Abstract

We demonstrate the strong coupling of dye molecules to surface plasmon polaritons (SPPs) excited in the Kretschmann geometry and propagating at the interface of silver and dye-doped polymer. The dispersion curve of such a system, studied in the reflectometry experiments, is split into three branches and demonstrates an avoided crossing – the signature of a strong coupling. We have further studied the excitation spectra of the dye emission and found that the positions of the excitation peaks have a good match with the points in the dispersion curve determined by the reflectometry. At the same time, the analysis of the spectra of the plasmon-mediated spontaneous emission, decoupled to the prism and acquired at multiple collection angles, has resulted in a quite different dispersion curve exhibiting a non-trivial splitting into multiple branches. This suggests that the same plasmonic environment couples differently to absorbing and emitting dye molecules.

© 2016 Optical Society of America

Introduction

The surging interest in controlling light-matter interactions at the nanoscale is greatly due to ability to couple electronic transitions to photonic or plasmonic modes in cavities, photonic crystals, metamaterials and plasmonic systems. Such systems have been shown to serve as excellent platforms to study and control several phenomena such as spontaneous emission [1], scattering [2], stimulated emission [3], Fano resonance [4], and Förster energy transfer [5], paving the road to promising applications of future nanophotonic devices. Unfortunately, most potential applications of metamaterials [6] and plasmonics [7] suffer from inherent absorption loss in metal, which is the key component of most plasmonic and photonic systems. One route to overcome this problem is to compensate the loss with the optical gain in an adjacent dielectric impregnated with dye molecules or quantum dots, which also enables a variety of active plasmonic devices and systems [3,8]. When the strength of coupling between the two interacting systems, excitons in dye molecules and surface plasmons, becomes greater than all decay processes involved, one enters into the so-called strong coupling regime [9]. Its characteristic signature is the splitting of the dispersion curve, characterized by an avoided crossing behavior [9]. The strong coupling regime is typically achieved by placing excitons with large oscillator strengths (such as quantum dots, dye molecules, etc.) inside the cavities or in vicinity of plasmonic structures. Strongly coupled systems offer several promising applications, including the possibility of tuning the work function [10], enhancing vibrational transitions [11], and thermodynamic phenomena [12], leading to a more deterministic control over light-matter interactions.

In this paper, we operate in the “classical” framework of the strong coupling, involving interactions of plasmons with large ensembles of dye molecules, analogous to two coupled pendula interacting with each other [9,13]. Early demonstrations of such interactions were done in the systems consisting of molecules interacting with SPPs, where the splitting of the dispersion curve was observed [14,15]. Strong coupling between single atoms and cavities has been demonstrated in subsequent experiments [16–18]. More recent works involved a variety of classical and quantum systems, including semiconductors, quantum dots, ensembles of dye molecules and J-aggregates coupled to cavities [19–21], localized plasmons [22–24], and surface plasmon polaritons (SPPs) [25–29] at both low and high (room) temperatures.

One of the first observations of strong coupling involving SPPs was done by Pockrand et al., where the researchers have performed room temperature angular and spectral reflectometry experiments and observed splitting and “back-bending” of the dispersion curve in the system consisting of J-aggregates deposited onto silver films [15]. The avoided crossing and “Rabi splitting” of the dispersion curve have been reported in a similar system by Bellessa et al [25]. In addition, the authors of [25] have analyzed the spontaneous emission of J-aggregates strongly coupled to SPPs propagating on top of silver films and observed splitting of the luminescence dispersion curve into two branches, one corresponding to almost unperturbed SPPs and another to dye molecules practically unaffected by SPPs. More recently, strong coupling of highly concentrated dye molecules and SPPs has been demonstrated in [27]. In the latter study, the dispersion of the system was shown to exhibit an avoided crossing along with splitting up to four branches, depending on the dye concentration. In accord with many other reports, the strong plasmon-exciton coupling and the corresponding Rabi splitting originate from vacuum zero point fluctuations [27] and do not depend on the intensity of (weak) probe light.

