Abstract

We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves.

© 2016 Optical Society of America

1. Introduction

Femtosecond fiber lasers have been developed because of their potential applications in the fields of material processing [1], biomedical imaging [2], precision metrology [3], terahertz (THz) spectroscopy [4], and others [5]. In particular, mode-locked Yb-doped fiber lasers have been attracting interest as optical sources due to their excellent stability, compact size, low cost, broad gain-bandwidth, and high conversion efficiency [6–10]. There are various mechanisms that can be used to achieve mode-locking in fiber lasers, e.g., nonlinear polarization rotation (NPR) [9–11], graphene-based saturable absorbtion [12], nonlinear optical loop mirroring [13], and others [14]. Among these, the NPR method is most commonly used to achieve an optical short pulse in Yb-doped fiber lasers [9–11]. All-normal-dispersion Yb-doped fiber lasers with NPR have attracted much attention because of advantages such as large output power, compact design, and stability [9, 10, 15]. Optical short pulses from these lasers can be easily achieved by using a wide bandwidth spectral filter [9, 10]. Since the direct pulses obtained from the fiber laser are highly chirped, they should be dechirped by using a diffraction grating pair or prism pair. Generally, dechirped pulses have a high output power and femtosecond pulse duration. Therefore, they can be used to generate THz waves as an application of optical short pulses.

THz time-domain spectroscopy (THz-TDS) has significant potential for use in material characterization, non-destructive spectroscopy, security technologies, medical imaging, and biological sensing [16–20]. Conventional THz-TDS systems are based on a combination of a photoconductive antenna (PCA) and a femtosecond optical short pulse [21–23]. A mode-locked femtosecond Ti:sapphire laser operating around 800 nm is commonly used as an optical source for THz-TDS systems. However, this kind of solid state laser is bulky and large. Therefore, it is inconvenient for practical applications. However, mode-locked femtosecond fiber lasers are promising optical sources for portable THz-TDS spectroscopy systems because of advantages such as high conversion efficiency, power scalability, compactness, and cost-effectiveness [22–29]. Recently, the production of THz radiation using a mode-locked Er-doped fiber laser has been demonstrated by several research groups because the optical components and InGaAs-based PCA are suitable for operation within the well-developed 1550 nm telecommunication band [22–24, 27–29]. Generally, an InP substrate with an InGaAs-based PCA is transparent for the range of wavelengths from 900 to 1700 nm. Therefore, another promising optical pulse source for THz-TDS systems based on InGaAs PCA modules is an Yb-doped mode-locked fiber laser operating at a wavelength of 1030 nm. The disadvantage of the 1030 nm wavelength band is that the optical components are more expensive than those of the telecommunication band. However, it has the big advantage of a higher optical output power compared to that of the telecommunication band. The mode-locked laser that has a high output power can be used to generate THz waves using a large aperture emitter [30, 31]. Therefore, the rapid progress of the mode-locked Yb-doped fiber laser has motivated the development of THz emitters and detectors [4]. In recent years, THz wave generation using mode-locked Yb-doped fiber lasers has been reported in which various components are used, e.g., low-temperature grown (LTG) InGaAs MQW PCAs, LiNbO3 crystal, GaP crystal, InAs crystal, and so on [4, 26, 32–36].

In this paper, we report on the development of a 1030 nm passively mode-locked Yb-doped femtosecond fiber laser based on the NPR mechanism with a 10 nm bandwidth spectral filter. Using this laser, we successfully demonstrated THz radiation based on homodyne detection using a simple scheme of a THz-TDS system with LTG log-spiral-based InGaAs PCA modules. We alos detected absorption lines beyond 1.5 THz for water vapor in free space without a parabolic mirror.

2. Mode-locked Yb-doped fiber laser

The schematic of the experimental setup for the passively mode-locked Yb-doped fiber laser is shown in Fig. 1. The laser is based on a ring cavity, which is similar to the Yb-doped fiber laser of Chong et al. [9]. The laser cavity consists of a 974.5 nm pump laser diode (LD), a 980/1030 nm wavelength division multiplexing (WDM) coupler, a highly Yb-doped fiber as a gain medium, a long segment of a single-mode fiber (SMF), two fiber collimators, two quarter-wave plates (QWPs), a half-wave plate (HWP), a band pass filter, a Faraday optical isolator, and a polarizing beam splitter (PBS) as an output port. The Yb-doped fiber is pumped by a pump LD having a power of up to 540 mW via a 980/1030 nm WDM coupler. It has a 1200 dB/m peak absorption at 975 nm. The fiber section in the laser cavity is spliced using the fusion splicer and is composed of an approximately 1.436-m-long SMF and 25-cm-long Yb-doped fiber. Total cavity length of the laser is approximately 1.95 m including 0.26 m of free space. The repetition rate of the laser is 108.4 MHz.

