Abstract

We demonstrate triggered single photon emission up to 77K from an ordered 5x8 array of InGaAs single quantum dots (SQDs). The SQDs are grown selectively on patterned mesa tops utilizing substrate-encoded size-reducing epitaxy (SESRE). It exploits designed surface-curvature stress gradients to preferentially direct atom migration from mesa sidewalls to the top during growth. The emission from the SQDs exhibits a g(2)(0) of 0.19 ± 0.03 at 8K and decent emission spectral uniformity (standard deviation <1% of emission wavelength). The SESRE QDs are inherently compatible with on-chip integrated light manipulation elements, thereby enabling a path towards integrated nanophotonic systems for quantum information processing.

© 2016 Optical Society of America

1. Introduction

Realizing on-chip integrated nanophotonic systems comprising light source, light manipulating passive elements, and detectors for information processing is a key goal of semiconductor photonics [1–4]. Pushing this objective towards quantum optics and in particular to single photon processes is central to assessing the potential of nanophotonics for quantum information processing. To this end, realizing ordered arrays of high quality semiconductor single quantum dots that can produce, on-demand, single photons with high spectral uniformity and can be integrated on-chip with light manipulation structures such as micropillars [1,3,5] and photonic crystals [1,3,6] on III-V substrate as well as on Silicon substrate [7], is a critical milestone. Lattice-mismatch strain-driven defect-free semiconductor epitaxial GaAs(001)/InGaAs nanoscale 3D island quantum dots [8,9] (dubbed self-assembled quantum dots (SAQDs)) have been demonstrated to be single photon sources at cryogenic temperature [3]. Pioneering physics studies have been carried out to explore such InGaAs SAQD single photon source based integrated systems such as coupled SAQD-cavity [3,5,10,11], SAQD-waveguide [12–14], SAQD-beam splitter [15], and SAQD-cavity-waveguide [6] to control single photon emission. Progress has also been made to achieve single photon emission from SAQDs at elevated temperatures, such as at liquid nitrogen temperature in InGaAs/GaAs [16,17] and InP/AlGaAs SAQDs [18], and at room temperature in CdS/ZnSSe [19] and InGaN/AlGaN SAQDs [20]. However, the inhomogeneous (in size, shape, and composition) distribution, together with the random location in space makes it difficult to create integrated SAQD single photon source based networks for device application.

Approaches have been taken to enable spatially-selective growth of SAQDs such as patterning holes in the substrate to realize single SAQD per site. However, reproducible growth of single SAQD per site and of uniform spectral response is still a challenge [21–24]. Another well explored approach for selective area growth of QDs is deposition on substrates through patterned holes etched in an oxide mask [25–28] carried out employing molecular sources such as in gas source molecular beam epitaxy (GSMBE) or metal organic chemical vapor deposition (MOCVD) that suppress growth on the oxide. The holes-in-oxide-mask approach has also been combined with metal nanoparticle-seeded vapor-liquid-solid (VLS) growth of nanowires bearing quantum dots to controllably synthesize spatially ordered nanowires bearing single QDs [29,30]. The nanowire QDs have been demonstrated to be single photon sources [30,31] and exhibit improved spectral uniformity compared to SAQDs [32]. The nanowires bearing the QD have further been designed to boost the emitted photon collection efficiency along the wire axis [4,31]. Despite such important progress, certain challenges remain to be tackled including the incorporation of metal point defects that adversely impact the optical properties of the QDs [33, 34], and the fluctuation of nucleation events underlying VLS growth [34] which makes it difficult to predictably control QD vertical location in the nanowire and thus their integration with on-chip light manipulating elements.

Another approach that controllably produces a single quantum dot per site is substrate-encoded size-reducing epitaxy (SESRE) [25]. It exploits surface curvature induced surface stress gradients that can be marshalled to preferentially drive adatoms, during growth, to migrate from mesa sidewalls to the top or vice-versa for appropriately patterned mesas or holes [25]. For mesas on (001) and (111) oriented III-V substrates this enables single QD formation on mesa top [35], as schematically depicted in Fig. 1(a) for (001) substrates. For the (111)B oriented substrates, triangular holes as well enable single quantum dots [36–38]. We note that the SESRE single QDs are formed for lattice matched semiconductors [35] as well as lattice mismatched [39,40]. In the latter case the lattice mismatch strain can be nearly completely relaxed for deposition on nanoscale mesa tops owing to the presence of free surfaces [39], a feature not possible for growth in holes. The controlled formation of uniform SESRE mesa-top single QD (MTSQD) array, however, requires atomistic level control on the growth kinetics and nanometer precision of the starting mesa lateral size, which made its implementation technologically difficult prior to the availability of nanolithography.

 figure: Fig. 1

Fig. 1 (a) Schematic of a (001) top square mesa with <100> edge orientations and {h,k,l} sidewalls. The arrows indicate atom migration from the sidewalls to the top leading to size-reducing epitaxy. The red box depicts the flat-top pyramidal quantum dot formed at the designed stage before mesa pinch-off with continued growth. (b) SEM image (top view) of a part of the post-growth GaAs/InGaAs/GaAs single quantum dot bearing 5x8 mesa array (the scale bar is 5 μm). Inset is a 60° tilted magnified view of a single nanomesa in the array (the scale bar is 300nm).

