Abstract

We present a broadband and efficient short-range plasmonic directional coupler design, for the delivery and collection of deeply sub-wavelength radiation to tapered plasmonic nanowires. We show a proof-of-concept design using a planar geometry operating at wavelengths between 1.2 −2.4 μm, showing that the propagation characteristics predicted by an Eigenmode analysis are in excellent agreement with finite element simulations. This analytical formulation is straightforward to implement and immediately provides the power-exchange properties of hybrid plasmonic waveguides. An investigation of both waveguide delivery and collection performance to and from a plasmonic nano-tip is performed. We show that this design strategy can be straightforwardly adapted to a realistic hybrid fiber geometry, containing wire diameters more than one order of magnitude larger than the planar geometries, with important applications in all-fiber plasmonic superfocussing, and nonlinear plasmonics.

© 2016 Optical Society of America

1. Introduction

Surface plasmon polaritons (SPPs) emerge when photons couple to the collective oscillations of electrons at metal/dielectric interfaces, and can give rise to a deeply sub-wavelength enhancement and confinement of the local electromagnetic field [1]. Over the past decades, numerous applications of SPPs have emerged where strong field enhancement and device miniaturization are advantageous, e.g. in field-enhanced microscopy [2], sensing [3], nonlinear optics [4, 5], photovoltaics [6], quantum optics [7], and near-field microscopy [8]. However, due to intrinsic metallic losses at optical and infrared frequencies, SPPs have attenuation lengths of the order of several tens of micrometers. Nevertheless, nanoscale hybrid plasmonic-photonic devices with superior functionalities with respect to their dielectric counterparts, especially in terms of compactness and field confinement, are routinely achieved. Since SPP-devices lengths are often much shorter than dielectric waveguides – typically no more than a few hundred micrometers – practical plasmonic devices require efficient coupling between a given low-loss dielectric mode and the lossy SPP modes.

When metallic nanofilm thicknesses approach the penetration depth of SPPs modes, the two SPPs on opposite sides of the film interact, leading to a splitting of the mode dispersions and the emergence of symmetric and antisymmetric modes (in terms of the magnetic field), commonly termed long-range (LR-) and short-range (SR-) SPPs, respectively [9, 10]. LR-SPPs possess smaller fractions of field in the metal and have lower loss, however they are only weakly bound to the metal, and simply behave like plane waves if the metal thickness is reduced to the nanoscale [11]. In contrast, SR-SPPs are tightly bound to the metal and show an increasing confinement to the metal surface for a reducing film thickness [11]. This makes SR-SPPs particularly advantageous for a number of applications, including subwavelength imaging via plasmonic superfocussing [12, 13], sensing [14], and all applications where nanoscale field enhancement is key [6, 15]; however, they are difficult to couple to due to their large effective mode, as discussed below. Note that SR- and LR-SPPs are supported not only in planar structures, but also in cylindrical metallic nano-wires: in this case, the SR-SPP is given by the radially polarized TM mode with azimuthal order zero (TM0-mode), and the LR-SPP is the linearly polarized mode with azimuthal order of unity (HE1-mode) [16]. The corresponding modes can be understood by a single interface SPP mode experiencing geometric momenta while spiralling around the nanowire circumference [16, 17].

Most generally, due to their comparably large wave vectors, SR-SPP modes cannot be excited via free space excitation, and more sophisticated coupling schemes are required, such as evanescent wave coupling [18], grating couplers [19], and tapers [20]. These techniques are widely used, but suffer from a narrow spectral bandwidth. The large momentum mismatch is a key problem, since SR-SPP modes commonly have index values much larger than those of typical dielectric systems. Another excitation method is end-fire coupling [21–23], relying on a direct excitation of the plasmonic mode by an incident beam, either from a dielectric waveguide or free space. This technique, commonly used in fiber optics, requires a matching of the fields of the modes involved, which is difficult when the plasmonic waveguides have sub-wavelength dimensions [13]. Moreover, end-fire coupling does not allow for the selective excitation of a desired mode, making this approach unfeasible for applications requiring SR-SPPs.

An alternate technique for the efficient excitation of SPPs is plasmonic directional coupling [24, 25], which relies on phase-matching of neighboring waveguides. Directional coupling is already widely used in integrated photonics [26] e.g., for integrated couplers, switches, and modulators. Previous plasmonics-based demonstrations have targeted SPPs on thin metal stripes, in the context of sensing [24], polarizers [25], and sub-wavelength field confinement in delivery mode [27, 28].

On the other hand, based on the idea of integrating increasingly sophisticated nanophotonic functionality into optical fibers (as is typically done in planar structures), recent years have shown a rapid development of the field of hybrid (multi-material) optical fibers [29, 30]. Vastly different materials such as metals (e.g., gold [31]) and semiconductors (e.g., chalcogenide [32] and silicon [33]) can be integrated into a single fiber using a variety of pre- and post- processing techniques, with the ultimate goal of interfacing nanoscale devices with common fiber optical circuitry. Gold wires with diameters of the order of a few hundred nanometers are now routinely integrated into fibers, either by direct drawing [34] or using pressure-assisted melt filling [31], where wire diameters as small as 30 nm can be achieved. It has been shown that such nanowire-enhanced fibers can act as near-field scattering nanoprobes using a localized surface plasmon resonance at the fiber end [35]. Indeed, due to the ductile nature of gold, typical cleaves of a gold-filled fiber naturally result in a gold nanotip which protrudes from of the fiber [35], see Fig. 1(a). It was shown that the apex size of such probes can be as small as ten nanometers, which is substantially smaller than the opening in currently used fiber-based SNOM probes. According to Bethe [36], the transmitted field amplitude scales with b3 (aperture size b) for apertures with bλ, and thus smaller apertures lead to a dramatic reduction in light throughput. However, fiber probes incorporating sharp tips are accompanied by a substantially improved spatial resolution [37]. An integrated and flexible fiber-based plasmonic nanoprobe would be essential for next generation near-field probes, allowing to efficiently deliver and collect radiation on the nanoscale on a convenient fiber platform [35, 38]. However the implementation of an integrated and flexible fiber-based nanoprobe device using SR-SPP plasmonic nanowires has not yet been achieved, mainly due to the lack of an effective and practical scheme to excite them.

 figure: Fig. 1

Fig. 1 (a) Scanning-electron micrographs of cleaved fibers containing a gold nanowire (left), showing a naturally-forming sharp nanotip (right). White scale bars are 10 and 0.5 μm (from left to right). Reproduced with permission from [35]. Copyright 2013, AIP Publishing LLC. (b) Schematic of a hybrid dielectric-plasmonic directional coupler with plasmonic nanotip. Light from the dielectric core (light blue), directionally couples into the SR-SPP mode on the gold nanowire (yellow), and focusses at the tip (magenta spot at the tip end). Dark blue: silica cladding. Comparison between (c) effective index neff and (d) loss for the SR-SPP modes of planar gold films (blue) and cylindrical gold wires (green) in a silica background at λ = 1.55 μm, where w is their width or diameter, respectively [inset in (c)].

Download Full Size | PPT Slide | PDF

Here, we propose an all-in-fiber nanoprobe design allowing for the efficient and broadband excitation of the strongly bounded cylindrical SPP mode for superfocussing via plasmonic directional mode coupling [Fig. 1(b)]. The design consists of a step-index fiber with a central dielectric core and a gold nanowire running parallel, resulting in a plasmonic coupler with a nanotip protruding from the fiber. Light launched into the dielectric core can directionally couple to the strongly bound cylindrically radially polarized SR-SPP on the gold nanowire, which then naturally tapers to a nanotip at the fiber output when cleaved. SR-SPPs generally possess effective indeces which dramatically increase as the metal width approaches small dimensions [both for planar [11] and cylindrical [17] geometries, see Fig. 1(c)], thus enabling plasmonic superfocussing. Note that the cylindrical nanowire and the planar film show comparable properties in terms of loss and effective index even though the nanowire diameter is ten times larger than the film thickness [Figs. 1(c)–1(d)], thus relaxing fabrication and material constrains. In turn, a comprehensive study of a planar (2D) plasmonic directional coupling structure will reveal the dependency of the modes on the various geometric parameters, thus acting as a pathway for establishing an efficient procedure for designing its cylindrical (3D) counterpart with substantially reduced computational efforts.

