Abstract

Organic-inorganic perovskites were fabricated through a one-step procedure with different levels of hydration water in precursor solutions. The optical properties of CH3NH3PbI3 films were investigated through spectroscopic ellipsometry and photoluminescence measurements. With the measured optical constants, the efficiency limit of perovskite solar cells is predicted with a detailed balance model. By comparing the optical measurement to that of planar heterojunction solar cells, we conclude that the radiative efficiency and porosity of the perovskite film significantly influence the performance of perovskite solar cells. An optimized hydration-water concentration is obtained for the 3CH3NH3I:1PbAc2xH2O precursor solution. The results can provide guidance for further optimization of the device performance of perovskite solar cells by utilizing hydration water.

© 2016 Optical Society of America

1. Introduction

During the past several years, solar cells based on methylammonium lead iodide (CH3NH3PbI3) perovskite have attracted much attention because of their high energy conversion efficiency [1]. The power-conversion efficiency (PCE) of perovskite-based solar cells has rapidly increased to exceed 20% [2]. The most common methods to increase the PCE of solar cells are structure optimization [3–6] and film-quality improvement [7]. The quality of perovskite films has been improved using various methods such as large grain growth [8], surface smoothening [9, 10], defect passivation [11, 12], and process optimization [13, 14]. It has been reported that ultra-smooth and nearly pinhole-free CH3NH3PbI3 films can be achieved using lead acetate (PbAc2) instead of lead halides [15]. Further, controlling the content of hydration water in precursors can significantly improve the smoothness and uniformity of perovskite solar cells [16]. In addition, the use of hydration water can greatly simplify the one-step process of fabricating perovskite films, which enables the future mass production of perovskite solar cells [15, 16].

One of the critical features of perovskite solar cells is that a relatively high short-circuit photocurrent density (Jsc) can be easily achieved [17]. In an ideal solar cell, Jsc is mainly controlled by the optical absorption of the absorber layer [18]. As the CH3NH3PbI3 layer is the critical light absorber in a perovskite solar cell, its optical properties need to be thoroughly studied. There are several reports on the refractive index and extinction coefficient of CH3NH3PbI3 [18–24]. However, the previous results are inconsistent with each other. Since the properties of perovskite films are strongly influenced by the precursors and process utilized in fabrication, the perovskite films fabricated using different processes may demonstrate different optical and electronic properties, although the final composition remains constant. Therefore, it is difficult to perform a fair comparison of different perovskite films, and a systematic study of perovskite films fabricated from similar precursors and processes is needed. Interestingly, recently work has shown that the use of hydration-water-controlled precursors can improve the performance of devices based on perovskite [16]. Furthermore, previous studies have demonstrated that moisture can assist the growth of CH3NH3PbI3 and lead to better device performance [25, 26]. Therefore, the investigation of the optical properties of hydration-water-improved perovskite films is of significant importance.

Spectroscopic ellipsometry (SE) is an indirect measurement technique routinely used for determining the optical properties of thin films [27]. It features fast and non-destructive detection over a wide photon-energy range, making it suitable for the characterization of many materials including metals [28, 29], semiconductors [30, 31], insulators [32], and nanocrystals [33]. In the SE measurement, two parameters ψ and Δ can be revealed from the expression of complex reflectance ratio ρ [27, 34]:

ρ=tan(Ψ)eiΔ=rprs,
where rp and rs are the Fresnel reflection coefficients of p- and s- polarized light, respectively. Further, ψ and Δ are the amplitude ratio of reflected p- to s-polarized light and the phase shift difference, respectively. The ellipsometric spectra can be fitted based on an optical model, which is constructed from the physical structure of the measured sample. Then, the dielectric functions can be solved.

2. Experimental details

2.1 Preparation of CH3NH3PbI3 precursor solution

PbAc2•3H2O was heated to 100 °C in the glovebox to release the hydration water. PbAc2xH2O was then obtained by mixing PbAc2•3H2O with dehydrated PbAc2 at a certain mole ratio. Finally, the 3CH3NH3I:1PbAc2xH2O precursor solutions were generated by dissolving CH3NH3I and PbAc2xH2O in anhydrous dimethylformamide (DMF) at a 3:1 molar ratio with the concentration of 35 wt%. The reactions process are as follows [16]:

3CH3NH3I+PbAc2·3H2Oinsolution40°CCH3NH3PbI3·H2O+2H2O+2CH3NH3Ac2
CH3NH3PbI3·H2OinairCH3NH3PbI3+H2O