Download Full Size | PPT Slide | PDF

As the maturing of nanolithography now enables precise control on nanomesas structurally patterned on substrates, we revisited the SESRE approach and present here the synthesis of a spatially-ordered array of GaAs(001)/InGaAs/GaAs single QDs that exhibit single photon emission up to the elevated temperature of 77K. The spectral emission is significantly more uniform than typical SAQDs and nanocrystal quantum dots (NCQDs) and is comparable to the uniformity of the most recently reported nanowire-embedded QD system [32]. Additionally, and importantly, the SESRE array, with an overgrowth of a planarizing layer, provides a platform that is naturally compatible with the subsequent monolithic integration with light manipulating structures such as based on 2D photonic crystals for realizing on-chip integrated nanophotonic systems. This opens rich pathways for the realization of on-chip optical circuits functioning down to the single photon level.

2. Mesa top single quantum dot synthesis

As noted, the substrate-encoded size-reducing epitaxy (SESRE) approach exploits growth on substrates patterned structurally (i.e. nonplanar) such that the attendant surface curvature induces surface stress gradients (capillarity) that preferentially direct adatoms during growth from the side facets to the mesa tops, thereby leading to selective area growth [25]. For the (001) surface oriented substrates of the tetrahedrally-bonded semiconductors of groups IV, III-V, and II-VI, the <100> edge orientations of square mesas provide four-fold symmetry and thus symmetric adatom migration from the sidewalls to the top to reduce, with homoepitaxy under appropriate and controlled growth kinetics, the as-patterned starting mesa top size to the desired size [35]. For the <100> edge orientated square mesas utilized in this work, it has been established [35,40] that mesa top size reduction occurs in two stages: first with {103} sidewalls which with growth reduce the size to zero (pinch-off) followed by subsequent emergence of the steeper {101} sidewalls and their eventual pinch-off. On appropriately chosen mesa shape and top size, heteroepitaxy enables creation of a single quantum dot (red box in Fig. 1(a)) of chosen shape and size. We note that this is equally so for lattice matched [35] and mismatched [39,40] combinations. For the latter the lattice mismatch strain can be considerably relaxed owing to the presence of the side wall free surfaces of the nanomesa, thus obviating the need for either island-like morphology or strain relieving extended defects [39]. The same physics is exploited in nanowire QD systems [34].

The InGaAs/GaAs MTSQD arrays were grown by solid source MBE on GaAs (001) substrates patterned with sixteen regions of 5x8 arrays of <100> edge oriented square nanomesas of the same height of ~500nm and vertical walls but with each array having a single base size between 100nm and 500nm [40]. The nanomesa arrays were created by electron beam lithography and wet chemical etching. The growth procedure is given in Zhang et al. [40] but briefly, following GaAs buffer growth chosen to reduce the mesa array of as-etched mesa top size of ~430nm to the desired <20nm regime with {103} bounding side facets, 4.25ML of In0.5Ga0.5As was deposited followed by GaAs capping layer. A scanning electron microscope (SEM) top view of part of this 5x8 array of post-growth nanomesas is shown in Fig. 1(b) with the inset showing a magnified 60° tilted view of a single mesa confirming the presence of {103}facets. More detailed description of substrate patterning, growth condition, and grown structure can be found in Zhang et al. [40]. Flat-top pyramidal MTSQDs with {103} side planes and base length of ~13nm and height ~3nm estimated from growth evolution reside near the apex on these mesas with as-etched starting base size of 430nm. We note that continued growth of the GaAs protective layer allows planarization of the whole structure, an aspect of considerable value for the on-chip integration of such QD arrays with optical manipulating elements such as waveguides, beam-splitters, etc. needed for photonic circuits.

