Abstract

We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10−3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

© 2016 Optical Society of America

1. Introduction

Generation of high-energy vacuum ultra-violet (VUV) radiation continues to remain for several decades in focus of basic spectroscopy, laser science and technology [1], and we are currently involved in research and development of high-energy and high-efficiency sources of Lyman-α (L-α) radiation for hydrogen (121.568 nm) and muonium (122.09 nm) resonance lines. Hydrogen L-α radiation is required for efficient laser cooling via 1S-2P transition of hydrogen-like atoms [2–6]. Muonium L-α radiation can be used for generation of ultra-slow muons via the resonant excitation of muoniums by 122.09 nm radiation followed by the ionization of excited muoniums by 355 nm radiation. Produced ultra-slow positive muons can be used for local magnetic microprobes for nanoscale solid state physics, material and life sciences [7–12]. In particular, we develop a new generation of the ultra-slow muon microscope using L-α radiation [13].

Research and development for efficient generation of L-α radiation by laser wave mixing in gases has been continued over few decades generating many significant advances [14–23], and our present work is based on a few references that we outline in more detail below. First, in our work we use the effective method to produce VUV radiation [21,23]. Second, we use the work of Marangos et al. [16] for optimizing hydrogen L-α generation by finding an optimal Ar/Kr pressure for high pressure range (103- 104 Pa) and obtaining the efficiency of 5x10−4 regarding resonant 212.556 nm radiation under relatively low input laser intensities. Third, we use the work of Bakule et al. [22] made for significantly higher laser intensities and high Kr-Ar pressure enabling the effect of gas ionization by the electron avalanche. Finally, we consider optical discharge pathways by using Keldysh mechanism of multi-photon ionization [24,25] combined with the general approach to the optical discharge in gases [26] and with the mechanism of step-wise (2 + 1)-photon ionization of Kr via the resonant 212.556 nm 2-photon excitation of Kr followed by 1-photon ionization [27].

In our present work we develop the high-efficiency L-α generation operating under high input laser intensities and low pressure conditions allowing us to avoid the full-scale Kr-Ar ionization. Our experimental study giving the final efficiency of 1.7x10−3 is combined with the theoretical analysis which focuses on the main mechanisms of photoionization and allows us to reveal the background of our experimental progress.

2. Experimental setup and results

The process for hydrogen L-α radiation generation (λ L-α = 121.568 nm) shown in Fig. 1 uses the two-photon resonance four-wave mixing in phase-matched low pressure Kr-Ar mixture with Δk = kL-α-2k1 + k2 = 0 (where ki = niωi/c is the wave vector) to generate pulses of ≈1.7 ns duration with the repetition rate of 25-50 Hz. First wavelength for two-photon pumping at λ1 = 212.556 nm is defined by the energy-level spacing between the ground (4s6) and excited (4p-5p [1/2,0]) levels of Kr equal to 2hc/λ1 (h is Plank’s constant and c is the speed of light). Second pump wavelength used, λ2 = 845.015 nm, allows one to tune the generated radiation to the hydrogen L-α resonance line. However, this process can be inhibited by different mechanisms of photoionization leading to the loss of Kr atoms, loss of phase matching (Δk≠0) and related inhibition of nonlinear conversion efficiency.

 figure: Fig. 1

Fig. 1 Schematization of laser four-wave mixing complicated by multi-photon ionization.