Inspired by previous demonstrations of SR-SPP directional coupling to plasmonic nanofilms [24, 25], we present a comprehensive Eigenmode (EM) and propagation analysis, which defines a design route to efficiently excite SR-SPPs on plasmonic waveguides using a directional coupling scheme. Our EM ansatz is rapid and precise, as validated by full-vectorial finite element (FE) calculations, and allows to obtain physical insights into the complex mode coupling behavior of such plasmonic-photonic structures, which cannot be obtained from FE simulations. As a proof-of-concept design, we first show that a planar multilayer geometry can be used to both deliver and collect light using a plasmonic nanotip at a deeply subwavelength scale, operating as an efficient and broadband near-field nanoprobe. Finally, we apply our calculation scheme to a nanowire-based fiber nanoprobe [Fig. 1(b)], showing that a plasmonic hybrid optical fiber can indeed be used for plasmonic superfocussing. Our simulation ansatz is straightforward to implement and can be adapted to suit a wide variety of materials and geometries.

2. Device concept, theory, design, performance

We illustrate our scheme by analyzing a planar 2D multilayer (Fig. 2) consisting of a gold nanofilm (thickness w) which is placed at a distance t from a dielectric waveguide with a refractive index ncore larger than the cladding (core thickness d). This configuration is assumed to be embedded in silica, thus forming a hybrid plasmonic-dielectric waveguide. We only consider transverse-magnetic (TM) polarization, corresponding to the polarization state of SPPs. Isolated dielectric waveguides and gold nanofilms generally support a fundamental TM waveguide mode and a SR-SPP mode. We refer to these modes as the isolated Eigenmodes (IEMs). Note that for the film thicknesses considered here, the LR-SPP has an effective index close to the background [11], and can thus be neglected. Due to the strong modal overlap, the modes hybridize [39] so that two new Eigenmodes are supported in the hybrid dielectric-plasmonic waveguide. We refer to these modes as the hybrid Eigenmodes (HEMs). Within the context of SPPs, the formation of HEMs is sometimes referred as plasmonic hybridization [39, 40]. The geometry under investigation represents a strongly coupled system; preliminary calculations show that conventional coupled-mode theory for lossy systems [41], though certainly accurate for situations where perturbations are small (e.g. low losses, large separations between waveguides), is in fact inadequate for the particular case considered here. Instead, one can interpret the coupling process as a beating of the two HEMs within the coupling section. This reduces the problem to a simple calculation of the propagation constants of the EMs and the modal amplitudes [42], whereas the field at any point inside the coupling section is giving by a superposition of the HEMs. After a particular propagation length, most of the field will be located within the gold film, i.e. the SR-SPP mode [Fig. 2(i)]. Tapering this nanofilm at this length then allows to deliver/collect light on a deeply subwavelength scale [Fig. 2(ii)].

 figure: Fig. 2

Fig. 2 Conceptual schematic of the planar directional coupler device for the excitation of the SR-SPP mode. (i) Directional coupling section: the fundamental isolated Eigenmode (IEM) of the dielectric core couples to the strongly bounded SR-SPP mode via the beating of the two even- and odd- hybrid Eigenmodes (HEMs) in the coupling section which is terminated after one coupling length (i.e. length at which the maximum power is transferred from the core to the plasmonic film). (ii) Plasmonic nanotip section: the excited SR-SPP mode travels down the nanotip and is focused to deep sub-wavelength dimensions, which can be used for nanoscale light delivery or collection.

Download Full Size | PPT Slide | PDF

2.1. Eigenmode propagation in hybrid waveguides

Generally, the total electric and magnetic field in a dual-waveguide structure are a superposition of the two supported HEMs,

Htot(x,y,z)a1H1(x,y)exp(iβ1z)+a2H2(x,y)exp(iβ2z),
Etot(x,y,z)a1E1(x,y)exp(iβ1z)+a2E2(x,y)exp(iβ2z),
where the subscript i = 1, 2 labels the two HEMs. Htot and Etot are the transverse total magnetic and electric field vectors at any point in the waveguide, respectively, Hi and Ei are the magnetic and electric field distributions of the HEMs, βi=βiR+iβiI are their propagation constants, and ai are the modal amplitudes which determine the contribution of the respective EMs to the total field. The above expansions are approximate since contributions from radiation modes have been neglected. Following the convention used in [42], we use modal fields that have unit normalization, so that
12A[Ei(x,y)×Hj(x,y)]z^dA=δi,j,
integrated over the entire lateral cross section A. Modes can always be normalized to satisfy Eq. (3), which can then be used to calculate the complex modal amplitudes at input,
ai=12A[Ei(x,y)×Hin(x,y)]z^dA,
where Hin(x, y) = Hcore(x, y) in this case is the magnetic field of the dielectric waveguide IEM at z = 0 (see Fig. 2). Here we use the overlap integrals in Eqs. (3)(4) in their unconjugated form, as appropriate for lossy (as well as for lossless) systems [42]. The modal amplitudes at output (i.e., at a certain position z > 0) are given by:
bi=12A[Ei(x,y)×Hout(x,y)]z^dA.
To obtain the power fraction in either of the two waveguides, we superpose the evolved Eigen-modes (including phase factors) via the modal amplitudes, project the fields at a distance z of the dual waveguide system [Eqs. (1)(2)] onto the appropriate isolated modes using orthonormality, and take the modulus squared. After some algebra we obtain a closed-form expression for the fraction of power in the projected waveguide at the (output) position z for each of the two waveguides:
fP=|a1b1|2exp(2β1Iz)+|a2b2|2exp(2β2Iz)++2exp(βI¯z){[e(a1b1)e(a2b2)+m(a1b1)m(a2b2)]cos(ΔβRz)++[e(a1b1)m(a2b2)m(a1b1)e(a2b2)]sin(ΔβRz)},
where ΔβR=β1Rβ2R, βI¯=β1I+β2I, and where fP in the dielectric or plasmonic portion of the dual-waveguide system is obtained either by setting Hout(x, y) = Hcore(x, y) (so that ai = bi) or Hout(x, y) = HSPP(x, y) (so that aibi) respectively, where HSPP(x, y) is the the magnetic field of the SR-SPP IEM.

It is important to note that the modal amplitudes are complex quantities, indicating a phase delay between the two HEMs, which is to some extent similar to that occurring in circularly polarized light. This effect leads to an induced phase shift at the incoupling location (z = 0) and only occurs in unbalanced coupled mode systems (i.e. in situations where one mode has a significantly different loss or gain with respect to the other [31]). Note also that Eq. (6) clearly indicates that the energy exchange between the waveguides is only correlated to the real parts of the dispersions of the HEMs, i.e., to the dephasing of the EMs, whereas the imaginary parts of the propagation constant influence the overall loss.

2.2. Hybrid waveguide design for SR-SPP excitation

The bounded solutions and corresponding field profiles are calculated by solving the transcendental dispersion equation, obtained after imposing continuity of the tangential electromagnetic field components at the interfaces and vanishing field amplitudes at infinity [43]. It is well known that directional couplers formed by adjacent non-identical waveguide optimally exchange energy at those wavelengths where the propagation constants of two modes match (i.e., possess the same effective mode index neff); this design rule, referred to as phase-matching, is well-known from lossless dielectric waveguide systems [44], but is less obvious in the case of hybrid plasmonic systems, where propagation constants are complex.