 figure: Fig. 1

Fig. 1 Schematic of the all-normal dispersion passively mode-locked Yb-doped fiber laser. (Pump LD; pump laser diode, WDM coupler; wavelength division multiplexing coupler, YDF; Yb-doped fiber, QWP; quarter wave plate, HWP; half wave plate, PBS; polarizing beam splitter, SMF; single mode fiber)

Download Full Size | PPT Slide | PDF

The Yb-doped fiber ring laser uses the NPR mechanism to achieve a passively mode-locked optical short pulse. NPR was implemented using two QWPs, an HWP, and a PBS in this experiment. The operation principle of the NPR can be found in the several references [9–11, 37]. The optical isolator was placed after the PBS in the free space for unidirectional operation. The broadband spectral filter, which is centered at 1030 nm with a 10 nm bandwidth, was used to filter out the spectral components of the incident pulses [9, 10]. Passive mode-locking was initialized with the standard NPR process. Therefore, self-starting mode-locked operation could be achieved by adjustment of the wave plates. The output of the laser was taken directly from the PBS output port. The net cavity dispersion was about 0.0417 ps2 at the central wavelength of 1030 nm. Therefore, mode-locking occurs in the all-normal dispersion of the laser cavity. The output of the mode-locked fiber laser was monitored with an optical spectrum analyzer (OSA), an RF-spectrum analyzer, a sampling digital oscilloscope, and a commercial interferometric auto-correlator (Femtochrome Research, Inc., FR-103PD).

Figure 2(a) shows the measured optical spectrum from the mode-locked Yb-doped fiber ring laser. The center wavelength and the 3-dB bandwidth were 1030 nm and 18.2 nm, respectively. The measured pulse duration of the laser was 1.58 ps with a Gaussian profile assumed, as shown in Fig. 2(b). Therefore, the direct output pulses were highly chirped. There was a steep spectral edge in the optical spectrum, which is typically characteristic of the dissipative soliton [9]. The direct mode-locked pulse was compressed by using a pair of brazed diffraction gratings with 300 grooves/mm. The output pulse was externally dechirped using the grating compressor. Figure 2(c) shows the measured output power with respect to the pump power. The mode-locking threshold was measured at a pump power of 360 mW. The maximum direct output power was measured to be over 250 mW at a pump power of 500 mW.

 figure: Fig. 2

Fig. 2 (a) Optical spectrum, (b) autocorrelation trace of the all-normal dispersion passively mode-locked Yb-doped fiber laser, and (c) measured output power with respect to pump power.

Download Full Size | PPT Slide | PDF

3. Pulse compression

Since the direct output pulse from the all-normal dispersion mode-locked Yb-doped fiber laser is highly chirped, it should be dechirped using a grating pair or prism pair. The schematic of the pulse compressor outside the laser cavity is shown in Fig. 3. It consists of two brazed diffraction gratings with 300 grooves/mm, an HWP, and three mirrors. The direct laser output pulses from the passively mode-locked Yb-doped fiber laser go to the pulse compressor through mirror 1. The HWP was inserted into the pulse compressor because the brazed diffraction gratings have a polarization dependence. In order to obtain the shortest dechirped pulses, the interval between the two diffraction gratings was carefully adjusted. The dechirped pulses after pulse compression were measured by an interferometric auto-correlator. Figure 4 shows the auto-correlation trace of the dechirped pulse. The pulse duration was ~127 fs assuming a Gaussian pulse shape. It was slightly deviated from the transform-limited if a Gaussian profile is assumed. The output showed several side-lobes, which arise from the steep sides and structure of the spectrum, as shown in Fig. 2(a) [9]. The average output power after pulse compression was more than 45 mW.

 figure: Fig. 3

Fig. 3 Schematic of the optical pulse compressor.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Auto-correlation trace of the dechirped pulse.