Download Full Size | PPT Slide | PDF

In our experimental setup (Fig. 2) we use all-solid-state and fiber laser techniques for developing coherent 212.556 nm and 845.015 nm light sources required for the generation of 121.568 nm radiation in Kr-Ar gas cell having L = 100 cm in length. First, the radiation distributed feedback laser precisely tuned to the fundamental wavelength is injected into the fiber amplifier. Fiber amplifier provided with an electro-optic modulator allows us to increase the output energy up to 0.1 mJ in pulsed operation. After that we use Nd:Y3GaxAl(5-x)O12 (Nd:YGAG) crystal with the fluorescence spectrum blue-shifted by the increase in theconcentration of gallium. In particular, for x = 2 the spectrum peak of this crystal agrees with a wavelength of 1062.78 nm as found by Walsh et al. [28] and confirmed by Oishi et al. [29]. Therefore, we use Nd:Y3Ga2Al3O12 for efficient amplification of 1062.78 nm radiation and for generating high intensity coherent 212.556 nm light. The duration of the generated output pulses is ≈1.7 ns. The all-solid-state amplifier is composed of a regenerative amplifier and two laser diode side-pumped amplifiers [29]. For the amplification of 1062.78 nm radiation pulses in the regenerative amplifier we use 10 mm-long Nd:YGAG crystal having an input plane area of 4 × 4 mm. For the gain material in the side-pumped amplifier we use 4 mm in diameter and 80 mm long Nd:YGAG ceramic taking into account several advantages of ceramic laser materials: large-size, high quality and high transparency [30, 31]. By using this all-solid-state amplifier the pulse energy can be increased up to 100 mJ at a repetition rate of 25 Hz coinciding with the repetition rate in the regenerative amplifier.

 figure: Fig. 2

Fig. 2 Schematic of the optical system used for generation of L-α radiation.

Download Full Size | PPT Slide | PDF

The frequency c/(212.556 × 10−9 m) Hz is the fifth harmonic of the fundamental frequency c/(1062.78 × 10−9 m) Hz. This frequency is obtained by using a set of (i) 20 mm long, antireflection-coated LiB3O5 (LBO) crystal, and (ii) two 15 mm long, uncoated CsLiB6O10 (CLBO) crystals. The output energy at 531.39 nm emitted by LBO crystal via second harmonic generation (SHG) reaches approximately 60 mJ. After that we obtain coherent 212.556 nm light by fourth and fifth harmonic generation in the CLBOs using a half of the output energy at 531.39 nm. After SHG the fundamental radiation is divided from the second harmonic and is combined with the fourth harmonic to generate the fifth harmonic.

The rest of the output energy at 531.39 nm is used as pump energy for the generation of coherent 845.015 nm light. Coherent 845.015 nm light is generated by the optical parametric generator (OPG) and the optical parametric amplifier (OPA) using 15 mm long uncoated LBOs crystals. We use a broadband (≈230 GHz) diode laser as the seeder to determine the output wavelength as well as the spectral linewidth of the coherent 845.015 nm light source. In order to eliminate timing jitter between 212.556 and 845.015 nm radiation pulses we use a half of the output energy of the second harmonic as the pump radiation in OPG and OPA.

This system provides our experimental setup with the pulses of 212.556 nm and 845.015 nm radiation shown in Fig. 3 on the timescale of 10 minutes. Experimental generation of L-α radiation was done using 3.2 and 1.6 mJ laser pulses of 212.556 nm and 845.015 nm radiation, respectively. However, due to the optical losses in the transmission system the input laser pulse energies in Kr-Ar gas cell are Q1 = 1.5 mJ and Q2 = 0.8 mJ for 212.556 and 845.015 nm, respectively. The input laser pulses are synchronized by the optical delay system, followed by the coaxial input into Kr-Ar gas cell enabling us to perform the two-photon resonance four-wave mixing defined by ωL-α = 2ω1-ω2. In our experiments we use a tightly focusing optical system with the focal radii of r1≈30 μm for λ1 = 212.556 nm and r2≈50 μm for λ2 = 845.015 nm, and with the following confocal parameters: b1 = 2πr12/λ1≈2.7 cm and b2 = 2πr22/λ2≈1.86 cm, respectively.

 figure: Fig. 3

Fig. 3 Generated pulse energy of input radiations vs the operation time.