In this work, we have studied the strong coupling of surface plasmon polaritons to dye molecules in reflection, excitation, and emission wavelength-resolved and angular-resolved experiments and demonstrated modification of the corresponding dispersion curves. To the best of our knowledge, the angular-resolved studies of excitation spectra in the strong coupling regime have never been presented in the literature. We have also observed a nontrivial dispersion curve presumably resulting from a strong coupling of SPPs and spontaneously emitting dye molecules, which has not been reported previously.

Modeling

Surface Plasmon Polaritons are electromagnetic surface waves (coupled to oscillating free electrons) that propagate at the interface between metal (ε1) and dielectric (ε2), inset of Fig. 1a. The wavevector of the SPP is given by

kSPP=ωcε1(ω)ε2(ω)ε1(ω)+ε2(ω)
where ω is the frequency and c is the speed of light. SPPs can be excited by incident light if the projection of the photon wavevector onto the plane of the metal/dielectric interface
kx(θ)=ωcn0sinθ0
matches kSPP [30]. (Here n0 is the refraction index of the incidence medium.) At this matching condition, the energy of the (p-polarized) incident light is transferred to SPPs, resulting in a reduced reflectance, which can be measured as the function of angle or the function of wavelength. The SPP dispersion curve calculated using Eq. (1) for a system consisting of an infinitely thick lossless dielectric, poly(methyl methacrylate) (PMMA) polymer deposited on top of a 50 nm silver film, which, in turn, is deposited onto a high-index glass (n = 1.78), is shown in Fig. 1a (solid line). The dielectric permittivities of silver and PMMA were taken from [31] and [32], respectively. Note that the same dispersion profile can also be obtained by using the modified Fresnel equations [30] to calculate the reflectance as a function of an incidence angle or a wavevector (top panel in Fig. 1c).

 

Fig. 1 (a) Solid black line – dispersion curve for the glass/Ag/PMMA structure, calculated using Eq. (1). Red markers – dispersion curve calculated using modified Fresnel equations for the glass/Ag/dye:PMMA structure with two Lorentzian bands modeling the absorption spectrum of the dye. Inset: Schematic of the Kretschmann geometry used to excite SPPs. (b) Absorption spectrum of the dye:PMMA layer modeled by a combination of two Lorentz oscillators. (c) Color maps of reflectance calculated using modified Fresnel equations [30] and plotted for different frequencies and incidence angles, for the glass/Ag/PMMA structure (top panel) and the glass/Ag/dye:PMMA structure (bottom panel).

Download Full Size | PPT Slide | PDF

The effect of dye molecules on the dispersion curve was modeled by adding two Lorentz oscillators to the spectrum of dielectric permittivity of PMMA, in order to match the absorption spectrum (both the strength and the shape) of the PMMA polymer doped with rhodamine 6G (R6G) dye used in our experiments described below (Fig. 1b). One can see that in presence of dye molecules, the dispersion curve is split and exhibits the famous avoided crossing behavior (bottom panel of Fig. 1c). By plotting the reflectance spectra at multipleincidence angles and following the positions of the dips and shoulders, similar to those in Fig. 2a, one predicts the existence of three branches in the dispersion curve, as shown in Fig. 1a. (Note that only two branches are predicted in the case of a single Lorentz oscillator, and the third branch in the dispersion curve originates from the existence of two Lorentzian bands.)

 

Fig. 2 (a) Angular reflectance profiles of the R6G:PMMA/Ag/prism sample, measured at three different wavelengths. (b) Corresponding reflectance spectra measured at two different angles of incidence. Inset: Schematic of the sample and the Kretschman geometry setup.

Download Full Size | PPT Slide | PDF

Experimental samples

In our experiments, thin silver films of thickness ~50 nm were deposited onto a glass prism with the index of refraction n = 1.78 using a thermal vapor deposition technique. The silver films were further coated with the PMMA polymer doped with R6G dye at concentration of 50 mM. The index of refraction of PMMA was n = 1.5 [32] and its thickness, ~3 μm, was much larger than the penetration length of the SPP field into the polymer.