2.2 Device fabrication

The solar-cell devices are constructed with a structure of ITO/ PEDOT:PSS/ CH3NH3PbI3/ [6, 6]-phenyl-C61-butyric acid-methyl-ester (PBCM)/ C60/ 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ Ag. PEDOT:PSS was spin-coated on cleaned ITO substrates at 4,000 rpm. The films were then annealed at 130 °C. Perovskite films were spin-coated from the prepared precursor solutions at 2,000 rpm and then annealed on a hotplate at 100 °C for 5 min. PCBM (dissolved in CB, 20 mg/ml) was spin-coated on top of the perovskite layer at 1,800 rpm. The fabrication of the devices was completed through the thermal evaporation of C60, BCP, and Ag. Detailed information for the solar cells can be found in a previous report by Li et al. [16]. We prepared five solar cells for each hydration-water content, and the solar cells with the highest filling factor were selected for comparison.

2.3 CH3NH3PbI3 film characterization

The optical constants of CH3NH3PbI3 films, a relatively unstable material, are easily affected by moisture in the environment. To avoid degradation, all samples were sealed in a nitrogen environment until SE measurement. SE measurements (J.A. Woollam, Inc., M2000X-FB-300XTF) were performed from 1.38 to 4.13 eV at room temperature and at an incident angle of 65°. All the SE measurements were completed within 30 s after the exposure of the samples to air.

The photoluminescence (PL) intensity was measured immediately after the SE measurement. A semiconductor laser with a wavelength of 447 nm was used as the pump light. The wavelength of PL was selected using a monochromator, and a long-pass filter (>500 nm) was placed before the monochromator to eliminate the influence of stray light from the pump laser. The PL signal was detected using a Si photodetector combined with a lock-in amplifier.

The film morphologies were determined with a scanning electron microscope (FEI Siron200, SEM) and an atomic force microscope (Bruker Dimension Icon VT-1000 System, AFM) in the tapping mode. The perovskite phases were analyzed using an X-ray diffractometer (Bruker-AXS D8, XRD) with a Cu-Kα radiation source (λ = 1.5406 Å).

2.4 Solar-cell characterization

J-V curves were measured using an electrochemical workstation (ZAHNER CIMPS) under AM1.5 sunlight at 100 mV/m2 irradiance generated by a Class AAA sun simulator (SF300-A Sciencetech-Inc.). A Si diode (Hamamatsu S1133) was used to calibrate the light intensity and stability. The solar cells were masked with a 3D-printed aperture to define the active area.

3. Results and discussions

To investigate the influence of hydration water on the formation of CH3NH3PbI3 through the one-step method from a 3:1 solution (by moles) of CH3NH3I:PbAc2xH2O in DMF precursor solutions, five CH3NH3PbI3 samples were fabricated on quartz/ PEDOT: PSS substrates. The content of hydration water was carefully controlled in 3CH3NH3I:1PbAc2xH2O with x equals to 0, 0.75, 1.50, 2.25, and 3.00. Figure 1 illustrates the morphology of CH3NH3PbI3 films measured by AFM and SEM. The values of root-mean-square roughness (RMS roughness, Rq) of the five samples were 14.1, 12.2, 10.7, 10.7, and 10.8 nm, respectively. The flat surfaces of CH3NH3PbI3 films enable SE measurements [18, 23], and the surface roughness decreased with the increasing content of hydration water in PbAc2 until it reaches x = 1.50 from x = 0, which indicates that hydration water plays an important role on the film-surface smoothness. However, the film roughness is not significantly improved with a hydration-water concentration greater than 1.50. The SEM images show that the porosity of CH3NH3PbI3 films tend to increase with increasing hydration-water concentration, indicating that excess hydration water may have a negative effect on the film quality.

 figure: Fig. 1

Fig. 1 Surface Morphology and RMS roughness of hydration-water-improved CH3NH3PbI3 films measured using AFM (left) and SEM (right). The scale bar for SEM is 1 μm.

Download Full Size | PPT Slide | PDF

The XRD patterns of CH3NH3PbI3 films are shown in Fig. 2. They show that all samples have a good crystalline profile. Recent reports have established that CH3NH3PbI3 can exhibit a cubic oe-24-22-A1431-i001phase at high temperature and a tetragonal (I4/mcm) phase at room temperature [35, 36]. Our results indicate that the CH3NH3PbI3 films prepared using PbAc2 are in the tetragonal phase [37, 38]. A majority of the (110) plane and a very small portion of the (002) plane for the tetragonal phase can be observed in Fig. 2(b). The samples also contain small quantities of PbI2 (2 orders of magnitude lower than the CH3NH3PbI3 peak), which may originate from the annealing process or the degradation of perovskite.

 figure: Fig. 2

Fig. 2 XRD spectra of CH3NH3PbI3 films.

