Abstract

We report on lenses that operate over the visible wavelength band from 450 nm to beyond 700 nm, and other lenses that operate over a wide region in the near-infrared from 650 nm to beyond 1000 nm. Lenses were recorded in liquid crystal polymer layers only a few micrometers thick, using laser-based photoalignment and UV photopolymerization. Waveplate lenses allowed focusing and defocusing laser beams depending on the sign of the circularity of laser beam polarization. Diffraction efficiency of recorded waveplate lenses was up to 90% and contrast ratio was up to 500:1.

© 2016 Optical Society of America

1. Introduction

Polarization gratings, often fabricated in the form of a liquid crystal polymer (LCP) film, have been developed to the point where they are a well-known and useful type of diffractive element [1–3]. While it has been known for some time (see, for example [3,4],) that it is in principle possible to fabricate thin-film diffractive waveplate (DW) devices with a wide variety of patterns, much of the available literature relates to linear cycloidal patterns [1–14], in which the optical axis orientation varies linearly along one Cartesian coordinate in the plane of the patterned anisotropic thin-film layer; or in vector vortex patterns [15–17], in which the optical axis orientation angle is linear in the azimuthal angle about a singularity point in the plane of the device. Recently, BEAM Co [18–22]. and others [23–25] have developed waveplate lenses with radially-symmetric optical axis patterns, with optical axis orientation that varies quadratically with distance from a central point. This type of optical axis pattern results in a lensing effect on light transmitted through the thin-film DW device. This recent work has also demonstrated the feasibility of electrically switching the lensing action on or off, or switching the sign of the focal length for a given circular polarization [21,22].

For the simplest type of diffractive waveplate devices, the optical axis orientation within the few micrometer thickness of the film has no axial dependence. For even this simplest type of device, the diffraction efficiency η is high over a relatively broad range of wavelengths, and depends on wavelength as follows [5]: η = sin2(πLΔn/λ). Here L is the axial thickness of the film, Δn = (ne - no) is the anisotropy of the material comprising the film, ne and no are the extraordinary and ordinary indices of refraction of this film, respectively, and λ is the wavelength. From this equation, it can be shown that the wavelength range Δλ over which the diffraction efficiency satisfies η > ηmin for this simplest type of DW device is well approximated as follows for values of ηmin near 100%: Δλλ0(1 − ηmin)1/2. Here λ0 is defined to be that wavelength at which the half-wave condition is met. That is, for λ = λ0, . For example, if the film thickness L and the anisotropy Δn are adjusted such that the half-wave condition is met at wavelength λ0 = 550 nm (i.e. at the center of the visible wavelength band), and if a minimum diffraction efficiency of ηmin = 95% is acceptable, then the operating bandwidth Δλ is greater than 150 nm (neglecting small effects such as the variation of the indices of refraction with wavelength). That is, the efficiency for even the simplest DW grating can be greater than 95% over at least half the 400 nm to 700 nm band of visible wavelengths.

In some applications, it is desirable that the bandwidth be even greater than is provided by the simple DW device structure described above. It is possible to achieve higher diffraction efficiencies over a broader operating bandwidth than is indicated by the equations above if the optical axis orientation is given an appropriate spatial dependence along the axial direction, i.e. along the coordinate perpendicular to the plane of the thin-film DW coating. The idea of stacking multiple discrete waveplates with certain angles between their optical axes in order to broaden the bandwidth over which a certain retardation is obtained was introduced by Pancharatnam [26]. This concept for broadening the bandwidth of waveplates was extended to multi-layer LCP films [27], to twisted nematic liquid crystal (LC) cells [28], and to multilayer LCP devices with a double-twist structure, in which the optical axis orientation varies continuously along the axial direction [29]. Optical films employing such double-twist axial structures to achieve wider optical bandwidths than described by the equations above have been fabricated and optical performance has been reported for cycloidal diffractive waveplates [30] and vector vortex waveplates [15,17]. Here we report the application of this technique for broadening the optical bandwidth of waveplate lenses.