3. Optical response and spectral uniformity of MTSQDs

The 77.4K photoluminescence (PL) from every MTSQD in the 5x8 array was measured using our home-built micro-photoluminescence (μ-PL) spectroscopy system as described in Zhang et al. [40]. A laser beam (640nm, 80MHz repetition rate) was focused down to ~1.25μm (1/e2 diameter) using a 40x NA0.65 objective to probe single QDs. The emitted luminescence is collected by the same objective, spectrally filtered by a 0.3m spectrometer and detected by a silicon avalanche photodetector (APD). In this paper we report the findings for single quantum dots formed on the 5x8 array of as-etched starting nanomesas of size ~430nm reduced in size to realize quantum dots of base ~13nm. The representative μ-PL spectrum of Fig. 2(a) from MTSQD (3,5) in the 5x8 array shows a peak at 929nm with full width at half-maximum (FWHM) of 1.85meV at the low excitation power of ~4nW (0.32W/cm2). The linewidth is likely dominated by the combined influence of Stark shifts induced by potential charge fluctuations at the surface of the capping GaAs layer and the ground state transition mixing with nearby excited states at the elevated temperature [41,42]. The excitation power (P) dependence of the PL intensity (I) revealed a nearly linear, I~P0.91, behavior until ~30nW (2.4W/cm2) when saturation sets in (inset of Fig. 2(a)). In the power dependence law, I = αPβ, both α and β depend upon QD state filling (capture mechanism) [43]. Our finding of β close to one indicates that the emission is dominated by the single exciton state. The departure from unity is indicative of the impact of capture mechanism [43]. Additionally, The low saturation power for these MTSQDs (~30nW or 2.4W/cm2) as compared with other reported spatially-ordered QDs such as InGaAs/AlGaAs QDs in valleys (holes) of structurally patterned GaAs(111)B substrate (~100nW) [44], InAsP/InP nanowire QD (~1μW) [29] and GaN/AlGaN nanowire QD (~10mW) [28] attests to their high quality. It also suggests that, unlike nanowires, the MTSQDs synthesized through SESRE approach may have higher carrier capture rate owing to the absence of any unintentional structure [34] to compete with the QD for carrier capture. Though not shown here, the temperature dependence (8 K to 130 K) of the MTSQD PL emission wavelength follows the temperature dependence of In0.5Ga0.5As bandgap indicating good electron and hole wavefunction localization within the MTSQD. The measured PL intensity at 77.4K at the low (nW) powers employed and the short (ns) radiative lifetime of MTSQD single excitonic transition [40] indicate good quantum confinement of the excitons.

 figure: Fig. 2

Fig. 2 Photoluminescence (PL) behavior of the InGaAs MTSQD array.(a) PL spectrum of MTSQD (3,5) (labeled by its row and column number in the array) collected at 77.4K and excitation power ~4nW (~0.32W/cm2). The inset shows excitation power (P) dependence of PL intensity (I) with a close linear dependence, I~P0.91. (b) Color coded plot of the peak wavelength of the 40 MTSQDs in the array. The two black with white border pixels represent non-emitting MTSQDs. Green circles mark the MTSQDs examined for their single photon emission characteristics g(2)(τ).

Download Full Size | PPT Slide | PDF

Figure 2(b) displays the emission peak variation across the 5x8 array. Only two out of the 40 MTSQDs are non-emitting (black pixels) and the intensity from the rest 38 MTSQDs varies within a factor of 4 over the whole array. These 38 MTSQDs show an average PL peak position at 935.3nm with a standard deviation, σλ, of 8.3nm, a significant improvement over typical SAQDs [9] and NCQDs [45]. This higher spectral uniformity of MTSQDs is expected from the inherently better growth control on QD shape (flat-top pyramidal shape with controlled crystallographic side planes) and size. No attempts were made to optimize these features in these first studies. Through improved control on the as-etched starting mesa size, gallium and indium migration lengths through optimization of the growth kinetics, and capping layer growth condition, the spectral uniformity and linewidth of the MTSQDs can be further improved.

4. Single photon emission

The single photon emission characteristics of this MTSQD array were examined by measuring the normalized second order intensity correlation function g(2)(τ), given by Eq. (1), employing a Hanbury-Brown and Twiss setup. Emission from the MTSQD is spectrally filtered by the spectrometer and passed through a 50/50 beam splitter to two Si APD detectors with photon timing resolution of ~500ps. In Eq. (1), IA(t) and IB(t) are the intensities detected by the two detectors, respectively. The coincidence count, n(τ) in Eq. (1), represents the number of times the two detectors detect a photon with a time difference τ in between.