Download Full Size | PPT Slide | PDF

The ellipsometric spectra collected at a fixed incident angle of 65° were fitted to an optical model consisting of semi-infinite quartz substrate/ PEDOT: PSS buffer layer/ CH3NH3PbI3 layer/ roughness layer/ ambient air based on the structure of the fabricated CH3NH3PbI3 films. The surface-roughness layer is modeled on a Bruggeman effective medium approximation (EMA) with a mixture of 50% CH3NH3PbI3 and 50% voids [39]. To obtain the accurate dielectric constants of each layer, the ellipsometric spectra were collected for the quartz substrate, quartz/ PEDOT: PSS, and the final CH3NH3PbI3 films, respectively [18]. The dielectric functions of CH3NH3PbI3 are described by the Tauc-Lorentz model [40]. The imaginary part (ε2) is obtained from the Tauc joint density of states and the Lorentz oscillator as follows:

ε2TL(E)=ACEp(EEg)2(E2Ep2)2+C2E2·1E(E>Eg),=0(EEg),
where A is the amplitude parameter, Ep is the peak transition energy, C is the broadening term, and E is the photon energy. The real part (ε1) of the dielectric function can be obtained through Kramers-Kronig integration:
ε1(E)=ε+2πPEgξε2(ξ)ξ2E2dξ,
where P is the Cauchy principal part of the integral and is the constant contribution to ε1 at high frequency. Four Tauc-Lorentz oscillators were used to construct the dielectric functions of CH3NH3PbI3. The Tauc gap Eg was kept constant for all oscillators. The ε value of all samples is set to 1.0. The fitting of all CH3NH3PbI3 samples displays good agreement with collected data. Figure 3 illustrates the hydration-water dependence of the complex refractive index and dielectric constants of CH3NH3PbI3 films. The measured dielectric constants and XRD patterns indicate that the final composition of perovskite films remains constant. It can be seen from Figs. 3(a) and 3(c) that CH3NH3PbI3 films prepared with a low-hydration precursor have higher ε1 and n in the low-energy range. In the transparent range, where ε2 is 0, the static dielectric constant is given by [27]
εs=1+iqiliε0Ef,
where qi and li are the electric charge of the electric dipole and distance between the charge pair in the material. ε0 is the free-space permittivity, and Ef is the electric field. The XRD patterns in Fig. 2 indicate that the structure parameters of all samples are identical; thus, refractive-index variation induced by atomic and electric polarization can be neglected. As previously reported, CH3NH3PbI3 is filled with different percentages of voids [20] because of the evaporation of moisture during the fabrication process of CH3NH3PbI3 films. Therefore, a high content of hydration water will result in a CH3NH3PbI3 sample with high porosity and low refractive index. The SEM images in Fig. 2 show a similar result.

 figure: Fig. 3

Fig. 3 Measured (a)&(b) complex refractive index and (c)&(d) dielectric constants of CH3NH3PbI3 films.

Download Full Size | PPT Slide | PDF

To further understand the measured dielectric constants in Fig. 3, we list the fitted parameters of CH3NH3PbI3 samples in Table 1. It can be seen that the band gap of CH3NH3PbI3 films is approximately 1.6 eV, which is consistent with previous reports [18, 24]. This band gap is the difference between the valence-band maximum and conduction minimum of CH3NH3PbI3 [24, 41]. The calculated Urbach energy of five samples are in the range of 12-14 meV, which indicates the formation of suppressed tail states in all CH3NH3PbI3 samples. Absorption peaks at 2.5 eV are also observed in our measurement, which can be attributed to another direct transition in CH3NH3PbI3 [18]. It has been reported that PbI2 has a sharp transition peak at 2.5 eV, while the CH3NH3PbI3 peak is broad [42]. The deceasing broadening term C2 indicates that a higher level of hydration water results in a higher content of PbI2 in perovskite films. The transition peak at approximately 3.2 eV is not as sharp as that reported by M. Shirayama et al. [18]. This is probably due to the different sample preparation method employed here; the deliberately introduced moisture reduced the ε2 value of CH3NH3PbI3. The last oscillator located at approximately 4 eV varies among different samples. This is due to inaccurate ellipsometric data at the short wavelength range induced by light scattering and depolarization. The measured extinction coefficient (k) decreases with the increasing content of hydration water. We attribute this phenomenon to the light scattering caused by the high surface roughness and the non-void structure formed by the fully dehydrated precursor [18]. It should be noted that, although a high roughness can benefit the absorption of the perovskite layer, it may also result in more defects to solar cells.