As a starting point for our design, we look for the structural parameters and material combinations that lead to phase-matching (in this complex case, we match the real part of neff) of the plasmonic and dielectric IEMs (corresponding to the case of an infinitely large waveguide separation t → ∞). As an example we choose an operation wavelength of λ = 1.55μm, TM-polarization (the only non-zero transverse components are Hy and Ex), gold as the metal (Drude-Lorentz model [45]) and silica as the dielectric background (Sellmeier model [46]). We first calculate neff of the SR-SPP IEM as a function of the gold width w (blue line in Fig. 3) and of the dielectric IEM as a function of core thickness d for various core material indices ncore (here we use ncore = 1.67, 1.77 and 1.87), with the latter assumed to be lossless and dispersionless [colored dashed lines in Fig. 3(a)]. For a given dielectric waveguide thickness and core, we obtain the thickness of the gold film that is required for phase matching. Here we assume a dielectric core with a refractive index and thickness of ncore = 1.87 and d = 500nm, respectively, where a gold thickness of 15 nm is required (red arrows in Fig. 3).

 figure: Fig. 3

Fig. 3 Design principle and parameter choices for the dielectric-plasmonic directional coupler. Only the IEM dispersions are considered at this point of the design procedure. (a) Structural and material parameter selection: for a given wavelength (here: 1.55 μm), the parameters are selected by choosing the combination of dielectric core width d (dashed lines) and gold film thickness w (solid line) that leads to phase-matching between the fundamental dielectric core mode and the SR-SPP mode (vertical red dashed line). For example, a core index of ncore = 1.87 and width 500 nm requires a gold strip of width 15 nm. (b) Phase-matching map of dielectric waveguide thickness versus gold film thickness. For a constant dielectric core index, various combinations of d phase-match with a gold strip of width w. The arrows show the parameters chosen here, w = 15nm, d = 500nm, ncore = 1.87.

Download Full Size | PPT Slide | PDF

2.3. Eigenmode analysis

The next step in the design procedure relies on analyzing the propagation properties of the two resulting HEMs, which are excited at z = 0 with the modal amplitudes given by Eq. (4). These HEMs are calculated for a finite separation distance; we use t = 400nm to start, the dependence of the directional coupling properties on t is presented in Section 2.5. This corresponds to a highly coupled hybrid plasmonic system, resulting in HEM dispersions [solid lines in Fig. 4(a)] which strongly differ from those of the IEMs [dashed lines in Fig. 4(a)], as evident when inspecting the corresponding field profiles [Fig. 4(b)]. A strong splitting of the two HEMs is evident around the point where ℜe(neff) of the IEMs cross. Equation (6) shows that a larger dispersion splitting leads to a maximum energy transfer on a short length scale due to a larger dephasing value ΔβR. Weaker coupling results in shorter coupling lengths and excessive energy dissipation before energy is transferred to the plasmonic waveguide. The incident field is defined by the fundamental TM IEM of the dielectric waveguide [Fig. 4(b), core mode], so that the input modal amplitudes can be calculated via Eq. (4). The spectral distribution of such modal amplitudes are shown in Fig. 4(d).

 figure: Fig. 4

Fig. 4 (a) Effective index of the TM core and SR-SPP IEMs (dashed lines) and of the HEMs, HEM 1 and HEM 2 (solid lines). (b) Real parts of the transverse magnetic field of each EM. Upper two plots: IEMs. Lower plot: HEMs. (c) Modal losses [same labeling as in (a)]. (d) Real and imaginary parts of a1 and a2 calculated using Eq. (4), setting Hin = Hcore, i.e. the TM core IEM.

Download Full Size | PPT Slide | PDF

As we will show, this device operates at a bandwidth of more than 800nm, and can be immediately understood by inspecting Eq. (6): firstly, the period of the exchange of energy between the two waveguides is only determined by the dephasing, and thus nearly parallel dispersions [solid lines in Fig. 4(a)] are beneficial for a broadband operation. Moreover, the modal amplitudes and losses of the HEMs are approximately constant for wavelengths longer than 1.4μm [solid lines in Fig. 4(c)], which makes our device comparably insensitive to wavelength.

2.4. Numerical validation of Eigenmode approach

By determining the modal amplitudes ai, the fields Hi, Ei and the propagation constants βi, the total fields [Eqs. (1) and (2)] and the time-averaged Poynting vector component in the propagation direction Sz = ℜe(E × H*) · can be calculated at any position within the hybrid waveguide system. This allows for a direct comparison of the EM approach with FE simulations (COMSOL), which we show below for the example discussed here (λ = 1.55μm, ncore = 1.87, d = 500nm, w = 15nm, t = 400nm, silica background). Port boundary conditions on the input (left) and output (right) ensure that only the fundamental TM mode of the waveguide is excited, and perfectly matched layers elsewhere suppress any reflections in the simulation volume.

The distributions of the axial component of the Poynting vector Sz(x, z) (normalized to the maximum in the window) using the simple EM analysis [Fig. 5(a)] show excellent agreement with the FE-simulations [Fig. 5(b)], confirming the feasibility of the EM approach in the context of plasmonics. The amplitudes of Sz(x, z) in the center of the dielectric waveguide [ Szcore, blue line in Fig. 5(c)] and on the upper edge (x = d + t + w = 915nm) of the gold strip [ SzSPP, red line in Fig. 5(c)] confirm the excellent agreement and show that 80% of the peak power of the input the mode can be transferred to the surface of the gold film over a length of 5.3 μm. To quantify the power transfer efficiency, we consider the total power in core- and film- region as a function of propagation distance. For this purpose, we choose to split the simulation space vertically into two regions [white arrows in Fig. 5(a)], with an artificial boundary half way between the two waveguides at xb = d + t/2, and define

Pcore(z)=d+t/2Sz(x,y)dx,
PSPP(z)=d+t/2Sz(x,y)dx,
where Pcore(z) and PSPP(z) are the total powers (per unit length) in core- and SPP- modes, respectively. This choice of xb then allows to estimate the fraction of power in the core and SPP modes [24], fcore and fSPP respectively, as a function of propagation length:
fcore(z)=Pcore(z)/[PSPP(0)+Pcore(0)],
fSPP(z)=PSPP(z)[PSPP(0)+Pcore(0)].
Here, fSPP(z) is defined as the plasmonic power transfer efficiency. Note that the sum of fcore and fSPP is unity at z = 0, and decreases below unity for z > 0 due to absorption, i.e., power dissipation in the metal, however a significant amount of power can be transferred from the dielectric waveguide into the SR-SPP. The plasmonic coupling length Lc is defined as the waveguide length after which a maximum power fraction η = max(fSPP) is transferred to the plasmonic waveguide, where η is the maximum transfer efficiency. A value of η = 38% at 1.55 μm after a propagation distance of Lc = 5.3μm is achieved for the example discussed here [Fig. 5(d)], where the EM analysis overlaps extremely well with the FE-simulations. We also find that the modal intensities calculated analytically from Eq. (6) provide a good estimate of the fraction of power in the dielectric and plasmonic mode [dashed-dotted lines in Fig. 5(d)]. This confirms that the superposition of the propagating (bounded) HEMs offers a straightforward pathway for analyzing the propagation characteristics of plasmonic/dielectric couplers with high degree of accuracy, greatly simplifying the design procedure with minimal simulation time, and providing additional physical insight. For example, the fact that the maximum SPP power transfer does not occur at the position where the power in the dielectric core is minimum [Fig. 5(b)] can be understood by inspecting Eq. (6), since in the presence of loss (non-zero imaginary field amplitudes), the power fractions in the dielectric (ai = bi) and plasmonic (aibi) modes are phase-delayed.

 figure: Fig. 5

Fig. 5 Spatial distribution of Poynting vector component Sz(x, z) (normalized to the maximum in the window) calculated using (a) the EM ansatz and (b) FE-simulations at λ = 1.55μm. (c) Sz(z) in the middle of the dielectric waveguide [ Szcore(z)=Sz(d/2,z), blue] and upper edge of gold strip [ SzSPP(z)=Sz(x=d+t+w,z), red], as indicated by the dotted lines in (a) and (b). (d) Fraction of power in dielectric core mode and SPP mode in the core (blue) and SPP mode (red) respectively, as defined in the text. In (c),(d) solid lines are from FE calculations, dashed lines result from the EM ansatz. In (d), the additional dash-dotted lines are obtained from Eq. (6), setting Hout = Hcore (blue) and Hout = HSPP (red), as defined in the text.