Download Full Size | PPT Slide | PDF

Our experimental study is targeted to optimize the process of L-α generation for low Kr pressure range PKr = 100-500 Pa diluted by Ar. In particular, our experimental data given in Fig. 4 for PKr = 1-550 Pa and PAr/PKr = 5 show the output energy of the generated L-α radiation pulses versus Kr pressure. In this range of pressure the output energy shows an increase for PKr = 5-250 Pa and the saturation for PKr = 250-400 Pa followed by the sharp decrease. The maximum of L-α pulse energy corresponds to PKr≈365 Pa (total pressure PΣ≈2.2 × 103 Pa) with the generated 8.4 µJ in the gas cell, whereas the pulse energy measured outside is 3.6 µJ.

 figure: Fig. 4

Fig. 4 Output energy of hydrogen L-α radiation vs Kr pressure.

Download Full Size | PPT Slide | PDF

Therefore, the resulting output energy corresponds to the conversion efficiency of 3.6 × 10−3 (≈8.4 × 10−6 J / [1.5 × 10−3 J + 0.8 × 10−3 J]). To finalize this section we would like to stress out that the experimental efficiency taking into account all optical losses is 1.7x10−3. However, the efficiency of the non-linear conversion estimated regarding the resonant radiation (212.556 nm) without all transmittance losses gives the value of 8.4 × 10−6 J/1.5 × 10−3 J = 5.6x10−3 which is an order of magnitude higher as compared with the experimental value of 5x10−4 [16].

3. Calculations and discussion

Below we show that this efficiency is achieved due to the operation under high input laser intensities and low gas pressures allowing us to avoid the full-scale photoionization and discharge. First, we estimate the multi-photon ionization rate (MPI) by using Keldysh model [24,25] with the modification of [26]:

Wmpiωinph3/2(εqi/2ΔEion)nph,
where εqi=qe2Ei2/(4meωi2) is the quiver energy related to the laser intensity Ii (Ei2=2Ii/niε0c), ΔEion = 14 eV is the ionization energy of Kr, nph = ΔEion/(ħωi) is the number of photons required for ionization, ωi is the radiation frequency, ni is the refractive index, ε0 is the vacuum permittivity, me is the electron mass and qe is the electron charge.

By using Eq. (1) for the maximal laser intensitiesIi=2Qi/(πri2τp) we calculate MPI rates and the resulting densities of electrons, neWmpiNKr-0τp ,which are given in Table 1 for the conditions corresponding to the maximal L-α radiation output obtained under PKr = 365 Pa and T = 290 K. Data given in Table 1 show that the maximal contribution to the ionization is due to the generated L-α radiation. Namely, L-α radiation with the intensity of IL-α = 3.5x1012 W/m2 generates during the pulse ne≈0.75x1014 cm−3, which is ≈24 times higher as compared with the effect of 212.556 nm radiation generating ne≈3.2x1012 cm−3 under I1 = 6.2x1014 W/m2. Electron generation by 845.015 nm radiation is negligibly small.

Tables Icon

Table 1. Estimated multi-photon ionization data of Kr.

Second, let us consider another pathway of Kr photoionization via the resonant 2-photon excitation of Kr by 212.556 nm radiation followed by 1-photon ionization [27]. Order of magnitude estimations show that for our experimental conditions the effects of electron-ion recombination and diffusion can be completely neglected, and the densities of exited Kr atoms (n*) and free electrons (ne) can be estimated by:

dndt=σ(2)I12(ω1)2(NKr0nne)σaI1ω1n,
dnedt=σaI1ω1n,
where σ(2)≈2.5x10−58 m4s/photon2 is the resonant two-photon absorption cross section [32], σa≈4.5x10−22 m2 is one-photon ionization cross section of excited Kr [33] and NKr-0 = PKr/kBT is the initial density of Kr.

The first term in Eq. (2) represents 2-photon excitation taking also into account that the initial Kr density can be depleted by Kr excitation with the density of (n*) and Kr ionization with the density similar to that of electrons nion≈ne. The analytical solution of this set of equations is given by:

n(t)=aNKr0α1α2(eα1teα2t),
ne(t)=abNKr0α1α2[1α1(eα1t1)1α2(eα2t1)],
wherea=σ(2)I12/(ω1)2, b=σaI1/(ω1) and α1,2=(a+b)/2±[(a+b)2/4ab]1/2.