Tables Icon

Table 1. Dielectric Function Parameters of CH3NH3PbI3 Films in Units of eV

Based on the obtained complex refractive index, the efficiency limit of CH3NH3PbI3 perovskite thin-film solar cells was calculated with a detailed balance model [17, 43, 44]. In the detailed balance model, the short-circuit photocurrent density Jsc of an illuminated solar cell is given by

Jsc=q0a(λ,L)ΓAM1.5G(λ)E(λ)dλ,
where q is the elementary charge, ΓAM1.5G is the AM1.5 solar flux, E is the corresponding photon energy, and a(λ, L) is the absorptivity, which can be simulated from the film thickness L and absorption coefficient α. The dark saturation current density J0 is formulated as
J0=q0a(λ,L)Γ0(λ)E(λ)dλ,
where Γ0(λ) is the thermal emission spectrum of the absorber layer, which can be calculated from the law of black-body radiation. The open-circuit voltage Voc is hence determined by
Voc=kBTqln(JscJ0+1),
where kB is the Boltzmann constant and T is the working temperature of solar cells. Here, we assume T = 300 K and absorber thickness L = 300 nm.

The simulated values of Jsc and Voc for all samples are approximately 28.5 mA/cm2 and 1.32 V, respectively. Owing to the identical band gap and high absorption coefficient, the calculated Jsc and Voc for different samples are essentially consistent. We also prepared several planar heterojunction solar cells to compare experimental results with the simulation results. The measured J-V curves of selected solar cells in Fig. 4(a) show that the performance of CH3NH3PbI3 solar cells strongly depend on hydration water. As illustrated in Fig. 4(b), the Voc values of the prepared solar cells increase with increasing level of hydration water, and the short-circuit photocurrent density Jsc reaches the maximum value at x = 1.50. The low Voc values of our solar cells can be attributed to surface defect levels and metallic contacts [45, 46], which were not considered in the simulation with the detailed balance model. The deviation among five samples indicates that the performance of perovskite solar cells is still influenced by hydration water. As all the solar cells have the same structure, the difference must originate from the perovskite films and is related to the content of hydration water in the precursor.

 figure: Fig. 4

Fig. 4 (a) Measured J-V curves of the selected planar heterojunction configuration for CH3NH3PbI3 solar cells. The solid and dashed lines indicate the forward and backward scanned data, respectively. (b)&(c) The performance of all fabricated solar cells. The plot indicates the average value, and the error bar indicates the upper and lower bounds of measured data. (d) Measured PL spectra of CH3NH3PbI3 films.

Download Full Size | PPT Slide | PDF

To understand the difference between experiment and simulation, we further measured the PL spectra of CH3NH3PbI3 films. As shown in Fig. 4(d), the PL emission peaks are located in the band gap of CH3NH3PbI3 and originate from the recombination of charge carriers. The hydration water can significantly enhance the PL intensity, indicating that the introduction of hydration water can suppress the formation of non-radiative pathways in CH3NH3PbI3 films to result in longer carrier lifetimes [26]. Considering Rau’s reciprocity relation [47], the dark-current density in Eq. (8) can be rewritten as

J0=qηEL0a(λ,L)Γ0(λ)E(λ)dλ,
where ηEL is the absolute quantum efficiency of electroluminescence (EL). As previously reported, the PL emission in CH3NH3PbI3 solar cells originates from the same type of charge pairs as in EL, and their efficiencies are approximately proportional to the PL emission [48]. If we replace ηEL with the PL efficiencyηPL, the open-circuit voltage difference ΔVoc can be obtained as
ΔVOC=kBTqln[(JSC,1J0,1+1)/(JSC,2J0,2+1)],kBTqln(J0,2J0,1)kBTqln(ηPL,1ηPL,2),
As indicated in Table 2, the calculated ΔVoc between 0H2O and 3.00H2O CH3NH3PbI3 solar cells is approximately 0.074 V, which is less than the value obtained in the experiment. This discrepancy probably results from the fact that the PL measurements are performed under the thin-film condition, while Voc is collected for solar-cell devices. Furthermore, the different values of film-surface roughness may also affect the contact resistance.

Tables Icon

Table 2. ΔVoc of Perovskite Solar Cells with Different Hydration Water Concentration

The short-circuit photocurrent density Jsc depends on various factors in the CH3NH3PbI3 layer, such as roughness, non-radiative pathway, and porosity. For 0H2O and 0.75H2O samples, the high roughness and non-radiative pathway makes the Jsc values less than that for the 1.50H2O sample. The 2.25H2O and 3.00H2O samples have higher radiative recombination efficiency, but the high porosity in the absorbing layer influenced the output current density by blocking the transport of electrons and holes. However, the 1.5H2O sample has a good balance between the non-radiative pathway and porosity, and it has the highest PCE among all samples.