Download Full Size | PPT Slide | PDF

4. THz generation with LTG-InGaAs PCA

In order to evaluate the THz-TDS performance, we constructed a measurement system using bulk-optics with a homemade log-spiral-based InGaAs PCA chip in free space. Figure 5 shows the experimental setup for the THz-TDS system using the passively mode-locked Yb-doped fiber laser and PCA modules. The mode-locked optical pulse was injected into the THz measurement system as the pump source for the generation of the THz pulse after dechirping using the pulse compressor. The THz measurement system was based on homodyne detection. In order to achieve THz radiation, the emitter and receiver comprising the LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. The modules included a high-resistivity collimating Si lens and a log-spiral-based antenna-integrated LTG InGaAs PCA chip. The log-spiral-based antenna has superior characteristics such as less influence on any polarization state of the THz sources, a lower divergence angle, and a small size [38]. The log-spiral antenna consists of two three-turn spirals. The central active area was about 10x10 μm2. The length and width of the antenna were designed to be 850 and 650 μm, respectively. A more detailed description of the physical characteristics of the homemade log-spiral-based LTG InGaAs PCA module, except for the SMF assembly, is given in [24].

 figure: Fig. 5

Fig. 5 Experimental setup for THz-TDS system based on the passively mode-locked Yb-doped fiber laser.

Download Full Size | PPT Slide | PDF

The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. Collimated incident optical pulses were focused by using the lens (f = 8 mm) in front of the emitter and receiver because the central active area of the module was as small as 10 x 10 μm2. The electric field profile of the THz pulses was measured as a function of time by varying the delay line. The time delay step was 0.1 ps. While varying the delay line, a time trace was recorded using a computer program. The excitation optical average pumping power was 7.9 dBm for the emitter and the average probing power was 7.0 dBm for the receiver. A bias peak-to-peak voltage of −3 to 3 V and an emitter photocurrent of 0.5 mA were applied to the THz-TDS measurement system. The photocurrent in the receiver was measured using a lock-in amplifier (SRS830 DSP) at a modulation frequency of 30 kHz. The lock-in amplifier was used to enhance the detection sensitivity. The lock-in integration time was 300 ms for the measurement period.

Figure 6 (a) shows the THz TDS pulse trace of free space obtained from the excitation of the LTG InGaAs PCA modules with 1030 nm optical pulses. The multi-poled time signal trace is due to the characteristics of the log-spiral-based antenna [24]. Figure 6 (b) shows the normalized fast Fourier transform (FFT) amplitude spectrum obtained from the corresponding pulse of Fig. 6(a). The spectrum of the THz radiation was higher than 1.5 THz as shown in Fig. 6 (b). The signal-to-noise ratio for the FFT amplitude was more than 35 dB. Several absorption lines of water vapor in free space were detected at 0.560, 1.110, 1.166, 1.208, 1.412, 1.672, and 1.720 THz at room temperature and a relative humidity of ~15%, as shown in the insets of Fig. 6(b) [39]. In particular, the dip levels at the frequencies of 1.110, 1.166, 1.672, and 1.720 THz were relatively higher than those of the other frequencies, because the free-space distance between the emitter and the receiver was as short as 70 mm and the relative humidity was less than 15%, as described in [39].

 figure: Fig. 6

Fig. 6 (a) THz pulse trace of free space and (b) its FFT amplitude spectrum. (Insets: water vapor dips in free space)

Download Full Size | PPT Slide | PDF

5. Summary

We have reported the demonstration of a 1030 nm passively mode-locked Yb-doped fiber laser based on NPR using a 10 nm broadband spectral filter. The direct output pulse duration was 1.58 ps and could be dechirped to 127 fs using a brazed diffraction grating pair outside the laser cavity. Using this laser, we successfully demonstrated a THz –TDS system based on homemade log-spiral-based antenna-integrated low-temperature-grown InGaAs PCA modules. Several absorption lines beyond 1.5 THz for water vapor in free space without a parabolic mirror were measured. Therefore, we confirm that a mode-locked Yb-doped fiber laser has potential as an optical source that can generate THZ waves.

Acknowledgments

This research was financially supported by the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (NRF-2013H1B8A2032213) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014R1A2A1A11051152). The authors would like to thank Prof. Jungwon Kim in KAIST for technical discussion

References and links

1. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

2. S. Yavaş, M. Erdogan, K. Gürel, F. Ö. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012). [CrossRef]   [PubMed]  

3. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008). [CrossRef]  

4. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013). [CrossRef]  

5. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express 19(18), 17480–17492 (2011). [CrossRef]   [PubMed]  

6. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004). [CrossRef]   [PubMed]  

7. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012). [CrossRef]   [PubMed]  

8. C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014). [CrossRef]   [PubMed]  

9. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006). [CrossRef]   [PubMed]  