Reflectance studies

In the first series of experiments, SPPs were excited using a cw He-Ne laser, through the bottom of the prism (in the Kretschmann geometry), and the reflectance was measured (using a photomultiplier tube connected to an integrating sphere) as a function of the incidence angle θ0 at λ = 543 nm, 594 nm, and 632 nm (inset of Fig. 2a). All measurements were done at room temperature. At the resonance angle for each frequency, the energy of the incident light was transferred to SPP, resulting in a minimum in the reflectance profile. Next, the reflectance spectra were measured at multiple angles of incidence θ0 in a spectrophotometer (Perkin Elmer Lambda 900) setup equipped with an integrating sphere, Fig. 2b.

The reflectance spectra exhibited up to three minima, depending on the incidence angle θ0. The minima corresponding to the dips in the angular and spectral reflectance scans were plotted as {ω vs. k} or {ω vs. θ0}, yielding the dispersion curve split into three branches (Fig. 3), similar to that predicted theoretically (Fig. 1a). The overall energy splitting in our experiment was 0.37 eV, slightly larger than that observed in [27]. Thus, the strong modification and the sizable splitting of the SPP dispersion curve, predicted by the classical Fresnel equations, has been observed experimentally (at room temperature) in the presence of high concentration of dye molecules.

 

Fig. 3 (a) Experimental absorption spectrum of the R6G:PMMA film on glass. (b) Points forming the dispersion curve obtained from spectral (black) and angular (red) reflectance measurements of the glass prism/Ag/dye:PMMA sample, plotted versus the incidence angle (c) Solid black markers - Dispersion curve obtained from spectral reflectance measurements (same as in Fig. 3b) plotted versus the wavevector k. Solid black line and hollow red markers – same as in Fig. 1a.

Download Full Size | PPT Slide | PDF

Excitation studies

In the next series of experiments, we recorded the excitation spectra of R6G emission at three different excitation angles (in a Horiba Fluorolog spectrofluorometer setup), and collected the spontaneous emission signal from the back of the prism, as shown in Fig. 4a. The excitation spectra were collected at the wavelength of 580 nm and they were fit with three Gaussian profiles, Fig. 4a. The maxima of these Gaussian profiles were further translated onto the dispersion curve plotted as {ω vs. θ0} in Fig. 4b. We notice that the points on the dispersion curve obtained using excitation studies, overlap with those obtained using reflectometry. Thus, molecules coupled with SPPs can be efficiently excited only when the wavenumber k and frequency ω match the hybridized dispersion curve. Note that a small bump at ω≈4.0x1015 rad/s – the frequency approximately corresponding to the upper branch of the dispersion curve in Fig. 4b – can be seen in the excitation spectrum when the prism sample (with dye-doped polymer deposited on top of Ag) is pumped from the top and the emission is collected from the top (dashed line in Fig. 4a). The fact that no such band has been observed in the excitation spectrum of the R6G:PMMA film deposited on glass points at its surface plasmon origin.

 

Fig. 4 (a) Red trace - Excitation spectrum of R6G emission collected at λ = 580 nm and excited at θ = 71.7 degrees. Corresponding Gaussian fits are shown. Dotted black line – Excitation spectrum of R6G emission, excited and collected from the back of the prism (not in the Kretschmann geometry). Inset: Schematic of the setup used to record the excitation spectra. (b) Black markers – dispersion curve obtained in the reflectance experiment (from Fig. 3b). Red markers – the points from the excitation spectra of R6G emission, collected at three different angles as shown in the inset.

Download Full Size | PPT Slide | PDF

Spontaneous emission spectra

In the third series of experiments, the sample was excited at λ = 530 nm in the spectrofluorometer setup, from the side of the R6G:PMMA film, Fig. 5. Optically pumped dye molecules excited SPPs, which were expected to decouple to the prism at different angles, according to their frequencies and wavevectors. The corresponding SPP emission spectra were recorded at different collection angles, and exhibited multiple peaks and shoulders, Fig. 5. When the frequency positions of these peaks and shoulders were plotted versus the incidence angle or the wavevector, they too resulted in the dispersion curve split into three branches, Fig. 6. However, these branches and the splittings were totally different from the ones obtained using the reflectometry measurements. This suggests that nearly the same plasmonic environment couples differently to absorbing and emitting dye molecules.