The calculations made for I1 = 6.2x1014 W/m2 and NKr-0 = 0.9x1017 cm−3 show that the ionization by this pathway leads to the ion-electron density of ne≈1.52x1016 cm−3 which is ≈200 times higher compared with that provided by all contributions given by Eq. (1). This mechanism of ionization leads to 17% loss of Kr density by the end of the pulse. Taking into account that IL-α∝(NKr-0-ne)2 we conclude that by the end of the pulse the efficiency of nonlinear conversion has a factor of 0.7 as compared with that at the pulse start. Additionally, we have to note that the rate of Ar ionization (ΔEion = 15.76 eV) Wmpi = 2.34x104 1/s is ≈20 times lower as compared with Kr under the generated intensity IL-α = 3.5x1012 W/m2.

Let us now consider the energy of free electrons under involved laser waves by [26]:

dεe/dt=2εqΣνc,
where εqΣ is the total quiver energy, νc = NΣσc(2εe/me)1/2 is the electron-atom collision rate, NΣ is the total atomic density, σc ≈2x10−20 m2 is the electron-atom collision cross section.

First, by using the values of I16.24x1014 W/m2 and I2 = 1.2x1014 W/m2 we obtain for the quiver energies εq1 = 2.21x10−4 eV and εq2 = 7.56x10−4 eV giving εqΣ≈10−3 eV. This estimate shows that the main contribution to the electron heating (≈80%) is caused by 845.015 nm radiation due to the frequency effect (εqiωi2). Second, the initial energy of free electrons after photoionization can be within the range of ε0 = 3ħω1-ΔEion3.5 eV and ε0 = 2ħωL-α-ΔEion6.2 eV giving the electron velocity Ve = (2εe/me)1/2 = (1.2-1.6)x108 cm/s. Third, the collision rate is within the range of νc = (7-28)x109 s−1 for the total operational pressure PΣ = 1200-3600 Pa and related atomic density range NKr-0 = PΣ/kBT = (2.9-8.7)x1023 m−3. Finally, during the pulse the free electrons can experience about νcτp = 12-48 collisions with Kr and Ar atoms leading to the energy gain of Δεe2εqΣνcτp ≈(2.4-9.6)x10−2 eV. Therefore, in our experiments the maximal energy of free electrons generated, εe = ε0 + Δεe≈6.3 eV, remains below the ionization energy (14 eV for Kr) and the avalanche ionization remains ineffective.

Taking now into account that for present experiments the value of Δεe <0.1 eV the increase of 845.015 nm radiation input looks a quite realistic way leading to the linear increase of IL-α ∝I2. That is, I2 can be increased about 2 orders of magnitude without the onset of the electron avalanche as compared with that used in our present experiments: I2 = 1.2x1014 W/m2. However, we do not expect a 100-fold practical increase of the output L-α pulse energy because our analysis extended to this range of I2 allows us to identify another strong limitation. That is, in considering the increase of 845.015 nm laser input we have to take also in account that the linear increase of IL-α by I2 can lead to a drastic increase of photoionization by Keldysh mechanism. In particular, by using Eq. (1) and Table 1 one can find that MPI rate by L-α radiation is WmpiILα1.4. By assuming only 50-fold increase of I2 and IL-α one finds that the related increase of the electron density due to generated L-α radiation will achieve the value of ne = 0.75x1014x501.4 = 1.8x1016 cm−3 which exceeds the value generated by (2 + 1)-photon 212.556 nm radiation ne≈1.52x1016 cm−3. Hence, the total loss of Kr should be close to ≈50%. That is, for our range of pressures even 50-fold increase in I2 will not lead to the avalanche ionization. However, in this case Kr should be almost completely ionized by the combined action of (2 + 1)-photoionization by 212.556 nm radiation and by generated L-α radiation. This allows us to suggest that the practically feasible increase of L-α pulse energy will be limited by the factor of ≈30, for which the electron and ion density by the generated L-α radiation, ne = (0.7-0.9)x1016 cm−3, remains below that produced by (2 + 1)-photon ionization by 212.556 nm radiation. Thus, our analysis suggests ≈30-fold increase of 845.015 nm pulse energy can allow the increase of L-α radiation pulse energy towards the level of ≈100 μJ by using other operational parameters of the present work.