10. P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014). [CrossRef]   [PubMed]  

11. M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, “Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity,” Opt. Lett. 40(5), 804–807 (2015). [CrossRef]   [PubMed]  

12. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012). [CrossRef]  

13. A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014). [CrossRef]  

14. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010). [CrossRef]   [PubMed]  

15. J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014). [CrossRef]   [PubMed]  

16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]  

17. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef]   [PubMed]  

18. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [CrossRef]   [PubMed]  

19. J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006). [CrossRef]  

20. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010). [CrossRef]   [PubMed]  

21. M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008). [CrossRef]  

22. R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482–6485 (2014). [CrossRef]   [PubMed]  

23. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008). [CrossRef]   [PubMed]  

24. S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012). [CrossRef]   [PubMed]  

25. M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008). [CrossRef]  

26. M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014). [CrossRef]  

27. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011). [CrossRef]   [PubMed]  

28. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008). [CrossRef]   [PubMed]  

29. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014). [CrossRef]   [PubMed]  

30. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009). [CrossRef]  

31. K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015). [CrossRef]   [PubMed]  

32. G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008). [CrossRef]  

33. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007). [CrossRef]   [PubMed]  

34. F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010). [CrossRef]  

35. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006). [CrossRef]  

36. A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014). [CrossRef]   [PubMed]  

37. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995). [CrossRef]  

38. S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014). [CrossRef]   [PubMed]  

39. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006). [CrossRef]  

References

  • View by:

  1. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).
  2. S. Yavaş, M. Erdogan, K. Gürel, F. Ö. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
    [Crossref] [PubMed]
  3. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  4. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
    [Crossref]
  5. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express 19(18), 17480–17492 (2011).
    [Crossref] [PubMed]
  6. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  7. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  8. C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014).
    [Crossref] [PubMed]
  9. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  10. P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
    [Crossref] [PubMed]
  11. M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, “Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity,” Opt. Lett. 40(5), 804–807 (2015).
    [Crossref] [PubMed]
  12. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
    [Crossref]
  13. A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
    [Crossref]
  14. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [Crossref] [PubMed]
  15. J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
    [Crossref] [PubMed]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  17. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  18. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [Crossref] [PubMed]
  19. J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
    [Crossref]
  20. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  21. M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
    [Crossref]
  22. R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482–6485 (2014).
    [Crossref] [PubMed]
  23. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref] [PubMed]
  24. S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
    [Crossref] [PubMed]
  25. M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
    [Crossref]
  26. M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
    [Crossref]
  27. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
    [Crossref] [PubMed]
  28. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
    [Crossref] [PubMed]
  29. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
    [Crossref] [PubMed]
  30. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
    [Crossref]
  31. K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
    [Crossref] [PubMed]
  32. G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
    [Crossref]
  33. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007).
    [Crossref] [PubMed]
  34. F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
    [Crossref]
  35. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
    [Crossref]
  36. A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
    [Crossref] [PubMed]
  37. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [Crossref]
  38. S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
    [Crossref] [PubMed]
  39. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
    [Crossref]

2015 (2)

M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, “Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity,” Opt. Lett. 40(5), 804–807 (2015).
[Crossref] [PubMed]

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

2014 (9)

R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
[Crossref] [PubMed]

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482–6485 (2014).
[Crossref] [PubMed]

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
[Crossref] [PubMed]

P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
[Crossref] [PubMed]

C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
[Crossref] [PubMed]

2013 (1)

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

2012 (4)

S. Yavaş, M. Erdogan, K. Gürel, F. Ö. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

2009 (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

2008 (6)

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (2)

2006 (5)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

2005 (1)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2003 (1)

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Aguergaray, C.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Alfano, R. R.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Altan, H.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Araki, T.

Ashida, M.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

Beigang, R.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Born, N.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Böttcher, J.

Brahm, A.

Broderick, N. G. R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Bu, X.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cai, Z. P.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Chai, L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Chang, G.

Chang, H.-H.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, H.-W.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, L.-J.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, Y.-C.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Cheng, H. H.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Choi, S. W.

Choi, S.-W.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Chun, H. S.

Chyi, J.-I.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Dietz, R. J. B.

Divin, C. J.

Eldeniz, Y. B.

Erdogan, M.

Erkintalo, M.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Galvanauskas, A.

Ganeev, R. A.

Globisch, B.

Göbel, T.

Gürel, K.

Han, H.

Han, S.-P.