2. Experiment and results: broadband diffraction

2.1 Materials

The polarization modulation patterns were recorded in photoalignment material PAAD-72 (BEAM Co.) Some optical characteristics of this material are illustrated in Fig. 1.

 figure: Fig. 1

Fig. 1 Optical characteristics of PAAD-72 photoalignment material. (a) Absorbance spectrum of a 1% solution of PAAD-72 in DMF with 10 μm cell thickness. (b) Optical transmission vs. time through an LC cell between polarizers with PAAD-72 on one inner surface. Inset of (b) illustrates optical axis orientation at the two planar boundaries of the liquid crystal (1) before laser illumination, and (2) after laser illumination. Cell thickness was 10 μm, liquid crystal was E7, laser wavelength was 488 nm.

Download Full Size | PPT Slide | PDF

As illustrated in Fig. 1(a), PAAD-72 absorbs in the visible wavelength range. It can be photoaligned with laser light in the blue or green regions of the spectrum. The thickness of the PAAD layer used for photoalignment is generally less than 100 nm, so the residue of such material in the finished LCP device does not have any significant impact on optical efficiency.

Figure 1(b) illustrates the dynamic photoalignment response of this material. In this figure, the optical transmission of linearly polarized argon ion laser light at a wavelength of 488 nm through a 10 μm thick LC cell between polarizers is shown. One cell boundary consists of a polyvinyl alcohol (PVA) film aligned by rubbing, and the other cell boundary consists of PAAD-72 deposited on a glass substrate. The PAAD layer was created by spin-coating a 1% solution of this photoalignment material in dimethylformamide (DMF) solvent at a rotation speed 3000 rpm for 30 s. The PAAD layer was initially photoaligned parallel to the PVA alignment direction, such that the E7 liquid crystal was planar aligned. The cell was then placed between parallel polarizers, and the transmission of argon ion laser light (wavelength λ = 488 nm) through the assembly of polarizers and LC cell was measured as a function of time as shown in Fig. 1(b). For this dynamic optical transmission measurement, the laser light was incident on the PAAD side of the cell. The planar alignment of the cell [indicated by inset (1) of Fig. 1(b)] was initially aligned to the polarizers, but was then dynamically converted to 90° twist alignment [indicated by inset (2) of Fig. 1(b)] during the exposure. This resulted in reduction of the optical transmission through the assembly from near unity to near zero. The power density of the photoalignment beam was 2.2 W/cm2 with a beam diameter of 0.7 mm. The results shown in Fig. 1(b) demonstrate that for the noted alignment beam power density, the alignment layer can be re-aligned in only a few seconds. Other measurements indicate that the degree of alignment or re-alignment with photoalignment materials such as PAAD-72 is primarily determined by the total dosage, i.e. the energy density of the alignment exposure, over a wide range of exposure power density. With PAAD-72, a total dosage of ~1 J/cm2 at λ = 488 nm is sufficient to align or re-align the material, over a wide range of exposure power densities. An exposure dosage of 1 J/cm2 is somewhat greater than BEAM Co.’s recommended dosage for PAAD-72 at this wavelength [31] and is sufficient to assure complete photoalignment.

2.2 Lens recording

We recorded the photoalignment pattern for some waveplate lenses using a collimated argon ion laser beam approximately one inch in diameter, with a wavelength of 488 nm, using PAAD-72 photoalignment material. The alignment pattern required to fabricate an achromatic waveplate lens is the same as the alignment pattern required to fabricate the corresponding chromatic waveplate lens [21,22]. The polarization pattern of radiation used for photoalignment for one of the lenses of diameter 25 mm is shown in Fig. 2. Beam power density for photoalignment was 14 mW/cm2.

 figure: Fig. 2

Fig. 2 Simulation of optical anisotropy axis orientation patterns in waveplate lens. (a) Desired optical axis pattern near the center of the lens. Continuous lines are tangential to local optical axis orientation. Short line segments illustrate local molecular axis orientation. (b) Optical axis pattern of argon laser beam used to orient the photoalignment layer for a 25 mm diameter waveplate lens; modulation of the direction of linear polarization is visualized by viewing the pattern through a polarizer.