4. Conclusion

In summary, the optical and structure properties of hydration-water-improved CH3NH3PbI3 perovskite films were studied using SE and PL measurements. The measured optical constants show that the band gap of the prepared CH3NH3PbI3 films is approximately 1.6 eV, which is insensitive to the content of hydration water in the precursor, while the content of PbI2 may increase with increasing hydration-water concentration. The SE and PL results indicate that, although hydration water can reduce the non-radiative pathway in the perovskite film, it increases porosity, which leads to a complex variation of PCE. Although the efficiency limitation can be predicted with a detailed balance model, the performance of perovskite solar cells is limited by the film quality. Solar cells based on CH3NH3PbI3 with different hydration-water concentrations were fabricated, and their measured J-V curves show that hydration water in perovskite precursors favors the formation of a radiative pathway in CH3NH3PbI3 films and leads to a higher open-circuit voltage. Simulations with the Rau’s reciprocity relation also agree with the experiments. Therefore, the hydration-water concentration is confirmed to play an important role in CH3NH3PbI3 films by influencing the surface roughness, non-radiative pathway, and film porosity. We found that the best hydration-water concentration is x = 1.50 for the 3CH3NH3I:1PbAc2xH2O precursor solution. The results reported in this work provide a guideline for further optimization of the performance of perovskite thin-film solar-cell devices by using hydration water.

Funding

National Natural Science Foundation of China (NSFC) (11174058, 61275160, 11104037, 11374055, and 61575048); No. 2 National Science and Technology Major Program of China (2011ZX02109-004); Program of China Scholarships Council (201606100168).

References and links

1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009). [CrossRef]   [PubMed]  

2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015). [CrossRef]  

3. Y. Zhao, M.-Y. Sheng, W.-X. Zhou, Y. Shen, E.-T. Hu, J.-B. Chen, M. Xu, Y.-X. Zheng, Y.-P. Lee, D. W. Lynch, and L. Y. Chen, “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express 20(1), A28–A38 (2012). [CrossRef]   [PubMed]  

4. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013). [CrossRef]  

5. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015). [CrossRef]   [PubMed]  

6. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015). [CrossRef]   [PubMed]  

7. G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015). [CrossRef]  

8. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015). [CrossRef]   [PubMed]  

9. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013). [CrossRef]   [PubMed]  

10. K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016). [CrossRef]   [PubMed]  

11. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014). [CrossRef]   [PubMed]  

12. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014). [CrossRef]   [PubMed]  

13. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013). [CrossRef]   [PubMed]  

14. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014). [CrossRef]   [PubMed]  

15. W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015). [CrossRef]   [PubMed]  

16. L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

17. E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015). [CrossRef]  

18. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016). [CrossRef]  

19. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015). [CrossRef]   [PubMed]  

20. X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, and G. G. Qin, “Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry,” Opt. Mater. Express 5(1), 29–43 (2015). [CrossRef]  

21. J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015). [CrossRef]  

22. J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015). [CrossRef]   [PubMed]  

23. C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015). [CrossRef]  

24. A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016). [CrossRef]   [PubMed]  

25. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014). [CrossRef]   [PubMed]  

26. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015). [CrossRef]   [PubMed]  

27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007).

28. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012). [CrossRef]  

29. D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014). [CrossRef]  

30. L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010). [CrossRef]  

31. J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016). [CrossRef]   [PubMed]  

32. Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015). [CrossRef]   [PubMed]  

33. R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009). [CrossRef]  

34. G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000). [CrossRef]  

35. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015). [CrossRef]  

36. J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015). [CrossRef]  

37. S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015). [CrossRef]   [PubMed]  

38. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013). [CrossRef]  

39. H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000). [CrossRef]  

40. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996). [CrossRef]  

41. M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015). [CrossRef]   [PubMed]  

42. E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975). [CrossRef]  

43. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]  

44. D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015). [CrossRef]   [PubMed]  

45. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Dev. 31(5), 671–678 (1984). [CrossRef]  