g(2)(τ)=<IA(t)IB(t+τ)><IA(t)><IB(t)>=n(τ)<IA(t)><IB(t)>

A total of seven MTSQDs of the 5x8 array were examined at 77K for their single photon emission behavior but the prohibitive cost of liquid helium has limited 8K studies to three, marked by the green circles in Fig. 2(b). All data were taken at the lowest excitation power range of ~4nW (0.32W/cm2) to 10nW (0.80W/cm2) and at each MTSQD’s PL peak position with the spectrometer bandpass set at 0.4nm. Figure 3 shows the as-measured (raw data) coincident count n(τ) versus pulse delay time (τ) for MTSQD (3,5) at 77K and 8K. The normalized g(2)(0) values shown are determined by the ratio of τ = 0 peak area to the average of the nonzero peak areas for the as-measured data and, in parenthesis, for data corrected for the APD dark count. The obtained g(2)(0) values are 0.43/(0.38) at 77K and 0.20/(0.15) at 8K. The three MTSQDs examined at 8K (marked by green circles in Fig. 2(b)) give, after APD dark count subtraction, an average g(2)(0) of 0.19 ± 0.03. At 77K these MTSQDs provide single photon emission (g(2)(0) ~0.35) comparable to those of InGaAs SAQDs at 77K [16,17] but with the additional control on QD position and significantly improved spectral uniformity, making them well suited as nanophotonic on-chip integrable single photon source.

 figure: Fig. 3

Fig. 3 Coincidence count histogram of MTSQD (3,5) at (a) 77K and (b) 8K. The obtained g(2)(0) values are 0.43/(0.38) at 77K and 0.20/(0.15) at 8K as extracted from the raw data and after subtraction of the detector dark count (the value in parenthesis).

Download Full Size | PPT Slide | PDF

The nonzero g(2)(0) value at the lowest excitation powers (~4nW) is suggestive of the emission arising from at least two finely separated states of MTSQDs that are not spectrally resolved by the 0.4nm (~570μeV) detection window in PL studies at 8K reported elsewhere [40]. The actual physical origin of such states is subject to further investigation. From the lowest excitation power g(2)(τ) measurements we extract a lifetime of 1.1 ± 0.3ns for the MTSQDs which is consistent with the lifetime obtained from the time-resolved PL data. The short (~1ns) excitonic lifetime in these MTSQDs can be further shortened by integration in cavity structures to potentially allow triggered single photon emission from regular arrays at greater than GHz operating frequencies, important for high-speed information processing applications.

5. Summary

In summary, we have demonstrated the potential of the substrate-encoded size-reducing epitaxy (SESRE) approach to realizing spatially-ordered and spectrally uniform quantum dot arrays as single photon sources. The studied array of flat top pyramidal shape mesa-top single quantum dots with {103} sidewalls shows a spectral uniformity of 8.3nm, significantly tighter compared to SAQDs or NCQDs. Given that these quantum dots are significantly smaller in size (base length ~13nm compared to ~20nm typical for SAQDs), the spectral uniformity when normalized to the size is remarkably better. Moreover, even these unoptimized patterning and growth conditions these MTSQDs exhibit single photon emission with a g(2)(0) of 0.19 ± 0.03 at 8K. The SESRE based MTSQDs are thus relatively encouraging candidates for optimization single photon emission characteristics given the richness of the growth manipulation and material combinations. A critically important feature of these SESRE based MTSQDs is that with the growth of a planarizing overlayer, the known location of the buried array naturally lends itself to on-chip fabrication of co-designed emitted light manipulating elements such as resonant cavities, waveguides, beam splitters, etc. utilizing current approaches such as micropillars [1,3,5,10,11] and 2D photonic crystals that exploit departure from Bragg diffraction to implement the desired function [1,3,6,12–14]. It also opens exploration of the newly proposed approach of exploiting collective Mie resonance of high index dielectric building blocks to implement multiple light manipulating functions using a single structure [46–48]. Spectral uniformity of the spatially ordered single photon emitting MTSQDs can be further improved by the combination of more precise control on as-patterned nanomesa size enabled by current state-of-the-art nanolithography over large areas and optimizing the nanomesa size-dependent growth kinetics. All of the above can and will need to be done on substrates prepared with a “lift-off” layer, such as AlGaAs for GaAs(001) wafers, to convert the integrated single photon source and light manipulating element arrays in to a “membrane” for transfer on to optically benign substrates. The SESRE approach thus holds much promise for realizing single photon emitter arrays for on-chip nanophotonic information processing systems using photon numbers down to one.

Funding

Army Research Office (ARO) (W911NF-15-1-0298); Air Force Office of Scientific Research (AFOSR) (FA9550-10-01-0066).

Acknowledgments

This work is supported by ARO grant number W911NF-15-1-0298. Work on the growth of the quantum dots was supported by AFOSR grant number FA9550-10-01-0066.