Download Full Size | PPT Slide | PDF

2.5. Bandwidth

We now investigate the wavelength dependence Sz in the dielectric and plasmonic portions of the hybrid waveguide system [Figs. 6(a)–6(d)]. We observe that the location of maximum of Sz of the plasmonic mode ( SzSPP) is between ∼ 5 – 6μm [black dotted line in Figs. 6(b) and 6(d)] for the wavelengths considered here (1.2–2 μm), with the EM approach again overlapping with FE-simulations [Figs. 6(a) and 6(b)]. This insensitivity to wavelength is to some extent surprising, since directional mode coupling for dissimilar waveguides is often seen as a resonant phenomenon, occurring most efficiently at a specific resonance wavelength [31, 34, 39]. In the case presented here however, the insensitivity to wavelength is a result of the parallel HEM dispersions and the comparably small wavelength dependence of modal amplitudes and HEM losses. Therefore, our proposed device can transfer a significant amount of energy from the dielectric core mode into the SPP mode with a bandwidth of more than 800 nm, forming a broadband plasmonic mode coupler for the efficient excitation of SR-SPP modes.

 figure: Fig. 6

Fig. 6 Spectral distribution of normalized Sz as defined in Fig. 5, in the center of the dielectric waveguide [ Szcore, (a) and (c)] and upper edge of gold strip [ SzSPP, (b) and (d)] evaluated using EM analysis [(a) and (b)] and FE simulations [(c) and (d)]. Plasmonic power transfer efficiency η (blue) and coupling length Lc (red) as (e) a function of wavelength (t = 400nm) and (f) as a function of t for a fixed wavelength of λ = 1.55μm. Solid lines: EM analysis. Circles: FE simulations.

Download Full Size | PPT Slide | PDF

We find that η increases towards longer wavelengths [Fig. 6(e) (blue)], approaching 50% at 2 μm. The slight discrepancy between FE-simulations (circles) and the EM approach (solid lines) for λ > 1.7μm is due to the partial dissipation of energy via radiation modes, which are not included in our simple EM approach. When analyzing the coupling length, we find that it only weakly depends on wavelength [Fig. 6(f), red], and is even constant between 1.44–1.75 μm. This broadband power transfer efficiency and wavelength-independent coupling length is particularly advantageous from a device design perspective, which we apply in the next section to produce sub-wavelength focussing on a plasmonic nanotip. As a final note on the directional coupler characteristics, Fig. 6(f) shows the dependence of η and Lc on the core/gold-strip separation t at a fixed wavelength of λ = 1.55μm: as expected, smaller separations lead to a decrease in the coupling length and an increase in the transfer efficiency.

3. Application: plasmonic tip

One particularly important property of the SR-SPP mode is its increasing electromagnetic field confinement with decreasing thickness of the supporting metal film, which can be employed for high-resolution near field scanning microscopy [12]. We now apply the proposed plasmonic mode coupler in the context of a superfocussing plasmonic nanotip, for applications in broadband efficient delivery and collection of sub-wavelength radiation. Henceforth, we consider a complete superfocussing device (see Fig. 2), consisting of an input section with only a dielectric waveguide (z < 0), a hybrid plasmonic/dielectric coupling section (0 < z < Lc) and a plasmonic nanotip (z > Lc). The geometric parameters of the coupling section correspond to those used in the previous Section, i.e., Lc = 5.3μm. The nanotip itself (which in this 2D analysis forms a nanowedge) is a tapered version of the 15 nm thick gold film, tapered down to 1 nm over a distance of 1 μm, with the apex of the tip possessing a 1 nm radius. Note that we have selected a coupling section corresponding to the length where the energy transfer to the plasmonic mode is maximum, as opposed to where the power in the dielectric core is minimum. This choice was motivated by the observation that the latter results in orders of magnitude lower power delivery to the nanotip, accompanied by a relative increase in the background noise when the nanotip operates in light delivery mode.

3.1. Delivery operation

Figure 7 shows the power flow for this device at three example wavelengths (λ = 1.25μm, 1.55μm, 1.85μm), calculated using FE-simulations, assuming a fundamental TM core waveguide mode incident from the left, and perfectly matched layers elsewhere. By design, this device efficiently converts the electromagnetic power into a SR-SPP, which then travels down the tip. The delivery efficiency is quantified by calculating amount of power transferred from the input section to the apex of the tip [ηdelivery = P(z = zapex)/P(z = 0)], where the latter has been calculated by integrating along the x-direction over a 20 nm region (vertical dashed lines in Fig. 7). We observe up to 10% efficiency over a large spectral domain (Fig. 8), as a result of the wavelength insensitivity of the plasmonic mode coupler. Note that a resonant plasmonic cavity forms between the end of the coupling section (z = Lc) and the apex [35], leading to back reflections into the coupling section and thus to oscillations of ηdelivery over wavelength. This spectral dependence is an intrinsic feature of the tip and not of the plasmonic coupling section, which can be adjusted by choosing a different tip length (dotted line in Fig. 8). Finally, we characterize the intensity-enhancement properties of the tip by taking the ratio of the peak Poynting vector magnitude at the tip apex, with respect to that at input. Results for the 1 μm long tip are shown in Fig. 8 (red), showing up to 12-fold power enhancement. The fluctuations in delivery efficiency can be attributed to the fundamental plasmon mode being reflected at the apex and the base of the tip, forming Fabry-Perot type resonances [35].

 figure: Fig. 7

Fig. 7 Distribution of the Poynting vector magnitude for the proposed planar superfocussing device (delivery mode operation) for three selected wavelengths [(a): 1.25 μm, (b): 1.55 μm, (c): 1.85 μm]. The fundamental TM mode of the dielectric waveguide is incident from the left. Right: close-up views of the apex of the nanotip. In all plots, the Poynting vector magnitude has been normalized to the same number for ease of comparison.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8

Fig. 8 Delivery efficiency ηdelivery (blue) as a function of wavelength for two different tip lengths (solid line: 1 μm, dashed line: 1.5 μm). Red: power enhancement at the tip (tip length: 1 μm.

Download Full Size | PPT Slide | PDF

3.2. Collection operation

The collection performance of this device is evaluated by placing a z-oriented point dipole at a precise distance below the apex of the nanotip, with the objective of quantifying how much of the dipole power is collected via the excited SR-SPP and ultimately reaches the single waveguide section (Fig. 2). In first instance, we consider such a point dipole at an axial distance of 1 nm from the apex of the nanotip (λ = 1.55μm). In this case, a significant amount of power is collected and transferred to the output of the dielectric waveguide [Fig. 9(a)]. The spatial resolution of this device Δx is then determined by placing the dipole source at different x-positions (direction perpendicular to the tip axis) and calculating the output power, showing that the device possesses a minimum resolvable feature size of Δx ∼ 2.42nm (Full Width at Half Maximum FHWM), corresponding to λ/638 [Fig. 9(b)]. Remarkably, we find that Δx is only weakly wavelength-dependent [blue line in Fig. 10(a)]; e.g., at λ = 2.2μm, Δx = 2.54nm, corresponding to λ/787. The efficiency of this collection process is determined by calculating the ratio of the power at the output end of the device with respect to the dipole power, obtained by integrating the Poynting vector magnitude over a circle of radius 1 nm surrounding the dipole. Note in particular that for the dipole/tip distances considered, the dipole energy does not radiate isotropically; instead, calculations indicate that at least 94% of the point dipole energy absorbed by the tip, corresponding to a highly directional emission towards the tip and into the waveguide: note the small values of the Poynting vector magnitude in [Fig. 9(a)] for z > 6.3μm. We also find the collection efficiencies to be in the range of 6–12% between 1.2–2.4 μm [red line in Fig. 10(a)]. The collection efficiency reduces and the spatial resolution increases for a larger apex-dipole distance [Fig. 10(b)]. Nanoscale objects should be placed in general in close proximity to the nanotip. This is an intrinsic property of the plasmonic nanotip and not of the coupling section itself. Note that the collection performance is dependent on the nature of the excitation source (e.g., relative orientation of dipole with respect to tip symmetry axis). For example, an x-oriented dipole placed at 1 nm distance from the tip has a collection efficiency of only 0.03% at λ = 1.55μm. Furthermore, when a z-oriented dipole is placed at a distance of x = 250nm (i.e. aligned with the central axis of the dielectric core, with the same z-position discussed so far) the collection performance is 0.015%, suggesting that direct coupling of a point source to the dielectric core is negligible compared to that via the gold nanotip. Finally, we have observed that quenching of the point dipole as a result of Ohmic losses in proximity to the gold nanotip under consideration is significantly less than that typically observed e.g., in nanocylinders and nanospheres [47]; this, combined with the efficient excitation of the SRSPP mode which couples to the dielectric waveguide, yields the comparatively large collection efficiencies observed.