 

Fig. 5 (Left) Schematic of the setup used to record the emission spectra; (Right) R6G emission measured in the R6G:PMMA/Ag/prism sample at varying collection angles. Solid black line – R6G emission collected from the back of the prism.

Download Full Size | PPT Slide | PDF

 

Fig. 6 (a) (Left) Black hollow squares – dispersion measured in the reflectometry experiment (from Fig. 3b); blue (1), red (2) and green (3) circles – branches of the dispersion curve obtained from the emission spectra; (Right) absorption and emission spectra of the R6G:PMMA film on a glass substrate. (b) Dispersion curve of Fig. 6a, obtained from the emission spectra, plotted as a function of wavevector k. The color schemes in Fig. 5 and Fig. 6 are not correlated.

Download Full Size | PPT Slide | PDF

The frequency position of branch 1 in Fig. 6 (blue circles) is almost independent of the SPP outcoupling angle. In line with [25,34,35], we tentatively assign it to emission of dye molecules, which are not coupled to SPPs. Branches 2 (red circles) and 3 (green circles) closely follow the low polaritonic branch in the reflection dispersion curve (open diamonds). However, they are split in the frequency range corresponding to the high-energy slope of the emission band. Their ordering (branch 2 is higher than branch 3) is unusual for coupling of SPPs with absorbing molecules, see e.g. Figure 3c. The nature of this splitting and its possible relation to strong coupling of the ensemble of (likely coupled to each other [36,37]) excited dye molecules and SPPs require more theoretical studies.

Discussion and summary

Note that the results of our excitation and emission studies are different from those communicated in the literature [27,33–35,38]. Thus, the Stokes shifts between the absorption and the emission bands in [25,34,35] were very small. Therefore, the dispersion curves for emission closely followed those for reflection. On the other hand, the “luminescence” studied in [27,38] combined spontaneous emission originating from excited dye molecules and scattered white light used to excite and probe the system. The same scattered white light interfered with the excitation measurements in [27,38]. The novelty of our approach is based on angular resolved excitation and emission studies (performed with monochromatic pumping) of the strongly coupled exciton-plasmon hybrid states involving dye molecules with large Stokes shift. The latter Stokes shift is responsible for the spectral shift of the splitting in the reflection dispersion curve in comparison to that in the emission dispersion curve – the phenomenon, which (to our knowledge) has never been reported in the literature.

To summarize, we have studied modification of the dispersion relations, resulting from strong coupling of highly concentrated absorbing and (possibly) emitting dye molecules and surface plasmon polaritons propagating on top of an adjacent silver surface, in reflection, excitation, and emission experiments. In the first series of reflectance measurements, aimed at characterization of our system, we have observed large splitting of the SPP dispersion curve (0.37 eV), along with an avoided crossing behavior characteristic of strongly coupled oscillators. The experimental results are in a good agreement with the predictions of a purely classical model based on modified Fresnel equations. In the second series of experiments, we have studied excitation spectra of dye molecules strongly coupled to SPPs and found that the maxima of the excitation spectra closely follow the modified dispersion curve obtained in the reflectometry measurements. In the final series of emission measurements, we have observed an unusual splitting of the dispersion curve, which may be related to strong coupling of SPPs with emitting dye molecules. In this particular experiment, the energy of the splitting and the shapes and the positions of the split branches are completely different from those in the dispersion curves obtained in the reflectometry experiments. This is the central result of our work. It stimulates future studies of excited molecules strongly coupled with other resonant systems, such as cavities and plasmonic nanoparticles. The reported observations make an important step towards better understanding and control of light-matter interactions.

Acknowledgment

The authors acknowledge NSF PREM grant DMR 1205457, NSF IGERT grant DGE 0966188, ARO grant W911NF-14-1-0639, and Air Force Office of Scientific Research AFOSR grant FA9550-14-1-0221.

References and links

1. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983). [CrossRef]  

2. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013). [CrossRef]   [PubMed]  

3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef]   [PubMed]  

4. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef]   [PubMed]  

5. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000). [CrossRef]   [PubMed]  

6. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, Taylor & Francis Group, 2011), pp. 293.

