubMed]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Kasiwagi, K.

Kasuya, Y.

Kato, T.

Kawanishi, S.

Kobe, R.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

Kodama, Y.

Koga, M.

Kojima, S.

Krausz, F.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Kurokawa, T.

K. Kashiwagi, H. Ishizu, Y. Kodama, and T. Kurokawa, “Background suppression in synthesized pulse waveform by feedback control optimization for flatly broadened supercontinuum generation,” Opt. Express 21(3), 3001–3009 (2013).
[Crossref] [PubMed]

S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
[Crossref] [PubMed]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Leaird, D. E.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Li, C. H.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Lin, Q.

Mandai, K.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Masuda, H.

Matsumoto, H.

Minoshima, K.

Miyamoto, D.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Mizutori, A.

Mori, K.

Morioka, T.

Murphy, M. T.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

Nicholson, J. W.

Nishikawa, T.

Nishimura, M.

Ohara, T.

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Onae, A.

Onishi, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Osterman, S.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Phillips, D. F.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Probst, R. A.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Quinlan, F.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Russell, P. S. J.

Sasaoka, E.

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schibli, T. R.

Schiller, S.

Shioda, T.

S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
[Crossref] [PubMed]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Sizmann, A.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Sogawa, T.

Spielmann, C.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Stark, S. P.

Steinmetz, T.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Suetsugu, Y.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Szentgyorgyi, A.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Takada, A.

Takagi, M.

Takahashi, H.

Takara, H.

Takeda, S.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Tamura, N.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Tanaka, Y.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Tsuda, H.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Udem, T.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Walsworth, R. L.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Washburn, B. R.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Wilken, T.

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. S. J. Russell, T. W. Hänsch, R. Holzwarth, and T. Udem, “Nonlinear amplification of side-modes in frequency combs,” Opt. Express 21(10), 11670–11687 (2013).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wong, G. K. L.

Yamamoto, T.

Yan, M. F.

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photonics Technol. Lett. 18(5), 721–723 (2006).
[Crossref]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photonics Technol. Lett. 21(1), 39–41 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum Comb Generation Using Optical Pulse Synthesizer and Highly Nonlinear Dispersion-Shifted Fiber,” Jpn. J. Appl. Phys. 48, 09LF01 (2009).

Laser Photonics Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1-2), 83–99 (2008).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Nat. Photonics (2)

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Nature (2)

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85(4), 740–743 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[Crossref] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Other (2)

K. Kashiwagi, S. Suzuki, Y. Tanaka, T. Kotani, J. Nishikawa, H. Suto, M. Tamura, and T. Kurokawa, “400-nm-Spanning Astro-Comb Directly Generated from Synthesized Pump Pulse with Repetition Rate of 12.5 GHz,” in Conf. Lasers Electro-Optics (OSA, 2013), p. CTu1I.1.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup for broadband OFC generation with 12.5 GHz spacing. LN: lithium niobate, Rb Osc.: rubidium oscillator, SG: signal generator, EDFA: erbium-doped fiber amplifier, AWG: arrayed-waveguide grating, BPF: band-pass filter, FPF: Fabry–Pérot filter, HNLF: highly nonlinear fiber.
Fig. 2
Fig. 2 (a) Spectra and (b) autocorrelation traces of synthesized and compressed pulses.
Fig. 3
Fig. 3 Nonlinearly broadened comb spectrum. The black solid line is experimentally obtained spectrum and the red dashed line is spectrum calculated by numerical simulation.
Fig. 4
Fig. 4 Comb spectra expanded around (a) 1040 nm, and (b) 1300 nm, and (c) spectrum of the heterodyne signal at 1565 nm.
Fig. 5
Fig. 5 Spectra calculated by using different nonlinear coefficient profiles of HNLFs. Black solid line is for a constant nonlinear coefficient and red dashed line is for a wavelength-dependent nonlinear coefficient in wavelength (also shown in Fig. 3).
Fig. 6
Fig. 6 Calculated parameters of fabricated HNLFs. (a) dispersion, (b) nonlinear coefficient.
Fig. 7
Fig. 7 Simulation result for spectral broadening with various fibers.
Fig. 8
Fig. 8 Spectral envelope for various lengths of HNLF1430 in first position. (a) experiment, (b) simulation.
Fig. 9
Fig. 9 Spectra generated by using different second-stage HNLFs. The first HNLF was the 50-cm-long HNLF1430, and the lengths of HNLF1380, HNLF1325, and HNLF1303 were 20, 17, and 15 cm, respectively. Panel (a) shows experimental results and panel (b) shows the results of simulation.
Fig. 10
Fig. 10 Calculated spectrum generated by using different configurations of HNLFs. The first HNLF was the 50-cm-long HNLF1430. Red-dashed: The second HNLF was the 17-cm-long HNLF1325. Black-solid (case 1): The second and third HNLF were 8-cm-long HNLF1325 and 10-cm-long HNLF1303. Blue-solid (case 2): The second and third HNLF were 3-cm-long HNLF1380 and 10-cm-long HNLF1325. Purple solid (case 3): The second and third HNLF were 5-cm-long HNLF1380 and 10-cm-long HNLF1303. Green-solid (case 4): The second, third and fourth HNLF were 5-cm-long HNLF1380, 3-cm-long HNLF1325 and 10-cm-long HNLF1303. (a) whole spectrum, (b) magnified spectrum from 1000 nm to 1100 nm.

Tables (1)

Tables Icon

Table 1 Characteristics of in-house-designed HNLFs and simulation results for spectral bandwidth.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A+ k2 i k1 β k k! A t k =iγ( 1+ i ω 0 t )[ A( z,t )× R( t' ) | A( z,tt' ) | 2 dt' ]
R(t)=(1 f R )δ(t)+ f R [( f a + f c ) h a (τ)+ f b h b (τ)].
h a ( τ )= τ 1 ( τ 1 2 + τ 2 2 )exp( τ / τ 2 )sin( τ/ τ 1 ), h b ( τ )=[ ( 2 τ b τ ) / τ b ]exp( τ / τ b ).
γ= n 2 ω 0 c A eff

Metrics