References and links

1. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015). [CrossRef]  

2. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010). [CrossRef]  

3. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012). [CrossRef]   [PubMed]  

4. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

5. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016). [CrossRef]  

6. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011). [CrossRef]  

7. L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012). [CrossRef]  

8. V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures (Springer Verlag, 2004).

9. M. Grundmann, Nano-Optoelectronics (Springer Verlag, 2002).

10. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007). [CrossRef]   [PubMed]  

11. J.-H. Kim, C. J. K. Richardson, R. P. Leavitt, and E. Waks, “Two-photon interference from independent cavity-coupled emitters on-a-chip,” arXiv:1608.02641.

12. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012). [CrossRef]  

13. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011). [CrossRef]  

14. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014). [CrossRef]   [PubMed]  

15. K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015). [CrossRef]  

16. X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008). [CrossRef]  

17. Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015). [CrossRef]  

18. W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009). [CrossRef]  

19. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012). [CrossRef]  

20. S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014). [CrossRef]  

21. P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008). [CrossRef]  

22. J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011). [CrossRef]   [PubMed]  

23. K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013). [CrossRef]   [PubMed]  

24. T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007). [CrossRef]  

25. A. Madhukar, “Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures,” Thin Solid Films 231(1-2), 8–42 (1993). [CrossRef]  

26. P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010). [CrossRef]   [PubMed]  

27. K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013). [CrossRef]  

28. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014). [CrossRef]   [PubMed]  

29. G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012). [CrossRef]  

30. D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012). [CrossRef]   [PubMed]  

31. M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014). [CrossRef]   [PubMed]  

32. Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016). [CrossRef]  

33. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008). [CrossRef]   [PubMed]  

34. J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013). [CrossRef]  

35. K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994). [CrossRef]  

36. M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009). [CrossRef]   [PubMed]  

37. E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011). [CrossRef]  

38. B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015). [CrossRef]  

39. A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995). [CrossRef]  

40. J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

41. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002). [CrossRef]  

42. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

43. M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009). [CrossRef]  

44. M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004). [CrossRef]  

45. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996). [CrossRef]  

46. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012). [CrossRef]   [PubMed]  

47. S. Chattaraj and A. Madhukar, “Multifunctional multiwavelength QD-nanoparticle integrated all-dielectric optical circuits: on chip focusing and guiding,” presented at MRS Fall Meeting, Boston, MA, November 29- December 4, 2015. Abstract number: HH 2.10.

48. S. Chattaraj and A. Madhukar, “Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: towards on-chip integrated nanophotonics,” J. Opt. Soc. Am. B 33(12), 2414 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  2. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
    [Crossref]
  3. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
    [Crossref] [PubMed]
  4. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).
  5. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
    [Crossref]
  6. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
    [Crossref]
  7. L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
    [Crossref]
  8. V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures (Springer Verlag, 2004).
  9. M. Grundmann, Nano-Optoelectronics (Springer Verlag, 2002).
  10. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [Crossref] [PubMed]
  11. J.-H. Kim, C. J. K. Richardson, R. P. Leavitt, and E. Waks, “Two-photon interference from independent cavity-coupled emitters on-a-chip,” arXiv:1608.02641.
  12. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
    [Crossref]
  13. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
    [Crossref]
  14. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref] [PubMed]
  15. K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
    [Crossref]
  16. X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
    [Crossref]
  17. Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
    [Crossref]
  18. W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
    [Crossref]
  19. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
    [Crossref]
  20. S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
    [Crossref]
  21. P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
    [Crossref]
  22. J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
    [Crossref] [PubMed]
  23. K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
    [Crossref] [PubMed]
  24. T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
    [Crossref]
  25. A. Madhukar, “Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures,” Thin Solid Films 231(1-2), 8–42 (1993).
    [Crossref]
  26. P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
    [Crossref] [PubMed]
  27. K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
    [Crossref]
  28. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
    [Crossref] [PubMed]
  29. G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
    [Crossref]
  30. D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
    [Crossref] [PubMed]
  31. M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
    [Crossref] [PubMed]
  32. Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
    [Crossref]
  33. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
    [Crossref] [PubMed]
  34. J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
    [Crossref]
  35. K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
    [Crossref]
  36. M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
    [Crossref] [PubMed]
  37. E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
    [Crossref]
  38. B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
    [Crossref]
  39. A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995).
    [Crossref]
  40. J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).
  41. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
    [Crossref]
  42. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
  43. M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
    [Crossref]
  44. M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
    [Crossref]
  45. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
    [Crossref]
  46. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  47. S. Chattaraj and A. Madhukar, “Multifunctional multiwavelength QD-nanoparticle integrated all-dielectric optical circuits: on chip focusing and guiding,” presented at MRS Fall Meeting, Boston, MA, November 29- December 4, 2015. Abstract number: HH 2.10.
  48. S. Chattaraj and A. Madhukar, “Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: towards on-chip integrated nanophotonics,” J. Opt. Soc. Am. B 33(12), 2414 (2016).
    [Crossref]