Additionally, we should note that the avalanche ionization can give a significant contribution to the photoionization under higher pressures. In particular, our analysis used for high pressure experiments allows us to suggest that this mechanism is the valid explanation of the inhibition of L-α radiation pulse generation taking place for Q2 = 8.4 mJ (λ2845 nm) under increase of the total pressure from PΣ = 104 Pa to PΣ = 2x104 Pa shown in [22]. In particular, for this case we can estimate the laser intensity on the beam axis as I2 = 4Q2/(b2λ2τp)≈3.3x1014 W/m2, where b2 = 1 cm and τp≈12 ns [22]. The electron quiver energy is εqΣεq2≈2.15x10−3 eV. By taking for this case the mean electron energy of ≈10 eV we can find the electron velocity Ve = (2εe/me)1/2≈2x108 cm/s. Hence, the electron collision rate with the atoms is νc = NΣσcVe≈1011 - 2x1011 s−1 for the range of PΣ = 104 - 2x104 Pa and, therefore, the free electrons experience about νcτp≈1200-2400 collisions resulting in the energy gain of Δεe2εqΣνcτp≈5.16-10.32 eV, respectively. Taking into account the initial energy after ionization one finds that for PΣ = 104 Pa the electrons can have the energy of εe = ε0 + Δεe≈8.66-11.36 eV whereas for PΣ = 2x104 Pa the value of εe = ε0 + Δεe≈13.82-16.52 eV. Taking additionally into account that this type of ionization can proceed via the excitation of Kr to the 4p-5p level (with ΔEexc = 11.67 eV) we conclude that for PΣ = 104 Pa the laser-gas interaction gets very close to the initiation of Kr ionization by the electron avalanche whereas for PΣ = 2x104 Pa the laser-gas interaction proceeds under the onset of ionization of Kr and Ar by the electron avalanche able to develop within the time scale of ≈0.5 ns [27].

Finally, our analysis suggests that in near optical discharge operation performed in our study the composition of Ar-Kr mixture, the phase-matching of the laser waves and the conversion efficiency are very sensitive to any change of the laser intensities. In particular, on the one hand Eqs. (4)-(5) show that the ionization rate of Kr is dne/dtI13 and, therefore, even a small decrease in the beam radius (I11/r12) or increase in I1 can lead to loss of efficiency (ILα(NKr0ne)2I12I2F) via photoionization of Kr atoms and also by decrease of phase matching factor F which depends on Ar/Kr ratio [1]. On the other hand a small increase in the beam radius r1 or decrease in I1 leads to the significant loss of the efficiency. Hence, L-α generation performed near onset of optical discharge allows one to operate at the maximum efficiency only under a very tight control of all laser parameters.

4. Conclusions

To conclude, we have developed and tested the laser system allowing a high conversion efficiency of resonant four-wave mixing for generating ns pulsed hydrogen L-α radiation in operation made near the onset of optical discharge in Kr-Ar gas mixture. Theoretical analysis performed shows that under our experimental conditions Kr-Ar gas mixture experiences the loss of about 17% of Kr only by the end of the pulse enabling high-efficiency operation during the pulse. The photoionization is due to 212.556 nm radiation via the mechanism of 2-photon Kr excitation followed by 1-photon Kr ionization. However, after photoionization the energy of generated free electrons remains during the pulse below the level of impact ionization sufficient for the onset of avalanche ionization and full-scale discharge. Our analysis also suggests that about 30-fold increase of 845.015 nm pulse energy can allow the increase of L-α radiation pulse energy towards the level of ≈100 μJ by using other operational parameters of the present study without critical enhancement of photoionization.

Acknowledgment

This work was supported by MEXT KAKENHI Grant Number 23108005.