Download Full Size | PPT Slide | PDF

After recording the photoalignment pattern for each lens, a layer of liquid crystal monomer solution RLCS-7 (BEAM Co.) was spin-coated over the the PAAD layer. The rotation speed was adjusted so that the thickness of the final polymer layer would be one half wave of retardation at a wavelength of 633 nm. In this way, we produced a waveplate lens optimized for a wavelength of 633 nm by spin-coating a single layer of monomer at a rotational speed of 3000 rpm on the PAAD-72 photoalignment layer. Time of spin-coating was 1 minute and the monomer was cured with unpolarized UV light at 365 nm wavelength and an intensity of 15 mW/cm2 with an exposure time of 5 minutes.

Achromatic waveplate lenses were created for visible wavelengths using the methods previously described in [15,17,29,30]. The layer thickness required for a center design wavelength of 633 nm was created using two liquid crystal polymers of opposite chirality: RLCS-7/RH-VIS and RLCS-7/LH-VIS. The first polymer layer was spin coated from solution RLCS-7/RH-VIS with a speed of 1100 rpm, then the second layer was spin coated from a solution RLCS-7/LH-VIS with the same speed.

Achromatic DW lenses optimized for the near-IR spectral range were fabricated using four LCP layers, a method previously used to fabricate DW vector vortex gratings optimized for this wavelength region [15]. The first and second layers were spin coated from a solution RLCS-7/RH-NIR with a speed of 1200 rpm. The third and fourth layers were spin coated from a solution RLCS-7/LH-NIR at the same rotation speed.

Figure 3 shows photographs of an achromatic LCP waveplate lens with a diameter of 20 mm and a focal length of 410 mm (at wavelength = 488 nm) between two linear polarizers.

 figure: Fig. 3

Fig. 3 Photos of achromatic waveplate lens between parallel (a) and crossed (b-e) linear polarizers. Photographs were taken with 10X Olympus objective in several areas of the lens. Spacing period on the edge of the lens was Λ = 20 µm.

Download Full Size | PPT Slide | PDF

2.3 Optical characterization of waveplate lenses

Spectra of chromatic LCP waveplate lenses (no axial variation of optical axis orientation) and achromatic LCP waveplate lenses (with double twist axial structure of optical axis orientation) are compared in Fig. 4(a). Zero-order (undiffracted) transmission spectra were measured with Ocean Optics spectrometer model USB-4000, with waveplate lenses placed between circular polarizers. Spectrum for the chromatic waveplate lens corresponds to the half-wave retardation condition being met (minimal transmission) at a wavelength of 633 nm. The achromatic waveplate lens had minimal transmission in a wide spectral range, from 475 to 700 nm.

 figure: Fig. 4

Fig. 4 (a) Transmission spectra of chromatic and achromatic waveplate lenses between circular polarizers. (b) Zero-order leakage through a single waveplate lens and a pair of anti-symmetric waveplate lenses. In (a), “achromatic” means two-layer structure with approximately 70° of optical axis twist in each layer in the axial direction, and “633 nm” means a single-layer coating with no axial variation of optical axis orientation, and 1/2 wave of retardation at a wavelength of 633 nm.

Download Full Size | PPT Slide | PDF

It has been shown previously that the zero-order leakage through a pair of chromatic anti-symmetric cycloidal gratings is low over a broader wavelength band than is the case for a single cycloidal grating [10]. The zero-order leakage at any given wavelength for two anti-symmetric gratings in succession is the product of the leakages of each of the two gratings, so for example, if the leakage through each grating is 10%, the leakage through two gratings in succession would be 1%. We have observed this same phenomenon in pairs of anti-symmetric waveplate lenses, as illustrated in Fig. 4(b). According to this figure, the observed width of the wavelength band over which the zero-order leakage is less than 1% is 6 times greater for the pair of anti-symmetric waveplate lenses than for the single waveplate lens.