 figure: Fig. 9

Fig. 9 (a) Example simulation of the normalized Poynting vector magnitude for a dipole located at an axial distance of 1 nm from the apex of the nanotip (λ = 1.55μm). Red dashed line: integration region at output. Inset: schematic of the tip (yellow), point source (black circle), dipole orientation (green) and integration region for collection efficiency calculations (dashed blue circle). Scale bar:1 nm. (b) Corresponding normalized Poynting vector magnitude at the output of the dielectric waveguide as a function of relative lateral position (x-direction) of the dipole source point.

Download Full Size | PPT Slide | PDF

 figure: Fig. 10

Fig. 10 Lateral spatial resolution (Δx) and collection efficiency of the plasmonic directional coupler with tapered nanotip as functions of (a) wavelength (dipole/apex distance: 1 nm) and (b) of the dipole-apex distance (λ = 1.55μm). Structural parameters as in Fig. 9.

Download Full Size | PPT Slide | PDF

4. Future directions: hybrid optical fibers

Since the EM approach is of general origin and can be applied to any coupled waveguide situation, we now consider the case of a fiber-like superfocussing device including a plasmonic coupler for the excitation of the strongly-bounded plasmonic nanowire mode. The design [schematic in the inset of Fig. 11(a)] consists of two parallel running cylindrical wires embedded in silica, with one wire being made from a lossless dielectric and the other from gold [31]. This fiber structure is in fact a 3D version of the 2D multilayer situation discussed earlier. Effective indeces and losses for all relevant modes are respectively shown in Fig. 11(a) and 11(b). Generally, the metallic nanowire supports several modes, whereby the mode with the highest effective index (TM0-mode) is radially polarized and corresponds to the tightly-bound SR-SPP IEM. Following our previous line of reasoning, we find that at λ = 1.55μm the effective index of the TM0 IEM of a 500 nm-diameter gold nanowire matches with the fundamental HE11 core IEM of a step index fiber waveguide of 1 μm diameter in the case the core has an index of ncore = 1.67 [Fig. 11(c)]. We also observe the formation of two new HEMs if a finite separation of t = 500nm is considered [Fig. 11(c)]. Note that this refractive index value is comparable to that of many glasses that are compatible with filling and infiltration techniques (e.g., metaphosphate glasses [48]), which, together with gold, allows for the immediate implementation of such a device. This system possesses very similar dispersion properties to that of the planar case, such as mode splitting and parallel-running dispersions as discussed. The key difference is the modal loss, which is about ten times lower compared to the planar case [Fig. 11(b)] although the gold wire has a diameter more than one order of magnitude larger than the gold film thickness considered previously. These larger dimensions are favorable from the fabrication point of view, as they strongly relax fabrication constrains and prerequisites.

 figure: Fig. 11

Fig. 11 Fiber-based plasmonic directional mode coupler for the excitation of the short-range TM0 mode [inset schematic of (a), d = 1μm, t = 0.5μm, w = 0.5μm, silica cladding (dark blue), dielectric core with ncore = 1.67 (light blue), and gold satellite (yellow)]. The device consists of a cylindrical dielectric waveguide and a metallic nanowire. (a) neff and (b) loss of the various isolated and hybrid modes. In both plots, dashed lines are the IEMs, solid lines refer to the HEMs. (c) Axial component of the Poynting vector (normalized log scale) for IEMs (dielectric core mode and plasmonic TM0 mode) and for the HEMs (asymmetric and symmetric HEM 1 and HEM 2, respectively) at λ = 1.55μm. White arrows indicate the direction of the electric field at a fixed point of time. Scale bar: 1 μm

Download Full Size | PPT Slide | PDF

Applying the EM formalism outlined earlier [see Eqs. (1)(6)], the power transfer properties of this hybrid device can be determined. The resulting Sz in the xz plane (y = 0) reveals that the plasmonic fiber coupler has a mode-coupling behavior being similar to that of the planar structure discussed earlier [Fig. 12(a)]. The Eigenmode approach reveals η = 53% can be achieved for our example at z = Lc = 22μm, which is significantly shorter than the typical lengths of continuous 500 nm gold nanowires that can be integrated into fibers using pressure-assisted melt filling (approximately 50 μm), see [31], Fig. 4(b). Note that within the scope of FE-simulations such a length is extremely long and as a consequence, FE-calculations are impractical for the analysis of directional-coupling of fiber-based plasmonic couplers due to the prohibitively large mesh elements required, leading to unfeasibly long computation times. This puts the EM approach in favor of full numerical calculations, particularly for hybrid-fiber structures, since it only requires the Eigenmode fields and dispersions.

 figure: Fig. 12

Fig. 12 Axial Poynting vector component Sz(x, z) of the fiber-based superfocussing device consisting of a plasmonic directional fiber coupler, used to excite the TM0-mode at the beginning of the conical nanotip (λ = 1.55μm, ncore = 1.67, d = 1μm, t = 500nm, w = 500nm, silica background). All images refer to the xz plane defined in the inset of Fig. 11(a). (a) Sz(x, z) pattern of the coupler section, calculated using the EM approach and assuming the fundamental dielectric waveguide mode as input field. The vertical white dashed line indicates the location of maximum power transfer, i.e. the optimal location for the excitation of the TM0 mode on the nanowire. The remaining three images (b–d) have been calculated using a FE-method. (b) TM0-mode propagation along the nanotip. (c) Close-up view of the apex of the nanotip [white square in (b)]. (d) Poynting vector magnitude distribution (xy-plane) at a position 1 nm away from the apex of the tip, as highlighted by the black dotted lines. All plots have been normalized to the maximum value in each window.

Download Full Size | PPT Slide | PDF

In a next step, we assume a conical nanotip at the end of the metallic nanowire, formed by tapering down the nanowire from 500 nm diameter to 5 nm over a length of 0.5 μm. We reveal the focussing properties of the TM0 mode on this nanotip using 3D FE-simulations [Fig. 12(b)–12(d)]. Since such a tip-like structure can be formed by cleaving a fiber incorporating a gold nanowire [Fig. 1(a) and [35]], we assume that the first part of the tip (with constant outer diameter) is embedded in silica, and that the remaining tapered part of the nanowire is in air. The resulting calculations [Figs. 12 (b)–12(d)] show a strong superfocussing behavior down to spot sizes of lateral dimensions of only 10 nm [Fig. 12(d)], thus providing a demonstration of the potential of this fiber-based approach. The properties of the plasmon propagating down the nanowire tip can be analyzed using an eikonal approach [12] and will be the focus of another study.