References and Links

1. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

2. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999). [CrossRef]  

3. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001). [CrossRef]   [PubMed]  

4. A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

5. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006). [CrossRef]  

6. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009). [CrossRef]   [PubMed]  

7. B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988). [CrossRef]  

8. Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995). [CrossRef]  

9. K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996). [CrossRef]  

10. P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004). [CrossRef]  

11. Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006). [CrossRef]  

12. P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008). [CrossRef]  

13. J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014). [CrossRef]  

14. R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978). [CrossRef]  

15. R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979). [CrossRef]  

16. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7(7), 1254–1259 (1990). [CrossRef]  

17. R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5(7), 279–281 (1980). [CrossRef]   [PubMed]  

18. G. W. Faris, S. A. Meyer, M. J. Dyer, and M. J. Banks, “Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy,” J. Opt. Soc. Am. B 17(11), 1856–1866 (2000). [CrossRef]  

19. G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975). [CrossRef]  

20. D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987). [CrossRef]  

21. G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988). [CrossRef]   [PubMed]  

22. P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003). [CrossRef]  

23. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987). [CrossRef]  

24. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

25. Y. A. Il’insky and L. V. Keldysh, Electromagnetic Response of Materials Media (Plenum, 1994).

26. Yu. Raizer, Laser Spark and Propagation of Discharges (Consultants Bureau, 1976).

27. O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011). [CrossRef]  

28. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3Ga𝑥Al(5-𝑥)O12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15(11), 2794–2801 (1998). [CrossRef]  

29. Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “All-solid-state laser amplifiers for intense Lyman-α generation,” Proc. Int. Symp. Science Explored by Ultra Slow Muon (USM2013) JPS Conf. Proc. 2, 010105 (2014). [CrossRef]  

30. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000). [CrossRef]  

31. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001). [CrossRef]  

32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

33. H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977). [CrossRef]  

References

  • View by:

  1. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  2. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
    [Crossref]
  3. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
    [Crossref] [PubMed]
  4. A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).
  5. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
    [Crossref]
  6. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
    [Crossref] [PubMed]
  7. B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
    [Crossref]
  8. Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
    [Crossref]
  9. K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
    [Crossref]
  10. P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
    [Crossref]
  11. Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
    [Crossref]
  12. P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
    [Crossref]
  13. J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
    [Crossref]
  14. R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
    [Crossref]
  15. R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
    [Crossref]
  16. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7(7), 1254–1259 (1990).
    [Crossref]
  17. R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5(7), 279–281 (1980).
    [Crossref] [PubMed]
  18. G. W. Faris, S. A. Meyer, M. J. Dyer, and M. J. Banks, “Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy,” J. Opt. Soc. Am. B 17(11), 1856–1866 (2000).
    [Crossref]
  19. G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
    [Crossref]
  20. D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
    [Crossref]
  21. G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
    [Crossref] [PubMed]
  22. P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
    [Crossref]
  23. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
    [Crossref]
  24. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).
  25. Y. A. Il’insky and L. V. Keldysh, Electromagnetic Response of Materials Media (Plenum, 1994).
  26. Yu. Raizer, Laser Spark and Propagation of Discharges (Consultants Bureau, 1976).
  27. O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
    [Crossref]
  28. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3Ga𝑥Al(5-𝑥)O12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15(11), 2794–2801 (1998).
    [Crossref]
  29. Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “All-solid-state laser amplifiers for intense Lyman-α generation,” Proc. Int. Symp. Science Explored by Ultra Slow Muon (USM2013) JPS Conf. Proc. 2, 010105 (2014).
    [Crossref]
  30. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [Crossref]
  31. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
    [Crossref]
  32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  33. H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
    [Crossref]

2014 (1)

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

2011 (1)

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

2009 (1)

2008 (1)

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

2006 (2)

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

2005 (1)

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

2004 (1)

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

2003 (1)

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

2001 (2)

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

2000 (2)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

G. W. Faris, S. A. Meyer, M. J. Dyer, and M. J. Banks, “Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy,” J. Opt. Soc. Am. B 17(11), 1856–1866 (2000).
[Crossref]

1999 (1)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

1998 (1)

1996 (1)

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

1995 (1)

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

1990 (1)

1988 (2)

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

1987 (2)

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

1980 (1)

1979 (1)

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

1978 (1)

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

1977 (1)

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

1975 (1)

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Bakule, P.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Banks, M. J.