7. D. Maystre, Electromagnetic surface modes, edited by A. D. Boardman (Wiley, 1982), pp. 661–724.

8. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef]   [PubMed]  

9. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015). [CrossRef]   [PubMed]  

10. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013). [CrossRef]   [PubMed]  

11. F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014). [CrossRef]   [PubMed]  

12. A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013). [CrossRef]   [PubMed]  

13. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

14. V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974). [CrossRef]  

15. I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982). [CrossRef]  

16. Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983). [CrossRef]  

17. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989). [CrossRef]   [PubMed]  

18. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991). [CrossRef]   [PubMed]  

19. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006). [CrossRef]  

20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef]   [PubMed]  

21. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007). [CrossRef]   [PubMed]  

22. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006). [CrossRef]   [PubMed]  

23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007). [CrossRef]   [PubMed]  

24. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008). [CrossRef]   [PubMed]  

25. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004). [CrossRef]   [PubMed]  

26. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

27. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009). [CrossRef]   [PubMed]  

28. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010). [CrossRef]   [PubMed]  

29. P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010). [CrossRef]   [PubMed]  

30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Vol. 111, pp. 136.

31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

32. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef]   [PubMed]  

33. D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999). [CrossRef]  

34. C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007). [CrossRef]  

35. C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008). [CrossRef]  

36. S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012). [CrossRef]   [PubMed]  

37. V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011). [CrossRef]  

38. M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
    [Crossref]
  2. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
    [Crossref] [PubMed]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  4. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  5. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
    [Crossref] [PubMed]
  6. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, Taylor & Francis Group, 2011), pp. 293.
  7. D. Maystre, Electromagnetic surface modes, edited by A. D. Boardman (Wiley, 1982), pp. 661–724.
  8. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [Crossref] [PubMed]
  9. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  10. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
    [Crossref] [PubMed]
  11. F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
    [Crossref] [PubMed]
  12. A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
    [Crossref] [PubMed]
  13. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  14. V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
    [Crossref]
  15. I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
    [Crossref]
  16. Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
    [Crossref]
  17. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
    [Crossref] [PubMed]
  18. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
    [Crossref] [PubMed]
  19. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref] [PubMed]
  21. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [Crossref] [PubMed]
  22. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
    [Crossref] [PubMed]
  23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
    [Crossref] [PubMed]
  24. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]
  25. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  26. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).
  27. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  28. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref] [PubMed]
  29. P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
    [Crossref] [PubMed]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Vol. 111, pp. 136.
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [Crossref] [PubMed]
  33. D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
    [Crossref]
  34. C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
    [Crossref]
  35. C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
    [Crossref]
  36. S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
    [Crossref] [PubMed]
  37. V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
    [Crossref]
  38. M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
    [Crossref]

2015 (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (1)

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

2013 (4)

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

2012 (1)

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

2011 (1)

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

2010 (3)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

2008 (4)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

2007 (4)

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

2006 (2)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

2004 (2)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[Crossref] [PubMed]

2000 (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

1999 (1)

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

1991 (1)

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

1989 (1)

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

1983 (2)

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

1982 (1)

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

1974 (1)

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Adegoke, J. A.

Agranovich, V. M.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Armitage, A.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnakov, Y. A.

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bellessa, J.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Bonnand, C.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Bradley, D.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Brecha, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Bréhier, A.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Brillante, A.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Canaguier-Durand, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Carmichael, H. J.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Cerullo, G.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cirmi, G.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

De Re, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Deleporte, E.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Devaux, E.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Ebbesen, T. W.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Fainman, Y.

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Gartstein, Y. N.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Genet, C.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

George, J.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Goy, P.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Gross, M.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Guebrou, S. A.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hakala, T. K.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Haroche, S.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Hohenester, U.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Homeyer, E.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hutchison, J. A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaluzny, Y.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kimble, H. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Koponen, M. A.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Lauret, J. S.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Lee, W. D.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Lehn, J.-M.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Leipold, D.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Li, H.

Lidzey, D.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Lienau, C.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Liscio, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Malshukov, A. G.

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Mayy, M.