2016 (3)

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

S. Chattaraj and A. Madhukar, “Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: towards on-chip integrated nanophotonics,” J. Opt. Soc. Am. B 33(12), 2414 (2016).
[Crossref]

2015 (4)

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

2014 (5)

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

2013 (3)

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

2012 (7)

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

2011 (4)

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

2010 (3)

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
[Crossref]

2009 (3)

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

2008 (3)

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

2007 (2)

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

2004 (1)

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

2002 (2)

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

1994 (1)

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

1993 (1)

A. Madhukar, “Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures,” Thin Solid Films 231(1-2), 8–42 (1993).
[Crossref]

Abbarchi, M.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Abram, I.

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Accanto, N.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Allen, J. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Amann, M. C.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Anderson, D.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Antón, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Arakawa, Y.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Arita, M.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

Atkinson, P.

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Bacher, G.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Baier, M. H.

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Bajcsy, M.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Bakkers, E. P. A. M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Bayer, M.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Beirne, G. J.

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Belov, P. A.

Benyoucef, M.

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

Bethke, L.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

Beveratos, A.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Bhattacharya, P.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

Bichler, M.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Bietti, S.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Bleloch, A. L.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Bommer, M.

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Bounouar, S.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

Buckley, S.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Bulgarini, G.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

Calic, M.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

Cavigli, L.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Chang, H.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Chang, W.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Chang, X. Y.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Chattaraj, S.

Chen, L.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

Chen, P.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995).
[Crossref]

Chen, W.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Chen, Y.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

Choi, K.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

Chyi, J.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Dalacu, D.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Deshpande, S.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

Dimastrodonato, V.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

Ding, F.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

Dou, X. M.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Du, Y.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Dusanowski, L.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Dwir, B.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Ellis, D. J.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Elvira, D.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Englund, D.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Fafard, S.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Faraon, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Farrer, I.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Fedorych, O.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Felici, M.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Finley, J. J.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Fiore, A.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Fognini, A.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Frédérick, S.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Frigeri, C.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Frost, T.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

Gallart, M.

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Gallo, P.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Gass, M. H.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Gauthron, K.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Gérard, J-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Giudice, A.

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

Gónez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Gorbunov, A. A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Griffiths, J. P.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Gulinatti, A.

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

Günthner, T.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Gurioli, M.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Hargart, F.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

Harmand, J. C.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Hauke, N.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Hawrylak, P.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Hazari, A.

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

Heldmaier, M.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

Hemesath, E. R.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Hinzer, K.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Hocevar, M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Höfling, S.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Holleitner, A. W.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Holmes, M. J.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Hommel, D.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Hsieh, T.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Hsu, T.

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

Huang, S. S.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Hughes, S.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
[Crossref]

Isella, G.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Jabeen, F.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Jamil, A.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Jarlov, C.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Jetter, M.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Jones, G. A.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Jones, G. A. C.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

Jöns, K. D.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

Kako, S.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

Kalliakos, S.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

Kamp, M.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Kaniber, M.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Kapon, E.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Kim, E.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Kiravittaya, S.

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

Kivshar, Y. S.

Klopf, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Konkar, A.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995).
[Crossref]

Kouwenhoven, L. P.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Krasnok, A. E.

Kruse, C.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Kümmell, T.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Kuroda, T.

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Kuther, A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lapointe, J.

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

Laucht, A.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Lauhon, L. J.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lefebvre, J.

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

Leifer, K.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

Lemaítre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lensch-Falk, J. L.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Li, L. H.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Li, Z. Y.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lingley, Z.

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Liu, L.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lu, S.

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

Madhukar, A.

S. Chattaraj and A. Madhukar, “Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: towards on-chip integrated nanophotonics,” J. Opt. Soc. Am. B 33(12), 2414 (2016).
[Crossref]

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

A. Madhukar, “Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures,” Thin Solid Films 231(1-2), 8–42 (1993).
[Crossref]

A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Majumdar, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Manga Rao, V. S. C.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
[Crossref]

Mano, T.

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Marynski, A.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Mastrandrea, C.

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Michler, P.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Minari, S.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Miroshnichenko, A. E.

Misiewicz, J.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Mnaymneh, K.

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

Mohan, A.

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Müller, M.

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

Ni, H. Q.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Nicoll, C. A.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Niu, Z. C.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Ortner, G.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Oster, M.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

Palmer, R. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Patriarche, G.