Han, S.-T.

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Hebling, J.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Hochrein, T.

Hoffmann, M. C.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Hohmuth, R.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Hu, M.

Hu, M.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Huang, Y. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Hwang, H. Y.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Ilday, F. Ö.

Inoue, H.

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Jansen, C.

Jeon, M. Y.

Jiang, T.

Jördens, C.

Kalashnikov, V. L.

Kanamori, S.

Kao, T.-F.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Kasai, S.

Kawase, K.

Kim, H.

Kim, J.

Kim, N.

Ko, H.

Koch, M.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

Krumbholz, N.

Künzel, H.

Kuroda, H.

Kwon, D.

Lee, C. W.

Lee, D.

Lee, D. H.

Lee, E. S.

Lee, I.-M.

Lee, W.

Lee, W.-H.

Leem, Y. A.

Leisching, P.

Li, C.

Li, P.

Li, Y.-F.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Limpert, J.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Liu, A.-S.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Liu, F.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Liu, W.-S.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Lu, J.-Y.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Luo, Z. Q.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Matsubara, E.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

Matten, D.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Matthäus, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Moon, K.

Moon, S. H.

Musheinish, M. A.

Nagai, M.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

Nelson, K. A.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Nishizawa, N.

Noh, S. K.

Nolte, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Norris, T. B.

Notni, G.

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Ogawa, Y.

Ohtake, H.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

Ortaç, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Ouchi, T.

Özgören, K.

Park, J. W.

Park, K. H.

Park, S. H.

Peters, O.

Pradarutti, B.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Prall, B. S.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Provo, R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Puppe, T.

Qin, P.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Richter, W.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Riehemann, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Roehle, H.

Runge, A. F. J.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Ryu, H. C.

Ryu, H.-C.

Saint, A.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Salhi, M.

Sartorius, B.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Sawanaka, K.

Schell, M.

Scheller, M.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Schlak, M.

Schreiber, T.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Schumann, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Shin, J.

Shin, J. H.

Shin, J.-H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

Song, Y.

Song, Y.-J.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Sosnowski, T. S.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Stanze, D.

Suizu, K.

Sun, C.-K.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Suzuki, M.

Takayanagi, J.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Tazebay, U. H.

Teng, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Torosyan, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Tünnermann, A.

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Uchida, H.

Ullrich, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Venghaus, H.

Vieweg, N.

Voitsch, M.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Wang, A.

Wang, C.

Wang, C.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Wang, C.-Y.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Wang, G.

Wang, J.

Wang, J. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Wang, R.

Watanabe, Y.

Wei, Z.

Wietzke, S.

Wilk, R.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Williamson, S. L.

Wilms, A.

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wu, R.-B.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Xin, X.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Xing, Q.-R.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Yamashita, M.

Yang, J.

Yasuda, T.

Yasui, T.

Yavas, S.

Ye, C. C.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Yeh, K.-L.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Yoneya, S.

Yoon, Y. J.

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Zach, A.

Zhang, L.

Zhang, W.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Zhang, Z.

Zheltikov, A. M.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Zhu, J.

Appl. Opt. (3)

Appl. Phys. B (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

Appl. Phys. Lett. (2)

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (3)

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Appl. Phys. (1)

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

J. Inf. Millimeter Waves (1)

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Opt. Commun. (1)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Opt. Express (12)

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007).
[Crossref] [PubMed]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
[Crossref] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
[Crossref] [PubMed]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express 19(18), 17480–17492 (2011).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
[Crossref] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the all-normal dispersion passively mode-locked Yb-doped fiber laser. (Pump LD; pump laser diode, WDM coupler; wavelength division multiplexing coupler, YDF; Yb-doped fiber, QWP; quarter wave plate, HWP; half wave plate, PBS; polarizing beam splitter, SMF; single mode fiber)
Fig. 2
Fig. 2 (a) Optical spectrum, (b) autocorrelation trace of the all-normal dispersion passively mode-locked Yb-doped fiber laser, and (c) measured output power with respect to pump power.
Fig. 3
Fig. 3 Schematic of the optical pulse compressor.
Fig. 4
Fig. 4 Auto-correlation trace of the dechirped pulse.
Fig. 5
Fig. 5 Experimental setup for THz-TDS system based on the passively mode-locked Yb-doped fiber laser.
Fig. 6
Fig. 6 (a) THz pulse trace of free space and (b) its FFT amplitude spectrum. (Insets: water vapor dips in free space)

Metrics