The zero-order leakage obtained with two distinctly different types of broadband waveplate lenses are shown in Fig. 4(a) and 4(b). The data of Fig. 4(a) is for a single “achromatic” lens with the double-twist axial structure of the optical axis orientation for which broadband operation was previously demonstrated in cycloidal [30] and vector vortex [15,17] devices. The data of Fig. 4(b) is for two “chromatic” lenses in succession with no axial structure in the optical axis orientation, previously described for cycloidal devices [10]. The choice of which of these devices to use in applications requiring a broader bandwidth than is obtainable with a single “chromatic” waveplate lens is complex, depending on many factors. In general, in applications in which low zero-order leakage is a primary requirement, two “chromatic” waveplate lenses may be the simplest and most cost-effective approach. In applications in which high efficiency in the diffracted component is of primary importance, a single “achromatic” waveplate lens is likely to be the best choice.

Properties of chromatic and achromatic waveplate lenses, with retardation optimized for high first-order diffraction efficiency at 633 nm, were compared using various probe beams, including a collimated white light source, an expanded and collimated HeNe laser beam at a wavelength of 633 nm, and expanded/collimated argon ion laser beams at wavelengths of 457, 488 and 514 nm. The comparison is illustrated in Fig. 5. The probe beams passed through the waveplate lens and were focused or defocused onto a diffusely-reflecting screen, depending on circularity of the incident beam polarization. The polarization of the probe beams was switched from right-hand circular polarization (RHCP) to left-hand circular polarization (LHCP) by rotating a quarter-wave plate (QWP).

 figure: Fig. 5

Fig. 5 Photos of beams on screen for white light source, HeNe (633 nm) and argon laser beams (514, 488 and 457 nm): (a) no waveplate lenses; (b, c) chromatic waveplate lenses; (d, e) achromatic waveplate lenses.

Download Full Size | PPT Slide | PDF

Photos in column (a) of Fig. 5 show only the incident probe beam on the screen, without any lens in place. Photos in columns (b) and (d) are with an RHCP incident beam, and photos in columns (c) and (e) are with an LHCP incident beam. For columns (b) and (c), a chromatic LCP lens was placed in the beam. For columns (d) and (e), an achromatic lens with the same focal length was placed in the beam.

In columns (b) through (e) of Fig. 5, the zero-order leakage through the lens produces a round laser spot with essentially the same diameter as the spot shown in column (a) without any lens in place. The screen was placed near the focal point of the lenses for 633 nm wavelength. The first-order diffracted beams from the lenses produce spots larger than the incident beam for the defocused component, and smaller than the incident beam for the focused component.

When the laser beam was RHCP, the waveplate lenses had a positive focal length, as if they were convex (CX) refractive lenses, and therefore converged the collimated input beam. When the laser beam was LHCP, waveplate lenses were switched to having a negative focal length, as if they were concave (CV) refractive lenses, therefore diverging the collimated input beam. Focal length of the lens was switched from F + = 316 mm to F - = −316 mm (at λ = 633 nm) by switching the circular polarization of the probe beam.

The relationship between paraxial focal length F, grating period Λ at the edge of the lens, wavelength λ and lens diameter D can be calculated taking into account the Bragg diffraction condition: F = ΛD/2λ. For a waveplate lens of diameter D = 20 mm and grating period Λ = 20 μm at the edge of the lens, Fig. 6 shows the measured and calculated dependence of focal length on wavelength.

 figure: Fig. 6

Fig. 6 Dependence of focal length of waveplate lens on wavelength.