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Pelucchi, E.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Perea, D. E.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Poole, P. J.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Pütz, S.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Rajkumar, K. C.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

Rammohan, K.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

Rastelli, A.

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

Reimer, M. E.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Reinecke, T. L.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Reischle, M.

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Reithmaier, J. P.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Rengstl, U.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

Rich, D. H.

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

Rigal, B.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

Ritchie, D. A.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

Rivoire, K.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Robert-Philip, I.

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Roßbach, R.

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Ruban, A.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

Rudra, A.

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Saive, R.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Sakoda, K.

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Sanguinetti, S.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

Schäfer, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Schmidt, O. G.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

Schulz, W.-M.

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Schwagmann, A.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

Sek, G.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

Shields, A.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

Shields, A. J.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Skiba-Szymanska, J.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Stern, O.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Sun, B. Q.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Syperek, M.

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Ulrich, S. M.

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

Varoutsis, S.

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

Versteegh, M. A.

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

Vinattieri, A.

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

Vuckovic, J.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Vvedensky, D.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

Walck, S. N.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

Wang, P.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Ward, M. B.

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Williams, R. L.

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

Wu, X.

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

Xia, J. B.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Xiong, Y. H.

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Yao, P.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
[Crossref]

Yin, F.

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Zedeh, I. E.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

Zehender, T.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Zestanakis, P. A.

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

Zhang, J.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

Zwiller, V.

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (11)

L. Cavigli, S. Bietti, N. Accanto, S. Minari, M. Abbarchi, G. Isella, C. Frigeri, A. Vinattieri, M. Gurioli, and S. Sanguinetti, “High temperature single photon emitter monolithically integrated on silicon,” Appl. Phys. Lett. 100(23), 231112 (2012).
[Crossref]

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, “Room temperature single photon emission from an epitaxially grown quantum dot,” Appl. Phys. Lett. 100(6), 061114 (2012).
[Crossref]

S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, “Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot,” Appl. Phys. Lett. 105(14), 141109 (2014).
[Crossref]

P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, “Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates,” Appl. Phys. Lett. 93(10), 101908 (2008).
[Crossref]

X. M. Dou, X. Y. Chang, B. Q. Sun, Y. H. Xiong, Z. C. Niu, S. S. Huang, H. Q. Ni, Y. Du, and J. B. Xia, “Single-photon-emitting diode at liquid nitrogen temperature,” Appl. Phys. Lett. 93(10), 101107 (2008).
[Crossref]

Ł. Dusanowski, M. Syperek, A. Maryński, L. H. Li, J. Misiewicz, S. Höfling, M. Kamp, A. Fiore, and G. Sęk, “Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures,” Appl. Phys. Lett. 106(23), 233107 (2015).
[Crossref]

T. Hsieh, J. Chyi, H. Chang, W. Chen, T. Hsu, and W. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90(7), 073105 (2007).
[Crossref]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100(12), 121106 (2012).
[Crossref]

Y. Chen, I. E. Zedeh, K. D. Jöns, A. Fognini, M. E. Reimer, J. Zhang, D. Dalacu, P. J. Poole, F. Ding, V. Zwiller, and O. G. Schmidt, “Controlling the exciton energy of a nanowire quantum dot by strain field,” Appl. Phys. Lett. 108(18), 182103 (2016).
[Crossref]

B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, M. Calic, and E. Kapon, “Site-controlled quantum dots coupled to a photonic crystal molecule,” Appl. Phys. Lett. 107(14), 141103 (2015).
[Crossref]

M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84(5), 648 (2004).
[Crossref]

J. Appl. Phys. (1)

M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys. 106(5), 053504 (2009).
[Crossref]

J. Appl. Phys. Lett. (1)

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” J. Appl. Phys. Lett. 99(26), 261108 (2011).
[Crossref]

J. Cryst. Growth (2)

J. C. Harmand, F. Jabeen, L. Liu, G. Patriarche, K. Gauthron, P. Senellart, D. Elvira, and A. Beveratos, “InP1-xAsx quantum dots in InP nanowires: A route for single photon emitters,” J. Cryst. Growth 378, 519–523 (2013).
[Crossref]

K. Choi, M. Arita, S. Kako, and Y. Arakawa, “Site-controlled growth of single GaN quantum dots in nanowires by MOCVD,” J. Cryst. Growth 370, 328–331 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, “Monolithic on-chip integration of semiconductor waveguide beamsplitters and single-photon sources,” J. Phys. D Appl. Phys. 48(8), 085101 (2015).
[Crossref]

J. Vac. Sci. Technol. B (2)

K. C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, and D. H. Rich, “Realization of three-dimensionally confined structures via one-step in situ molecular beam epitaxy on appropriately patterned GaAs(111)B and GaAs(001),” J. Vac. Sci. Technol. B 12(2), 1071 (1994).
[Crossref]

J. Zhang, Z. Lingley, S. Lu, and A. Madhukar, “Nanotemplate-directed InGaAs/GaAs single quantum dots: Toward addressable single photon emitter arrays,” J. Vac. Sci. Technol. B 32, 02C106 (2014).