5. Conclusion

In conclusion, we have shown that an Eigenmode ansatz relying on a superposition of propagating bound modes can be used to design hybrid dielectric-plasmonic couplers for the excitation of the strongly bounded short-range surface plasmon polariton modes. In an example multilayer structure we showed that, when designed correctly, such a plasmonic-dielectric coupler can operate with high power transfer efficiency (more than 50%) over more than 800 nm spectral bandwidth, in excellent agreement with finite element simulations. Compared with full-vector calculations, this analytical formulation has the benefit of being straightforward to implement, immediately providing the most relevant parameters with regards to the power-exchange properties of hybrid plasmonic directional couplers, e.g. the characteristic directional coupling length and power transfer efficiency. We then applied this Eigenmode scheme to designing a broadband a superfocussing device showing subwavelength spatial resolution, which can either operate in collection and delivery mode with total efficiencies of 10% or more. We extended the Eigenmode scheme to fiber-based devices consisting of a metallic nanowire running parallel to a cylindrical dielectric core, to design a directional coupler exciting the radially polarized (short-range) plasmonic mode. This analysis reveals that such an all-in-fiber super-focussing device can be implemented using realistic materials and structural dimensions. This scheme can be adapted to other nanowire-enhanced optical fiber designs [49], and is applicable to other spectral domains. This approach will have important applications in all-fiber plasmonic superfocussing, nanoscale sensing and nonlinear plasmonics.

Acknowledgments

A.T. acknowledges financial support from the Alexander Von Humboldt Foundation.

References and links

1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]  

2. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40 (2007). [CrossRef]  

3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]   [PubMed]  

4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737748 (2012). [CrossRef]  

5. A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013). [CrossRef]  

6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]   [PubMed]  

7. M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013). [CrossRef]  

8. C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005). [CrossRef]  

9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]  

10. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2011). [CrossRef]  

11. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]  

12. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef]   [PubMed]  

13. X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011). [CrossRef]  

14. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007). [CrossRef]   [PubMed]  

15. X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008). [CrossRef]  

16. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008). [CrossRef]   [PubMed]  

17. R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015). [CrossRef]   [PubMed]  

18. A. Otto, “Excitation of Nonradiative Surface Plasmon Waves in Silver by Method of Frustrated Total Reflection,” Z. Phys. 216(4), 398–410 (1968). [CrossRef]  

19. E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003). [CrossRef]  

20. T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015). [CrossRef]  

21. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983). [CrossRef]   [PubMed]  

22. C. Fisher, L. C. Botten, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Efficient end-fire coupling of surface plasmons in a metal waveguide,” J. Opt. Soc. Am. B 32(3), 412–425 (2015). [CrossRef]  

23. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and Alain Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18(5), 5314–5319 (2010). [CrossRef]   [PubMed]  

24. A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009). [CrossRef]  

25. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009). [CrossRef]  

26. V. Stenger and F. R. Beyette, “Design and Analysis of an OpticalWaveguide Tap for Silicon CMOS Circuits,” J. Lightwave Technol. 20(2), 277–284 (2002) [CrossRef]  

27. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015). [CrossRef]   [PubMed]  

28. Z. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides’, Opt. Express 19(14), 12865–12872 (2011) [CrossRef]   [PubMed]  

29. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007). [CrossRef]  

30. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016). [CrossRef]  

31. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011). [CrossRef]   [PubMed]  

32. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011). [CrossRef]   [PubMed]  

33. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008). [CrossRef]  

34. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010). [CrossRef]   [PubMed]  

35. P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013). [CrossRef]  

36. H. A. Bethe, “Theory of Diffraction by Small Holes’, Phys. Rev. 66(7), 163–182 (1944). [CrossRef]  

37. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002). [CrossRef]  

38. B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015). [CrossRef]  

39. P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012). [CrossRef]   [PubMed]  

40. A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011). [CrossRef]   [PubMed]  

41. S. Chuang, “A Coupled Mode Formulation by Reciprocity and a Variational Principle,” J. Lightwave Technol. 5(1), 5–15 (1987). [CrossRef]  

42. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

43. D. Marcuse, Theory of Dielectric Waveguides (Academic, 1974).

44. D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part I: Synchronous Coupler,” J. Lightwave Technol. 5(1), 113–118 (1987). [CrossRef]  

45. A. Rakić, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,”Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]  

46. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]  

47. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007). [CrossRef]   [PubMed]  

48. I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3silica photonic bandgap fiber,” Opt. Lett. 37(14), 2499–2510 (2012). [CrossRef]   [PubMed]  

49. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  2. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40 (2007).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737748 (2012).
    [Crossref]
  5. A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
    [Crossref]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  7. M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
    [Crossref]
  8. C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
    [Crossref]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [Crossref]
  10. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2011).
    [Crossref]
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [Crossref]
  12. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  13. X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011).
    [Crossref]
  14. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007).
    [Crossref] [PubMed]
  15. X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
    [Crossref]
  16. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008).
    [Crossref] [PubMed]
  17. R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
    [Crossref] [PubMed]
  18. A. Otto, “Excitation of Nonradiative Surface Plasmon Waves in Silver by Method of Frustrated Total Reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  19. E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
    [Crossref]
  20. T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
    [Crossref]
  21. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983).
    [Crossref] [PubMed]
  22. C. Fisher, L. C. Botten, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Efficient end-fire coupling of surface plasmons in a metal waveguide,” J. Opt. Soc. Am. B 32(3), 412–425 (2015).
    [Crossref]
  23. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and Alain Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18(5), 5314–5319 (2010).
    [Crossref] [PubMed]
  24. A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
    [Crossref]
  25. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
    [Crossref]
  26. V. Stenger and F. R. Beyette, “Design and Analysis of an OpticalWaveguide Tap for Silicon CMOS Circuits,” J. Lightwave Technol. 20(2), 277–284 (2002)
    [Crossref]
  27. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  28. Z. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides’, Opt. Express 19(14), 12865–12872 (2011)
    [Crossref] [PubMed]
  29. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
    [Crossref]
  30. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
    [Crossref]
  31. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  32. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
    [Crossref] [PubMed]
  33. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref]
  34. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref] [PubMed]
  35. P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
    [Crossref]
  36. H. A. Bethe, “Theory of Diffraction by Small Holes’, Phys. Rev. 66(7), 163–182 (1944).
    [Crossref]
  37. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
    [Crossref]
  38. B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
    [Crossref]
  39. P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
    [Crossref] [PubMed]
  40. A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
    [Crossref] [PubMed]
  41. S. Chuang, “A Coupled Mode Formulation by Reciprocity and a Variational Principle,” J. Lightwave Technol. 5(1), 5–15 (1987).
    [Crossref]
  42. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  43. D. Marcuse, Theory of Dielectric Waveguides (Academic, 1974).
  44. D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part I: Synchronous Coupler,” J. Lightwave Technol. 5(1), 113–118 (1987).
    [Crossref]
  45. A. Rakić, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,”Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  46. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  47. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]
  48. I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3silica photonic bandgap fiber,” Opt. Lett. 37(14), 2499–2510 (2012).
    [Crossref] [PubMed]
  49. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
    [Crossref] [PubMed]

2016 (2)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

2015 (5)

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

C. Fisher, L. C. Botten, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Efficient end-fire coupling of surface plasmons in a metal waveguide,” J. Opt. Soc. Am. B 32(3), 412–425 (2015).
[Crossref]

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

2013 (3)

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

2012 (3)

2011 (6)

2010 (3)

2009 (3)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[Crossref]

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

2008 (4)

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008).
[Crossref] [PubMed]

2007 (4)

J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007).
[Crossref] [PubMed]

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

2005 (1)

C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
[Crossref]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2003 (1)

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

2002 (2)

V. Stenger and F. R. Beyette, “Design and Analysis of an OpticalWaveguide Tap for Silicon CMOS Circuits,” J. Lightwave Technol. 20(2), 277–284 (2002)
[Crossref]

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

1998 (1)

1987 (2)

S. Chuang, “A Coupled Mode Formulation by Reciprocity and a Variational Principle,” J. Lightwave Technol. 5(1), 5–15 (1987).
[Crossref]

D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part I: Synchronous Coupler,” J. Lightwave Technol. 5(1), 113–118 (1987).
[Crossref]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

1983 (1)

1968 (1)

A. Otto, “Excitation of Nonradiative Surface Plasmon Waves in Silver by Method of Frustrated Total Reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

1965 (1)

1944 (1)

H. A. Bethe, “Theory of Diffraction by Small Holes’, Phys. Rev. 66(7), 163–182 (1944).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Agio, M.