Barnes, N. P.

Bethune, D. S.

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

Birrer, P.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

Brink, D. J.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

Connerade, J. P.

Di Bartolo, B.

Dyer, M. J.

Eikema, K. S. E.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Equall, R. W.

Faris, G. W.

Fendel, P.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Hänsch, T. W.

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
[Crossref] [PubMed]

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Henrich, B. R.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Higemoto, W.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Hilber, G.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Hutcheson, R. L.

Hutchinson, M. H. R.

Hyman, H. A.

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

Ikedo, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Ishida, K.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Iwasaki, M.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Kaminskii, A. A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Kawamura, N.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Kielpinski, D.

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

Koda, A.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Kolbe, D.

Koopman, D. W.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Kudryashov, A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Kuga, T.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Lago, A.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Louchev, O. A.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Lu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Ma, H.

Mahon, R.

R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5(7), 279–281 (1980).
[Crossref] [PubMed]

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Makimura, S.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Marangos, J. P.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7(7), 1254–1259 (1990).
[Crossref]

Markert, F.

Matsuda, Y.

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Matsuzaki, T.

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

McIlrath, T. J.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Meyer, S. A.

Misawa, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Miyake, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Miyazaki, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Morenzoni, E.

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

Murai, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Myerscough, V. P.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

Nagamine, K.

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Nagamoto, T.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Nakamura, J.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Nishiyama, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Oishi, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Okamura, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Pahl, A.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Patterson, B. D.

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

Prabhu, M.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Rettner, C. T.

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

Saito, N.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Scheid, M.

Shen, N.

Shimomura, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Strasser, P.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Takaichi, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Torikai, E.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Ueda, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Uematsu, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Wada, S.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Wallenstein, R.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Walsh, B. M.

Walz, J.

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
[Crossref] [PubMed]

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Xu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yagi, H.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yanagitani, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yiu, Y. M.

Yokohama, K.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Yokoyama, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Appl. Phys. Lett. (4)

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

Contemp. Phys. (1)

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

Hyperfine Interact. (1)

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Conf. Ser. (1)

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Laser Phys. (1)

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Nucl. Instrum. Methods Phys. Res. B (2)

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Nucl. Phys. B (1)

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

Sov. Phys. JETP-USSR (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Spectrochim. Acta B At. Spectrosc. (1)

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Other (5)

Y. A. Il’insky and L. V. Keldysh, Electromagnetic Response of Materials Media (Plenum, 1994).

Yu. Raizer, Laser Spark and Propagation of Discharges (Consultants Bureau, 1976).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “All-solid-state laser amplifiers for intense Lyman-α generation,” Proc. Int. Symp. Science Explored by Ultra Slow Muon (USM2013) JPS Conf. Proc. 2, 010105 (2014).
[Crossref]

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematization of laser four-wave mixing complicated by multi-photon ionization.
Fig. 2
Fig. 2 Schematic of the optical system used for generation of L-α radiation.
Fig. 3
Fig. 3 Generated pulse energy of input radiations vs the operation time.
Fig. 4
Fig. 4 Output energy of hydrogen L-α radiation vs Kr pressure.

Tables (1)

Tables Icon

Table 1 Estimated multi-photon ionization data of Kr.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

W mpi ω i n ph 3/2 ( ε qi /2Δ E ion ) n ph ,
d n dt = σ (2) I 1 2 ( ω 1 ) 2 ( N Kr0 n n e ) σ a I 1 ω 1 n ,
d n e dt = σ a I 1 ω 1 n ,
n (t)= a N Kr0 α 1 α 2 ( e α 1 t e α 2 t ),
n e (t)= ab N Kr0 α 1 α 2 [ 1 α 1 ( e α 1 t 1) 1 α 2 ( e α 2 t 1) ],
d ε e /dt=2 ε qΣ ν c ,

Metrics