46. S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015). [CrossRef]  

47. U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76(8), 085303 (2007). [CrossRef]  

48. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref] [PubMed]
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
    [Crossref]
  3. Y. Zhao, M.-Y. Sheng, W.-X. Zhou, Y. Shen, E.-T. Hu, J.-B. Chen, M. Xu, Y.-X. Zheng, Y.-P. Lee, D. W. Lynch, and L. Y. Chen, “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express 20(1), A28–A38 (2012).
    [Crossref] [PubMed]
  4. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  5. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
    [Crossref] [PubMed]
  6. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
    [Crossref] [PubMed]
  7. G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
    [Crossref]
  8. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
    [Crossref] [PubMed]
  9. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
    [Crossref] [PubMed]
  10. K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
    [Crossref] [PubMed]
  11. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
    [Crossref] [PubMed]
  12. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
    [Crossref] [PubMed]
  13. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  14. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
    [Crossref] [PubMed]
  15. W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
    [Crossref] [PubMed]
  16. L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.
  17. E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
    [Crossref]
  18. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
    [Crossref]
  19. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
    [Crossref] [PubMed]
  20. X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, and G. G. Qin, “Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry,” Opt. Mater. Express 5(1), 29–43 (2015).
    [Crossref]
  21. J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
    [Crossref]
  22. J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
    [Crossref] [PubMed]
  23. C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
    [Crossref]
  24. A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
    [Crossref] [PubMed]
  25. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
    [Crossref] [PubMed]
  26. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
    [Crossref] [PubMed]
  27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007).
  28. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  29. D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
    [Crossref]
  30. L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010).
    [Crossref]
  31. J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
    [Crossref] [PubMed]
  32. Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
    [Crossref] [PubMed]
  33. R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
    [Crossref]
  34. G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
    [Crossref]
  35. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
    [Crossref]
  36. J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
    [Crossref]
  37. S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
    [Crossref] [PubMed]
  38. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
    [Crossref]
  39. H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
    [Crossref]
  40. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [Crossref]
  41. M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
    [Crossref] [PubMed]
  42. E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
    [Crossref]
  43. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  44. D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
    [Crossref] [PubMed]
  45. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Dev. 31(5), 671–678 (1984).
    [Crossref]
  46. S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015).
    [Crossref]
  47. U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76(8), 085303 (2007).
    [Crossref]
  48. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
    [Crossref] [PubMed]

2016 (4)

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

2015 (20)

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, and G. G. Qin, “Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry,” Opt. Mater. Express 5(1), 29–43 (2015).
[Crossref]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
[Crossref]

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
[Crossref] [PubMed]

S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015).
[Crossref]

2014 (6)

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

2013 (4)

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

2012 (2)

2010 (1)

L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010).
[Crossref]

2009 (2)

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

2007 (1)

U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76(8), 085303 (2007).
[Crossref]

2000 (2)

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

1996 (1)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

1984 (1)

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Dev. 31(5), 671–678 (1984).
[Crossref]

1975 (1)

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abate, A.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Agarwal, S.

S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015).
[Crossref]

Alam, M. A.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Alexander-Webber, J. A.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Alonso, M. I.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Asadpour, R.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Atwater, H. A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Azarhoosh, P.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Bach, U.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Baikie, T.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Ball, J. M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Ballif, C.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Barnes, P. R. F.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Baumann, A.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Blancon, J.-C.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Bolink, H. J.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Bruijnaers, B. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Bryant, D.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Cai, Q.-Y.

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Campoy-Quiles, M.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Chen, C.-W.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Chen, C.-Y.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Chen, J.-B.

Chen, L.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Chen, L. Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Y. Zhao, M.-Y. Sheng, W.-X. Zhou, Y. Shen, E.-T. Hu, J.-B. Chen, M. Xu, Y.-X. Zheng, Y.-P. Lee, D. W. Lynch, and L. Y. Chen, “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express 20(1), A28–A38 (2012).
[Crossref] [PubMed]

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Chen, L.-Y.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Chen, Q.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Chen, X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Chen, Y.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Chen, Y. L.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Chen, Y.-M.

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Cheng, Y. B.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Chhowalla, M.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Chikamatsu, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Choi, S.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Choy, W. C.

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Chu, J. H.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Chueh, C. C.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Collins, R.

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

Crochet, J. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Crossland, E. J.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

De Wolf, S.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Deibel, C.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Deleporte, E.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

deQuilettes, D. W.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Deschler, F.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Dkhissi, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Doni, E.

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Duan, H.-S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Dyakonov, V.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Eperon, G. E.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Estroff, L. A.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Etheridge, J.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Even, J.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Fang, Y.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Filipic, M.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Friend, R. H.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Fu, K.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Fujimoto, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujiseki, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Fujiwara, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Ginger, D. S.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Goedel, K. C.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Graetzel, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Grancini, G.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Grätzel, M.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Gray-Weale, A.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Dev. 31(5), 671–678 (1984).
[Crossref]

Grosso, G.

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Guo, X.

G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
[Crossref]

Gupta, G.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Habisreutinger, S. N.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Haghighirad, A.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Hara, S.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Harbeke, G.

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Hawkins, N. A.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Ho, K.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Ho-Baillie, A.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

Hong, Z.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Honglin, D.

Hörantner, M. T.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Hsiao, S.-Y.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Hu, E.-T.