X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Aubry, A.

A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Bachas, L. G.

Ballato, J.

Bartelt, H.

Bauerschmidt, S. T.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Berini, P.

Bethe, H. A.

H. A. Bethe, “Theory of Diffraction by Small Holes’, Phys. Rev. 66(7), 163–182 (1944).
[Crossref]

Beyette, F. R.

Bharadwaj, P.

Biancalana, F.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Botten, L. C.

Bozhevolnyi, S. I.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Chang, W.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Chen, X.

X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011).
[Crossref]

Cho, S.

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

Chuang, S.

S. Chuang, “A Coupled Mode Formulation by Reciprocity and a Variational Principle,” J. Lightwave Technol. 5(1), 5–15 (1987).
[Crossref]

Conforti, M.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Daw, M.

de Sterke, C. M.

Degiron, A.

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

Della Valle, G.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Dellith, J.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Dereux, A.

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Dereux, Alain

Devaux, E.

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Diziain, S.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Djurisic, A.

Ebbesen, T. W.

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Elazar, J.

Ellison, M.

Fasold, S.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Fisher, C.

Foy, P.

Frey, H. G.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

Goerke, S.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Gosciniak, J.

Granzow, N.

Guckenberger, R.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

Guo, J.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Hastings, J. T.

Hawkins, T.

He, Z.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Huang, Y.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

Hübner, U.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Jain, C.

Janunts, N.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Jokerst, N. M.

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

Joly, N.

Joly, N. Y.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737748 (2012).
[Crossref]

Keathley, P. D.

Keilmann, F.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

Klein, A. E.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Kley, E.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Kneipp, K.

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40 (2007).
[Crossref]

Kokuoz, B.

Konidakis, I.

Kriele, A.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

Kumaresh, P. B.

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Law, S.

Lee, H. W.

Lee, J.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

Lei, D. Z.

A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Linzen, S.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Liu, F.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

Longhi, S.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Majewski, M.

Malitson, I. H.

Maradudin, A. A.

Marcuse, D.

D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part I: Synchronous Coupler,” J. Lightwave Technol. 5(1), 113–118 (1987).
[Crossref]

D. Marcuse, Theory of Dielectric Waveguides (Academic, 1974).

Marini, A.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Markey, L.

Massenot, S.

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

McMillen, C.

McPhedran, R. C.

Neacsu, C. C.

C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
[Crossref]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Novotny, L.

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Otto, A.

A. Otto, “Excitation of Nonradiative Surface Plasmon Waves in Silver by Method of Frustrated Total Reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

Pendry, J. B.

A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Peng, J.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

Pertsch, T.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Pissadakis, S.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Poulton, C. G.

Powers, D. R.

Rakic, A.

Rao, A. M.

Raschke, M. B.

C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
[Crossref]

Reppert, J.

Rice, R. R.

Russell, P. St. J.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2011).
[Crossref]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008).
[Crossref] [PubMed]

Russell, R. F.

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Sandoghdar, V.

X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011).
[Crossref]

Scharrer, M.

Schmidt, M. A.

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008).
[Crossref] [PubMed]

Schmidt, Markus A.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Sharma, S.

Shori, R.

Sison, M.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Smith, D. R.

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Spittel, R.

Stafsudd, O.

Stark, S. P.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983).
[Crossref] [PubMed]

Steinert, M.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Stenger, V.

Steudle, G. A.

C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Stolen, R.

Tame, M. S.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Tang, X.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Tran, Tr. X.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Tugchin, B. N.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Tuniz, A.

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Tünnermann, A.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Tverjanovich, A. S.

Tyagi, H. K.

Tyler, T.

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

Uebel, P.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Volkov, V. S.

Wallis, R. F.

Wan, R.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

Wang, Y.

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

Weeber, J.

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Wei, Y.

Weidlich, S.

Wieduwilt, T.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Wondraczek, L.

Yang, L.

Yang, T.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737748 (2012).
[Crossref]

Zhang, W.

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zito, G.

ACS Nano (1)

A. Aubry, D. Z. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic Hybridization between Nanowires and a Metallic Surface: A Transformation Optics Approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Adv. Opt. Mat. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B (1)

C. C. Neacsu, G. A. Steudle, and M. B. Raschke, “Plasmonic light scattering from nanoscopic metal tips,” Appl. Phys. B 80(3), 295–300 (2005).
[Crossref]

Appl. Phys. Lett. (5)

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via microgratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[Crossref]

X. Tang, Y. Huang, Y. Wang, W. Zhang, and J. Peng, “Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer,” Appl. Phys. Lett. 92(25), 251116 (2008).
[Crossref]

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030 (2002).
[Crossref]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A Gold-Nanotip Optical Fiber for Plasmon-Enhanced Near-Field Detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

J. Lightwave Technol. (3)

S. Chuang, “A Coupled Mode Formulation by Reciprocity and a Variational Principle,” J. Lightwave Technol. 5(1), 5–15 (1987).
[Crossref]

D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part I: Synchronous Coupler,” J. Lightwave Technol. 5(1), 113–118 (1987).
[Crossref]

V. Stenger and F. R. Beyette, “Design and Analysis of an OpticalWaveguide Tap for Silicon CMOS Circuits,” J. Lightwave Technol. 20(2), 277–284 (2002)
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

N. J. Phys. (2)

A. Degiron, S. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009).
[Crossref]

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” N. J. Phys. 15, 013033 (2013).
[Crossref]

Nano Lett. (2)

X. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2011).
[Crossref]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nat. Mat. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mat. 6(5), 336–347 (2007).
[Crossref]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737748 (2012).
[Crossref]

Nat. Physics (1)

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Physics 9, 329–340 (2013).
[Crossref]

Opt. Express (10)

J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007).
[Crossref] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18) 13617–13623 (2008).
[Crossref] [PubMed]

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and Alain Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18(5), 5314–5319 (2010).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref]

Z. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides’, Opt. Express 19(14), 12865–12872 (2011)
[Crossref] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. (1)

H. A. Bethe, “Theory of Diffraction by Small Holes’, Phys. Rev. 66(7), 163–182 (1944).
[Crossref]

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Phys. Today (1)

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40 (2007).
[Crossref]

Sci. Rep. (1)

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, and Markus A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
[Crossref]

Z. Phys. (1)

A. Otto, “Excitation of Nonradiative Surface Plasmon Waves in Silver by Method of Frustrated Total Reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