Download Full Size | PPT Slide | PDF

The diffraction efficiency of the achromatic LCP waveplate lens used for the measurements of Fig. 5 and Fig. 6 was measured at 633, 514, 488 and 457 nm wavelengths. The waveplate lens was probed with a small-diameter collimated laser beam incident near the edge of the lens. After passing through the edge of the lens, the beam was incident on a diffusely-scattering screen, and the screen was photographed as shown in Fig. 7. For RHCP incident light the beam was focused, and for LHCP incident light the beam was defocused.

 figure: Fig. 7

Fig. 7 Photos of a screen illuminated by 633 nm light that has passed through the edge of an achromatic LCP waveplate lens: (a) RHCP light; (b) LHCP light. Zeroth diffracted order at center of photos had low intensity.

Download Full Size | PPT Slide | PDF

By using an aperture, the focused beam shown in Fig. 7 was selected, and its power was measured, as illustrated in Fig. 8. The optical power at the input to the lens was also measured, and the ratio of transmitted optical power to the input optical power was computed for each of the four noted wavelengths, as a function of the angular setting of the QWP through which the incident beam was transmitted. This QWP was rotated from −45°, at which the transmitted light was RHCP, to + 45°, at which the transmitted light was LHCP.

 figure: Fig. 8

Fig. 8 Dependence of transmission for focused beam on angular setting of QWP.

Download Full Size | PPT Slide | PDF

Values of maximum and minimum transmission over angle measured as described above and their ratio, referred to here as contrast ratio, and the transmission of the zeroth order beam are listed in Table 1 for the same achromatic LCP waveplate lens.

Tables Icon

Table 1. Transmission of LCP Waveplate Lens for Four Wavelengths

Transmission decrease for blue wavelengths indicated in Fig. 8 was due to absorption by photoalignment material. At 633 nm wavelength, the total optical loss of 9% through the waveplate lens is likely dominated by Fresnel reflection losses at the input and output surfaces of the lens. Contrast ratio was lower for green wavelength 514 nm than for wavelength 488 nm due to slightly greater zero-order leakage at green wavelengths. This effect may be attributable to deviation of the twist angle (i.e. the total axial variation of azimuthal orientation of the optical axis in each of the two layers of the LCP coating) from the optimal twist angle of 70°. The sensitivity of zero-order leakage to the twist angle in the LCP coating is illustrated in Fig. 9. This figure shows both measured leakage through an LCP lens, and modeled leakage for two different assumed twist angles. The model is based on the methods of reference [29] and accounts for the measured dispersion of the birefringence of the LCP. As shown in this figure, even a 2° deviation of the twist angle in the as-built LCP coating from the target angle is predicted to result in a significant change in the dependence of leakage on wavelength, which would be expected to result in variations in the contrast that are not monotonically dependent on wavelength, as is the case with the data reported in Table 1.

 figure: Fig. 9

Fig. 9 Measured and modeled zero-order leakage through a waveplate lens.

Download Full Size | PPT Slide | PDF

Figure 10 shows photos of an achromatic LCP waveplate lens with a diameter of 12 mm, optimized for operation in the near IR spectral region, and also shows the measured zero-order leakage as a function of wavelength for this lens. The grating period on the edge of this lens was 52 µm. The focal length at a wavelength of 785 nm was measured to be 397 mm. As indicated in Fig. 10(e), the measured zero-order leakage for this lens was below 2% over a wavelength range of at least 650 nm to 1000 nm immediately after fabrication. However, Fig. 10(e) shows that this leakage increased for by a few percent over a period of 26 months after fabrication. It is possible that such changes with time in the optical properties of LCP materials may be due to incomplete polymerization.

 figure: Fig. 10

Fig. 10 Achromatic LCP waveplate lens optimized for near-IR spectral region. Entire lens was photographed (a) between two parallel linear polarizers, and (b) between two crossed linear polarizers. Expanded views are shown between crossed polarizers (c) at the center of the lens and (d) near the edge of the lens. (e) Zero-order leakage of this lens as a function of wavelength immediately after fabrication and after 26 months.