Laser Photonics Rev. (1)

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photonics Rev. 4(4), 499–516 (2010).
[Crossref]

Nano Lett. (3)

D. Dalacu, K. Mnaymneh, J. Lapointe, X. Wu, P. J. Poole, G. Bulgarini, V. Zwiller, and M. E. Reimer, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires,” Nano Lett. 12(11), 5919–5923 (2012).
[Crossref] [PubMed]

K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13(1), 126–130 (2013).
[Crossref] [PubMed]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

P. J. Poole, D. Dalacu, J. Lefebvre, and R. L. Williams, “Selective epitaxy of semiconductor nanopyramids for nanophotonics,” Nanotechnology 21(29), 295302 (2010).
[Crossref] [PubMed]

J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. Ellis, J. P. Griffiths, D. Anderson, G. A. Jones, D. A. Ritchie, and A. J. Shields, “Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates,” Nanotechnology 22(6), 065302 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

M. A. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5, 5298 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol. 3(3), 168–173 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174 (2010).

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gónez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

New J. Phys. (1)

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 65(19), 195315 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P. A. Zestanakis, and D. Vvedensky, “Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures,” Phys. Rev. B 83(20), 205409 (2011).
[Crossref]

W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Phys. Rev. Lett. (2)

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M. C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012).
[Crossref]

Rep. Prog. Phys. (1)

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Small (1)

M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, and E. Kapon, “Site-controlled InGaAs quantum dots with tunable emission energy,” Small 5(8), 938–943 (2009).
[Crossref] [PubMed]

Thin Solid Films (1)

A. Madhukar, “Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures,” Thin Solid Films 231(1-2), 8–42 (1993).
[Crossref]

Other (5)

J.-H. Kim, C. J. K. Richardson, R. P. Leavitt, and E. Waks, “Two-photon interference from independent cavity-coupled emitters on-a-chip,” arXiv:1608.02641.

V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures (Springer Verlag, 2004).

M. Grundmann, Nano-Optoelectronics (Springer Verlag, 2002).

S. Chattaraj and A. Madhukar, “Multifunctional multiwavelength QD-nanoparticle integrated all-dielectric optical circuits: on chip focusing and guiding,” presented at MRS Fall Meeting, Boston, MA, November 29- December 4, 2015. Abstract number: HH 2.10.

A. Konkar, A. Madhukar, and P. Chen, “Creating three-dimensionally confined nanoscale strained structures via substrate encoded size-reducing epitaxy and the enhancement of critical thickness for island formation,” MRS Symposium Proc. 380, 17–22 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of a (001) top square mesa with <100> edge orientations and {h,k,l} sidewalls. The arrows indicate atom migration from the sidewalls to the top leading to size-reducing epitaxy. The red box depicts the flat-top pyramidal quantum dot formed at the designed stage before mesa pinch-off with continued growth. (b) SEM image (top view) of a part of the post-growth GaAs/InGaAs/GaAs single quantum dot bearing 5x8 mesa array (the scale bar is 5 μm). Inset is a 60° tilted magnified view of a single nanomesa in the array (the scale bar is 300nm).
Fig. 2
Fig. 2 Photoluminescence (PL) behavior of the InGaAs MTSQD array.(a) PL spectrum of MTSQD (3,5) (labeled by its row and column number in the array) collected at 77.4K and excitation power ~4nW (~0.32W/cm2). The inset shows excitation power (P) dependence of PL intensity (I) with a close linear dependence, I~P0.91. (b) Color coded plot of the peak wavelength of the 40 MTSQDs in the array. The two black with white border pixels represent non-emitting MTSQDs. Green circles mark the MTSQDs examined for their single photon emission characteristics g(2)(τ).
Fig. 3
Fig. 3 Coincidence count histogram of MTSQD (3,5) at (a) 77K and (b) 8K. The obtained g(2)(0) values are 0.43/(0.38) at 77K and 0.20/(0.15) at 8K as extracted from the raw data and after subtraction of the detector dark count (the value in parenthesis).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g (2) (τ)= < I A (t) I B (t+τ)> < I A (t)>< I B (t)> = n(τ) < I A (t)>< I B (t)>

Metrics