Huang, F.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Huang, Q.-H.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Huang, W.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Huang, Z.-Y.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Hüttner, S.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Janssen, R. A.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Jen, A. K. Y.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Jian, L.

L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010).
[Crossref]

Jiang, Y.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

Jie, C.

L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Johnston, M. B.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Kadowaki, H.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kadro, J. M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Kang, H.-W.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Kang, J.

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

Katan, C.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Kato, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Kepenekian, M.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Koh, J.

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Kosten, E. D.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Krc, J.

Laixiang, Q.

Lauret, J.-S.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Lee, Y.-P.

Leguy, A. M. A.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Leijtens, T.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Li, G.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Li, Y.

Liang, P. W.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Liao, C. Y.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Lin, H.-W.

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Lin, J.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Ling, L.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Liu, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Löper, P.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Lu, H.-L.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Lu, W.-J.

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Luo, S.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Luther, J. M.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Lynch, D. W.

Malinkiewicz, O.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Mathews, N.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Meier, E.

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Mhaisalkar, S. G.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Minghui, Y.

Minor, A.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Miyadera, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Mohite, A. D.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Moon, S.-J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Moore, D. T.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Murakami, T. N.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Murata, D.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Nair, P. R.

S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015).
[Crossref]

Nazeeruddin, M. K.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Nelson, C. T.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Nelson, J.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Neukirch, A. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Nie, W.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Niesen, B.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Niu, G.

G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
[Crossref]

Noel, N.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Parilla, P.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Park, J.-S.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pathak, S.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Pathak, S. K.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Pedesseau, L.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Petrozza, A.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Polman, A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Price, M.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Qin, G. G.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ramirez, I.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Rau, U.

U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76(8), 085303 (2007).
[Crossref]

Ren, X.

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Riede, M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Rovira, P.

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

Sadhanala, A.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Sakai, N.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Saliba, M.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Sapori, D.

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

Schreyer, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Scott, M. C.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Sepe, A.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shen, B.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Shen, W.

D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
[Crossref] [PubMed]

Shen, Y.

Sheng, M.-Y.

Shi, D.

D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
[Crossref] [PubMed]

Shifeng, L.

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Shirayama, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Shufeng, W.

Shuping, P.

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Snaith, H. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Song, T. B.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Soufiani, A. M.

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

Spiccia, L.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Steiner, U.

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Stergiopoulos, T.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Stranks, S. D.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Stuckelberger, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Sugita, T.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Sun, Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Sutton, R. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

Tamakoshi, M.

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Topic, M.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Tosatti, E.

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Tretiak, S.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Tsai, H.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Tu, L.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Tvingstedt, K.

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

van Franeker, J. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

van Schilfgaarde, M.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Walsh, A.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Wang, C.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, H. L.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

Wang, H.-H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Wang, J.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Wang, L.

G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
[Crossref]

Wang, P.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Wang, S.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Wang, S.-Y.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Wang, Z. M.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, Z.-Y.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Weber, O. J.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Wei, E.

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

Wei, F.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Wei, S.-H.

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Wei, W.

Wei, Y.-F.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Weller, M. T.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Werner, J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

White, T. J.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

Wiesner, U.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Williams, S. T.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Wong, L. H.

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

Xia, G. Q.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Xiao, M.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Xin, X. K.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Xu, J.-P.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Xu, M.

Yan, Y.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

Yang, J.-H.

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

Yang, S.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Yang, Y.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Yang, Y. M.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Yao, J.

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Yao, S.

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Yin, W.-J.

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

You, J.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Yu, Y.

Yuan, S.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Yum, J.-H.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Zeng, Y.

D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
[Crossref] [PubMed]

Zhan, Y.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Zhang, D.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Zhang, H.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Zhang, J.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Zhang, R.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Zhang, R.-J.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Zhang, W.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Zhang, Y.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Zhao, H. B.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Zhao, Y.

Zheng, L.

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Zheng, Y.

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Zheng, Y.-X.

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Y. Zhao, M.-Y. Sheng, W.-X. Zhou, Y. Shen, E.-T. Hu, J.-B. Chen, M. Xu, Y.-X. Zheng, Y.-P. Lee, D. W. Lynch, and L. Y. Chen, “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express 20(1), A28–A38 (2012).
[Crossref] [PubMed]

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

Zhijian, C.

Zhou, H.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Zhou, S. M.

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Zhou, W.-X.

Zhu, K.

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

Zhu, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Ziang, X.