Download Full Size | PPT Slide | PDF

Summary

The research in flat lenses has been active for many years now for numerous applications. Apart from a large variety of liquid crystal based lenses exploring conventional phase modulation, see for example a sampling of references [32–35] and references therein, there have been many recent approaches based on advanced technologies and materials [36–43]. None of those technologies offer the opportunity of inexpensive fabrication and has the scaling up capabilities of diffractive waveplate lens technology discussed here.

Thus the promise of diffractive waveplate devices with complex patterns is being fulfilled as the required materials and methods mature. We had previously fabricated achromatic waveplate cycloidal and vector vortex gratings, and in this work we have described the extension of this technology to waveplate lenses. The main value of having available the new techniques reported here is that these new techniques make it possible to employ waveplate lenses in applications requiring broader spectral coverage than can be achieved with waveplate lenses having the structures reported previously. These advancements bring closer the day when such lenses will be considered a superior alternative in some applications to approaches employing conventional mirrors and lenses. In other future advancements, it seems certain that this technology will enable applications that would have been considered impossible to implement using such conventional components.

Acknowledgments

This work was supported by the US Army Natick Soldier Research, Development and Engineering Center and the NASA Innovative Advanced Concepts (NIAC) program office. We thank E. Serabyn, U. Hrozhyk, H. Xianyu, and L. Wickboldt for discussions and assistance.

References and links

1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

2. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009). [CrossRef]  

3. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

4. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006). [CrossRef]  

5. H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006). [CrossRef]  

6. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006). [CrossRef]   [PubMed]  

7. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005). [CrossRef]  

8. S. Serak, N. Tabiryan, and B. Zeldovich, “High-efficiency 1.5 µm thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007). [CrossRef]   [PubMed]  

9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010). [CrossRef]  

10. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009). [CrossRef]   [PubMed]  

11. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009). [CrossRef]   [PubMed]  

12. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011). [CrossRef]  

13. S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012). [CrossRef]   [PubMed]  

14. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010). [CrossRef]  

15. N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12. [CrossRef]  

16. S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013). [CrossRef]   [PubMed]  

17. N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10. [CrossRef]  

18. N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Provisional Patent Application No. 61/801,251, March 15, 2013; N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Patent Application No. 14/214,375, March 14, 2014 (to be published).

19. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

20. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

21. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015). [CrossRef]   [PubMed]  

22. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015). [CrossRef]   [PubMed]  

23. K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086–26094 (2015). [CrossRef]   [PubMed]  

24. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015). [CrossRef]  

25. A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous Nanoscale Patterned Photoalignment for Thin Film Pancharatnam-Berry Phase Diffractive Lens,” SID Symposium Digest of Technical Papers 46(S1), p. 8 (2015). [CrossRef]  

26. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

27. H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004). [CrossRef]  

28. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005). [CrossRef]   [PubMed]  

29. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008). [CrossRef]   [PubMed]  

30. B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

31. BEAM Co, Web page http://www.beamco.com/Photoalignment-materials

32. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).

33. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004). [CrossRef]  

34. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007). [CrossRef]   [PubMed]  

35. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010). [CrossRef]   [PubMed]  

36. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003). [CrossRef]  

37. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). [CrossRef]   [PubMed]  

38. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015). [CrossRef]   [PubMed]  

39. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013). [CrossRef]   [PubMed]  

40. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012). [CrossRef]   [PubMed]  

41. A. A. Yanik and X. Zhu, “Plasmonic nanolenses and metasurfaces for sorting single bacterial cells,” SPIE Newsroom, http://spie.org/newsroom/technical-articles/6054-plasmonic-nanolenses-and-metasurfaces-for-sorting-single-bacterial-cells?ArticleID=x116724 (2016).

42. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016). [CrossRef]   [PubMed]  

43. J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016). [CrossRef]  

References

  • View by:

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  2. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
    [Crossref]
  3. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).
  4. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
    [Crossref]
  5. H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
    [Crossref]
  6. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  7. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  8. S. Serak, N. Tabiryan, and B. Zeldovich, “High-efficiency 1.5 µm thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
    [Crossref] [PubMed]
  9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
    [Crossref]
  10. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  11. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
    [Crossref] [PubMed]
  12. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
    [Crossref]
  13. S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
    [Crossref] [PubMed]
  14. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
    [Crossref]
  15. N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
    [Crossref]
  16. S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
    [Crossref] [PubMed]
  17. N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
    [Crossref]
  18. N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Provisional Patent Application No. 61/801,251, March 15, 2013; N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Patent Application No. 14/214,375, March 14, 2014 (to be published).
  19. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.
  20. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.
  21. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
    [Crossref] [PubMed]
  22. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
    [Crossref] [PubMed]
  23. K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086–26094 (2015).
    [Crossref] [PubMed]
  24. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  25. A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous Nanoscale Patterned Photoalignment for Thin Film Pancharatnam-Berry Phase Diffractive Lens,” SID Symposium Digest of Technical Papers 46(S1), p. 8 (2015).
    [Crossref]
  26. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).
  27. H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
    [Crossref]
  28. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
    [Crossref] [PubMed]
  29. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  30. B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.
  31. BEAM Co, Web page http://www.beamco.com/Photoalignment-materials
  32. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
  33. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  34. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]
  35. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref] [PubMed]
  36. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
    [Crossref]
  37. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  38. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
    [Crossref] [PubMed]
  39. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  40. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  41. A. A. Yanik and X. Zhu, “Plasmonic nanolenses and metasurfaces for sorting single bacterial cells,” SPIE Newsroom, http://spie.org/newsroom/technical-articles/6054-plasmonic-nanolenses-and-metasurfaces-for-sorting-single-bacterial-cells?ArticleID=x116724 (2016).
  42. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
    [Crossref] [PubMed]
  43. J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
    [Crossref]

2016 (2)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

2015 (5)

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

2010 (4)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (2)

2006 (3)

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

2005 (2)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
[Crossref] [PubMed]

2004 (3)

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Asatryan, K.

Bachels, T.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Bagramyan, A.

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Belton, L.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Benecke, C.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Bhowmik, A. K.

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bos, P. J.

Bunning, T. J.

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Carlson, J.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cheng, H. H.

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Escuti, M. J.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Fuh, A. Y.-G.

Galstian, T.

Gao, K.

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Geis, M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Glebov, L. B.

Hakobyan, R. S.

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Hoke, L.

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Hrozhyk, U.

Hrozhyk, U. A.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Jagadish, C.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Jau, H.-C.

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Karimi, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, J.

Kimball, B. R.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Kudenov, M. W.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, Y.

Lin, L.-C.

Lin, T.-H.

Litchinitser, N. M.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Lu, Y.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Luther-Davies, B.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Lyszczarz, T. M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Marrucci, L.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Mawet, D.

Menon, R.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Miskiewicz, M. N.

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nersisyan, S.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Oh, C.

Osgood, R. M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Park, B.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Piccirillo, B.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Presnyakov, V.

Qin, Q.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Roberts, D. E.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Rotar, V.

Santamato, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Sarkissian, H.

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Sato, S.

Seiberle, H.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Serabyn, E.

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

Serak, S.

Serak, S. V.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Shalaev, M. I.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

She, J.

Shen, S.

Slussarenko, S.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Steeves, D. M.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Sun, J.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Tabirian, N. V.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Tabiryan, N.

Tabiryan, N. V.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tao, J.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Tao, T.

Tork, A.

Wang, B.

Wang, F.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Wang, P.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Wang, Z.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

White, T. J.

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xianyu, H.

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

Xu, R.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Yang, J.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Ye, M.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Z.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Zeldovich, B.

Zeldovich, B. Ya.

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, S.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zohrabyan, A.