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Mobius, D.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Murakoshi, K.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Nagasawa, F.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Narimanov, E. E.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nezhad, M.

Noginov, M. A.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Palermo, V.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Pang, Y.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Parashkov, R.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Plenet, J. C.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Podolskiy, V. A.

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Pomraenke, R.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Raimond, J. M.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Raizen, M. G.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Rempe, G.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Reynolds, K.

Ritzo, B. A.

Runge, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Samorì, P.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Schwartz, T.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Skolnick, M.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Symonds, C.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Takase, M.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Tetz, K.

Thompson, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Toppari, J. J.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tumkur, T. U.

Vasa, P.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Virgili, T.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Walker, S.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Wang, W.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wilhelms, N.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Wurtz, G. A.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[Crossref] [PubMed]

ACS Nano (1)

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Chem. Phys. (1)

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

J. Phys. Chem. Lett. (1)

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Nano Lett. (3)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Opt. Commun. (1)

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Opt. Express (3)

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Phys. Rev. Lett. (10)

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Science (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Other (4)

M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, Taylor & Francis Group, 2011), pp. 293.

D. Maystre, Electromagnetic surface modes, edited by A. D. Boardman (Wiley, 1982), pp. 661–724.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Vol. 111, pp. 136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Solid black line – dispersion curve for the glass/Ag/PMMA structure, calculated using Eq. (1). Red markers – dispersion curve calculated using modified Fresnel equations for the glass/Ag/dye:PMMA structure with two Lorentzian bands modeling the absorption spectrum of the dye. Inset: Schematic of the Kretschmann geometry used to excite SPPs. (b) Absorption spectrum of the dye:PMMA layer modeled by a combination of two Lorentz oscillators. (c) Color maps of reflectance calculated using modified Fresnel equations [30] and plotted for different frequencies and incidence angles, for the glass/Ag/PMMA structure (top panel) and the glass/Ag/dye:PMMA structure (bottom panel).
Fig. 2
Fig. 2 (a) Angular reflectance profiles of the R6G:PMMA/Ag/prism sample, measured at three different wavelengths. (b) Corresponding reflectance spectra measured at two different angles of incidence. Inset: Schematic of the sample and the Kretschman geometry setup.
Fig. 3
Fig. 3 (a) Experimental absorption spectrum of the R6G:PMMA film on glass. (b) Points forming the dispersion curve obtained from spectral (black) and angular (red) reflectance measurements of the glass prism/Ag/dye:PMMA sample, plotted versus the incidence angle (c) Solid black markers - Dispersion curve obtained from spectral reflectance measurements (same as in Fig. 3b) plotted versus the wavevector k. Solid black line and hollow red markers – same as in Fig. 1a.
Fig. 4
Fig. 4 (a) Red trace - Excitation spectrum of R6G emission collected at λ = 580 nm and excited at θ = 71.7 degrees. Corresponding Gaussian fits are shown. Dotted black line – Excitation spectrum of R6G emission, excited and collected from the back of the prism (not in the Kretschmann geometry). Inset: Schematic of the setup used to record the excitation spectra. (b) Black markers – dispersion curve obtained in the reflectance experiment (from Fig. 3b). Red markers – the points from the excitation spectra of R6G emission, collected at three different angles as shown in the inset.
Fig. 5
Fig. 5 (Left) Schematic of the setup used to record the emission spectra; (Right) R6G emission measured in the R6G:PMMA/Ag/prism sample at varying collection angles. Solid black line – R6G emission collected from the back of the prism.
Fig. 6
Fig. 6 (a) (Left) Black hollow squares – dispersion measured in the reflectometry experiment (from Fig. 3b); blue (1), red (2) and green (3) circles – branches of the dispersion curve obtained from the emission spectra; (Right) absorption and emission spectra of the R6G:PMMA film on a glass substrate. (b) Dispersion curve of Fig. 6a, obtained from the emission spectra, plotted as a function of wavevector k. The color schemes in Fig. 5 and Fig. 6 are not correlated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k SPP = ω c ε 1 (ω) ε 2 (ω) ε 1 (ω)+ ε 2 (ω)
k x (θ)= ω c n 0 sin θ 0

Metrics