Zuo, F.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

ACS Nano (2)

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015).
[Crossref] [PubMed]

S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, “Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells,” ACS Nano 9(3), 2311–2320 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015).
[Crossref]

D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014).
[Crossref]

L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010).
[Crossref]

R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

S. Agarwal and P. R. Nair, “Device engineering of perovskite solar cells to achieve near ideal efficiency,” Appl. Phys. Lett. 107(12), 123901 (2015).
[Crossref]

Energy Environ. Sci. (1)

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Dev. 31(5), 671–678 (1984).
[Crossref]

J. Am. Chem. Soc. (2)

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (4)

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A Mater. Energy Sustain. 1(18), 5628–5641 (2013).
[Crossref]

G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015).
[Crossref]

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, “Halide perovskite materials for solar cells: a theoretical review,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8926–8942 (2015).
[Crossref]

C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, and E. Deleporte, “Solid-state physics perspective on hybrid perovskite semiconductors,” J. Phys. Chem. C 119(19), 10161–10177 (2015).
[Crossref]

J. Phys. Chem. Lett. (3)

J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, “Optical properties of photovoltaic organic–inorganic lead halide perovskites,” J. Phys. Chem. Lett. 6(23), 4774–4785 (2015).
[Crossref] [PubMed]

Light Sci. Appl. (1)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Nanoscale (2)

K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016).
[Crossref] [PubMed]

A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015).
[Crossref] [PubMed]

Nature (2)

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016).
[Crossref]

Phys. Rev. B (3)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

H. Fujiwara, J. Koh, P. Rovira, and R. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61(16), 10832–10844 (2000).
[Crossref]

U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Phys. Rev. B 76(8), 085303 (2007).
[Crossref]

Phys. Status Solidi (1)

E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, “Interlayer interaction and optical properties of layer semiconductors: 2H and 4H polytypes of PbI2,” Phys. Status Solidi 68(2), 569–574 (1975).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

G. Q. Xia, R. J. Zhang, Y. L. Chen, H. B. Zhao, S. Y. Wang, S. M. Zhou, Y. X. Zheng, Y. M. Yang, L. Y. Chen, J. H. Chu, and Z. M. Wang, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71(7), 2677–2683 (2000).
[Crossref]

Sci. Rep. (3)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

D. Shi, Y. Zeng, and W. Shen, “Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping,” Sci. Rep. 5, 16504 (2015).
[Crossref] [PubMed]

K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells,” Sci. Rep. 4, 6071 (2014).
[Crossref] [PubMed]

Science (2)

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Other (2)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007).

L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Surface Morphology and RMS roughness of hydration-water-improved CH3NH3PbI3 films measured using AFM (left) and SEM (right). The scale bar for SEM is 1 μm.
Fig. 2
Fig. 2 XRD spectra of CH3NH3PbI3 films.
Fig. 3
Fig. 3 Measured (a)&(b) complex refractive index and (c)&(d) dielectric constants of CH3NH3PbI3 films.
Fig. 4
Fig. 4 (a) Measured J-V curves of the selected planar heterojunction configuration for CH3NH3PbI3 solar cells. The solid and dashed lines indicate the forward and backward scanned data, respectively. (b)&(c) The performance of all fabricated solar cells. The plot indicates the average value, and the error bar indicates the upper and lower bounds of measured data. (d) Measured PL spectra of CH3NH3PbI3 films.

Tables (2)

Tables Icon

Table 1 Dielectric Function Parameters of CH3NH3PbI3 Films in Units of eV

Tables Icon

Table 2 ΔVoc of Perovskite Solar Cells with Different Hydration Water Concentration

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρ=tan(Ψ) e iΔ = r p r s ,
3C H 3 N H 3 I+PbA c 2 ·3 H 2 O in solution 40°C C H 3 N H 3 Pb I 3 · H 2 O+2 H 2 O+2C H 3 N H 3 A c 2
C H 3 N H 3 Pb I 3 · H 2 O in air C H 3 N H 3 Pb I 3 + H 2 O
ε 2TL (E)= AC E p (E E g ) 2 ( E 2 E p 2 ) 2 + C 2 E 2 · 1 E (E> E g ) , =0 (E E g ) ,
ε 1 (E)= ε + 2 π P E g ξ ε 2 (ξ) ξ 2 E 2 dξ ,
ε s =1+ i q i l i ε 0 E f ,
J sc =q 0 a (λ,L) Γ AM1.5G (λ) E(λ) dλ ,
J 0 =q 0 a (λ,L) Γ 0 (λ) E(λ) dλ ,
V oc = k B T q ln( J sc J 0 +1) ,
J 0 = q η EL 0 a (λ,L) Γ 0 (λ) E(λ) dλ ,
Δ V OC = k B T q ln[( J SC,1 J 0,1 +1)/( J SC,2 J 0,2 +1)] , k B T q ln( J 0,2 J 0,1 ) k B T q ln( η PL,1 η PL,2 ) ,

Metrics