AIP Adv. (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Light Sci. Appl. (1)

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Nat. Commun. (2)

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (7)

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086–26094 (2015).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

Optica (1)

Phys. Rev. A (1)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Proc. Indian Acad. Sci. Sec. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Proc. SPIE (2)

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

Sci. Rep. (1)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (10)

A. A. Yanik and X. Zhu, “Plasmonic nanolenses and metasurfaces for sorting single bacterial cells,” SPIE Newsroom, http://spie.org/newsroom/technical-articles/6054-plasmonic-nanolenses-and-metasurfaces-for-sorting-single-bacterial-cells?ArticleID=x116724 (2016).

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Provisional Patent Application No. 61/801,251, March 15, 2013; N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Patent Application No. 14/214,375, March 14, 2014 (to be published).

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous Nanoscale Patterned Photoalignment for Thin Film Pancharatnam-Berry Phase Diffractive Lens,” SID Symposium Digest of Technical Papers 46(S1), p. 8 (2015).
[Crossref]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

BEAM Co, Web page http://www.beamco.com/Photoalignment-materials

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical characteristics of PAAD-72 photoalignment material. (a) Absorbance spectrum of a 1% solution of PAAD-72 in DMF with 10 μm cell thickness. (b) Optical transmission vs. time through an LC cell between polarizers with PAAD-72 on one inner surface. Inset of (b) illustrates optical axis orientation at the two planar boundaries of the liquid crystal (1) before laser illumination, and (2) after laser illumination. Cell thickness was 10 μm, liquid crystal was E7, laser wavelength was 488 nm.
Fig. 2
Fig. 2 Simulation of optical anisotropy axis orientation patterns in waveplate lens. (a) Desired optical axis pattern near the center of the lens. Continuous lines are tangential to local optical axis orientation. Short line segments illustrate local molecular axis orientation. (b) Optical axis pattern of argon laser beam used to orient the photoalignment layer for a 25 mm diameter waveplate lens; modulation of the direction of linear polarization is visualized by viewing the pattern through a polarizer.
Fig. 3
Fig. 3 Photos of achromatic waveplate lens between parallel (a) and crossed (b-e) linear polarizers. Photographs were taken with 10X Olympus objective in several areas of the lens. Spacing period on the edge of the lens was Λ = 20 µm.
Fig. 4
Fig. 4 (a) Transmission spectra of chromatic and achromatic waveplate lenses between circular polarizers. (b) Zero-order leakage through a single waveplate lens and a pair of anti-symmetric waveplate lenses. In (a), “achromatic” means two-layer structure with approximately 70° of optical axis twist in each layer in the axial direction, and “633 nm” means a single-layer coating with no axial variation of optical axis orientation, and 1/2 wave of retardation at a wavelength of 633 nm.
Fig. 5
Fig. 5 Photos of beams on screen for white light source, HeNe (633 nm) and argon laser beams (514, 488 and 457 nm): (a) no waveplate lenses; (b, c) chromatic waveplate lenses; (d, e) achromatic waveplate lenses.
Fig. 6
Fig. 6 Dependence of focal length of waveplate lens on wavelength.
Fig. 7
Fig. 7 Photos of a screen illuminated by 633 nm light that has passed through the edge of an achromatic LCP waveplate lens: (a) RHCP light; (b) LHCP light. Zeroth diffracted order at center of photos had low intensity.
Fig. 8
Fig. 8 Dependence of transmission for focused beam on angular setting of QWP.
Fig. 9
Fig. 9 Measured and modeled zero-order leakage through a waveplate lens.
Fig. 10
Fig. 10 Achromatic LCP waveplate lens optimized for near-IR spectral region. Entire lens was photographed (a) between two parallel linear polarizers, and (b) between two crossed linear polarizers. Expanded views are shown between crossed polarizers (c) at the center of the lens and (d) near the edge of the lens. (e) Zero-order leakage of this lens as a function of wavelength immediately after fabrication and after 26 months.

Tables (1)

Tables Icon

Table 1 Transmission of LCP Waveplate Lens for Four Wavelengths

Metrics