D. Marcuse, Theory of Dielectric Waveguides (Academic, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Scanning-electron micrographs of cleaved fibers containing a gold nanowire (left), showing a naturally-forming sharp nanotip (right). White scale bars are 10 and 0.5 μm (from left to right). Reproduced with permission from [35]. Copyright 2013, AIP Publishing LLC. (b) Schematic of a hybrid dielectric-plasmonic directional coupler with plasmonic nanotip. Light from the dielectric core (light blue), directionally couples into the SR-SPP mode on the gold nanowire (yellow), and focusses at the tip (magenta spot at the tip end). Dark blue: silica cladding. Comparison between (c) effective index neff and (d) loss for the SR-SPP modes of planar gold films (blue) and cylindrical gold wires (green) in a silica background at λ = 1.55 μm, where w is their width or diameter, respectively [inset in (c)].
Fig. 2
Fig. 2 Conceptual schematic of the planar directional coupler device for the excitation of the SR-SPP mode. (i) Directional coupling section: the fundamental isolated Eigenmode (IEM) of the dielectric core couples to the strongly bounded SR-SPP mode via the beating of the two even- and odd- hybrid Eigenmodes (HEMs) in the coupling section which is terminated after one coupling length (i.e. length at which the maximum power is transferred from the core to the plasmonic film). (ii) Plasmonic nanotip section: the excited SR-SPP mode travels down the nanotip and is focused to deep sub-wavelength dimensions, which can be used for nanoscale light delivery or collection.
Fig. 3
Fig. 3 Design principle and parameter choices for the dielectric-plasmonic directional coupler. Only the IEM dispersions are considered at this point of the design procedure. (a) Structural and material parameter selection: for a given wavelength (here: 1.55 μm), the parameters are selected by choosing the combination of dielectric core width d (dashed lines) and gold film thickness w (solid line) that leads to phase-matching between the fundamental dielectric core mode and the SR-SPP mode (vertical red dashed line). For example, a core index of ncore = 1.87 and width 500 nm requires a gold strip of width 15 nm. (b) Phase-matching map of dielectric waveguide thickness versus gold film thickness. For a constant dielectric core index, various combinations of d phase-match with a gold strip of width w. The arrows show the parameters chosen here, w = 15nm, d = 500nm, ncore = 1.87.
Fig. 4
Fig. 4 (a) Effective index of the TM core and SR-SPP IEMs (dashed lines) and of the HEMs, HEM 1 and HEM 2 (solid lines). (b) Real parts of the transverse magnetic field of each EM. Upper two plots: IEMs. Lower plot: HEMs. (c) Modal losses [same labeling as in (a)]. (d) Real and imaginary parts of a1 and a2 calculated using Eq. (4), setting Hin = Hcore, i.e. the TM core IEM.
Fig. 5
Fig. 5 Spatial distribution of Poynting vector component Sz(x, z) (normalized to the maximum in the window) calculated using (a) the EM ansatz and (b) FE-simulations at λ = 1.55μm. (c) Sz(z) in the middle of the dielectric waveguide [ S z core ( z ) = S z ( d / 2 , z ), blue] and upper edge of gold strip [ S z SPP ( z ) = S z ( x = d + t + w , z ), red], as indicated by the dotted lines in (a) and (b). (d) Fraction of power in dielectric core mode and SPP mode in the core (blue) and SPP mode (red) respectively, as defined in the text. In (c),(d) solid lines are from FE calculations, dashed lines result from the EM ansatz. In (d), the additional dash-dotted lines are obtained from Eq. (6), setting Hout = Hcore (blue) and Hout = HSPP (red), as defined in the text.
Fig. 6
Fig. 6 Spectral distribution of normalized Sz as defined in Fig. 5, in the center of the dielectric waveguide [ S z core, (a) and (c)] and upper edge of gold strip [ S z SPP, (b) and (d)] evaluated using EM analysis [(a) and (b)] and FE simulations [(c) and (d)]. Plasmonic power transfer efficiency η (blue) and coupling length Lc (red) as (e) a function of wavelength (t = 400nm) and (f) as a function of t for a fixed wavelength of λ = 1.55μm. Solid lines: EM analysis. Circles: FE simulations.
Fig. 7
Fig. 7 Distribution of the Poynting vector magnitude for the proposed planar superfocussing device (delivery mode operation) for three selected wavelengths [(a): 1.25 μm, (b): 1.55 μm, (c): 1.85 μm]. The fundamental TM mode of the dielectric waveguide is incident from the left. Right: close-up views of the apex of the nanotip. In all plots, the Poynting vector magnitude has been normalized to the same number for ease of comparison.
Fig. 8
Fig. 8 Delivery efficiency ηdelivery (blue) as a function of wavelength for two different tip lengths (solid line: 1 μm, dashed line: 1.5 μm). Red: power enhancement at the tip (tip length: 1 μm.
Fig. 9
Fig. 9 (a) Example simulation of the normalized Poynting vector magnitude for a dipole located at an axial distance of 1 nm from the apex of the nanotip (λ = 1.55μm). Red dashed line: integration region at output. Inset: schematic of the tip (yellow), point source (black circle), dipole orientation (green) and integration region for collection efficiency calculations (dashed blue circle). Scale bar:1 nm. (b) Corresponding normalized Poynting vector magnitude at the output of the dielectric waveguide as a function of relative lateral position (x-direction) of the dipole source point.
Fig. 10
Fig. 10 Lateral spatial resolution (Δx) and collection efficiency of the plasmonic directional coupler with tapered nanotip as functions of (a) wavelength (dipole/apex distance: 1 nm) and (b) of the dipole-apex distance (λ = 1.55μm). Structural parameters as in Fig. 9.
Fig. 11
Fig. 11 Fiber-based plasmonic directional mode coupler for the excitation of the short-range TM0 mode [inset schematic of (a), d = 1μm, t = 0.5μm, w = 0.5μm, silica cladding (dark blue), dielectric core with ncore = 1.67 (light blue), and gold satellite (yellow)]. The device consists of a cylindrical dielectric waveguide and a metallic nanowire. (a) neff and (b) loss of the various isolated and hybrid modes. In both plots, dashed lines are the IEMs, solid lines refer to the HEMs. (c) Axial component of the Poynting vector (normalized log scale) for IEMs (dielectric core mode and plasmonic TM0 mode) and for the HEMs (asymmetric and symmetric HEM 1 and HEM 2, respectively) at λ = 1.55μm. White arrows indicate the direction of the electric field at a fixed point of time. Scale bar: 1 μm
Fig. 12
Fig. 12 Axial Poynting vector component Sz(x, z) of the fiber-based superfocussing device consisting of a plasmonic directional fiber coupler, used to excite the TM0-mode at the beginning of the conical nanotip (λ = 1.55μm, ncore = 1.67, d = 1μm, t = 500nm, w = 500nm, silica background). All images refer to the xz plane defined in the inset of Fig. 11(a). (a) Sz(x, z) pattern of the coupler section, calculated using the EM approach and assuming the fundamental dielectric waveguide mode as input field. The vertical white dashed line indicates the location of maximum power transfer, i.e. the optimal location for the excitation of the TM0 mode on the nanowire. The remaining three images (b–d) have been calculated using a FE-method. (b) TM0-mode propagation along the nanotip. (c) Close-up view of the apex of the nanotip [white square in (b)]. (d) Poynting vector magnitude distribution (xy-plane) at a position 1 nm away from the apex of the tip, as highlighted by the black dotted lines. All plots have been normalized to the maximum value in each window.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H tot ( x , y , z ) a 1 H 1 ( x , y ) exp ( i β 1 z ) + a 2 H 2 ( x , y ) exp ( i β 2 z ) ,
E tot ( x , y , z ) a 1 E 1 ( x , y ) exp ( i β 1 z ) + a 2 E 2 ( x , y ) exp ( i β 2 z ) ,
1 2 A [ E i ( x , y ) × H j ( x , y ) ] z ^ d A = δ i , j ,
a i = 1 2 A [ E i ( x , y ) × H in ( x , y ) ] z ^ d A ,
b i = 1 2 A [ E i ( x , y ) × H out ( x , y ) ] z ^ d A .
f P = | a 1 b 1 | 2 exp ( 2 β 1 I z ) + | a 2 b 2 | 2 exp ( 2 β 2 I z ) + + 2 exp ( β I ¯ z ) { [ e ( a 1 b 1 ) e ( a 2 b 2 ) + m ( a 1 b 1 ) m ( a 2 b 2 ) ] cos ( Δ β R z ) + + [ e ( a 1 b 1 ) m ( a 2 b 2 ) m ( a 1 b 1 ) e ( a 2 b 2 ) ] sin ( Δ β R z ) } ,
P core ( z ) = d + t / 2 S z ( x , y ) d x ,
P SPP ( z ) = d + t / 2 S z ( x , y ) d x ,
f core ( z ) = P core ( z ) / [ P SPP ( 0 ) + P core ( 0 ) ] ,
f SPP ( z ) = P SPP ( z ) [ P SPP ( 0 ) + P core ( 0 ) ] .

Metrics