Abstract

Multiheterodyne spectroscopy implemented with semiconductor Fabry-Pérot lasers is a method for broadband (> 20 cm−1), high spectral resolution (~1 MHz) and high time resolution (< 1 µs/spectrum) spectroscopy with no moving parts utilizing off-the-shelf laser sources. The laser stabilization approach demonstrated here enables continuous frequency tuning (at 12.5 Hz repetition rate) while allowing for multiheterodyne wavelength modulation spectroscopy (WMS). Spectroscopic detection of N2O around 1185 cm−1 is experimentally realized, which shows a direct absorption sensitivity limit of ~1.5⨯10−3/√Hz fractional absorption per mode. This can be lowered using WMS down to 5⨯10−4/√Hz per mode, limited by optical fringes. This approaches the range of sensitivities of standard single-mode laser based spectrometers, which demonstrates that the multiheterodyne method is well-suited for chemical sensing of spectrally broadened absorption features or for multi-species measurements.

© 2016 Optical Society of America

1. Introduction

Quantum cascade lasers (QCLs) [1] have undergone immense technical progress in recent years and are now the only tunable semiconductor lasers that cover almost the complete mid-IR spectral region with room temperature and continuous-wave operation [2]. Their applicability to trace gas detection has been thoroughly explored over the last decade using single-spectral mode distributed-feed-back (DFB) QCLs. Even though these lasers show excellent spectral resolution (<0.001 cm−1) [3], they are often limited by narrow spectral coverage, making them unsuitable for detection of molecules with broad absorption features. This issue has been the main motivation behind the work on external cavity (EC) interband cascade lasers (ICLs) [4] and EC-QCLs [5], which now provide broadband mid-IR spectral tuning ranges (>100 cm−1) and narrow linewidths suitable for broadband and high-resolution spectroscopy. However, the EC lasers are based on intricate opto-mechanical setups that provide slow wavelength tuning, increase cost, and are vibration-sensitive. Furthermore, mode-hop free continuous tuning requires additional effort and is very difficult to maintain together with broad tunability.

Recently, optical frequency comb sources and their applications to spectroscopic measurements [6–13] are gaining a lot of attention, and have the potential to mitigate some of the issues with broadly tunable single mode lasers. Nevertheless, these frequency comb systems are quite costly, bulky and complex, which makes their implementation in low maintenance field-deployable instrumentation difficult. Hence, there is a need for a simple, robust and compact mid-IR detection technique that fills the gap between the spectrally limited single mode laser absorption techniques and the more versatile external cavity or frequency comb approaches. The Fabry-Pérot laser based multiheterodyne technique is one of the techniques that may fill this technological gap.

Conventional single-mode (single-frequency) semiconductor lasers despite their lack in spectral coverage, are still preferentially used in many contemporary trace gas detection systems. These sources have been studied extensively and various modulation techniques have been applied in order to increase the detection sensitivity. To address the spectral coverage issue, it would be ideal if similar functionality can be achieved with broadband, multimode semiconductor lasers. Multimode FP-QCLs are promising candidates to provide mid-infrared radiation with broadband spectral coverage and have already been studied with a focus on spectroscopic applications. Their capabilities have been explored in the recently developed multimode absorption spectroscopy (MUMAS) technique [14–16], which however, requires careful characterization of the multimode structure of the laser over its entire temperature and injection current range together with an accurate model of the detected species. It is a severe limitation that the method cannot measure the absorption of the sample at each individual laser emission line, but only an integrated absorption of all modes.

The multiheterodyne spectroscopy (MHS) technique provides a significantly improved method to utilize the full spectral coverage of the FP-lasers while maintaining high spectral resolution and unambiguous retrievals of spectral signatures. This is achieved by down-converting the optical frequencies of the light source to the RF domain through a multiheterodyne mixing process, which provides the amplitude and phase of all emission modes of the free-running FP-laser. Since this also provides the possibility of electrical tuning in the same way as their single-mode counterparts, this opens up the possibility of utilizing detection techniques and modulation schemes, which can enhance the ultimate performance of multi heterodyne spectrometers. Such methods are ideally suited for electrically controlled semiconductor sources, and to our knowledge have not been used in multiheterodyne systems based on conventional frequency combs. Also, unlike the EC-laser based spectrometers, a multiheterodyne spectrometer based on FP-lasers would not contain any moving parts, which increases robustness and opto-mechanical stability without compromising the broadband detection properties. In this work we present a proof-of-concept demonstration of wavelength modulated MHS (WM-MHS) with improved sensitivities compared to direct absorption MHS (DA-MHS).

2. Experimental methods and procedures

The basic principles of multiheterodyne spectroscopy follow those outlined for dual-comb spectroscopy by Schiller [17], where in place of the frequency combs two multimode FP-QCLs with different free spectral ranges (FSRs) are used. By passing the light of one light source (the signal) through the sample and superimposing it with the light from the second source used as local oscillator (LO), heterodyne beat notes are created in the electrical detector signal. For each optical mode of the signal laser a beat note is generated with electrical amplitude proportional to the optical field amplitudes of the signal. If the differences of the signal and LO mode frequencies all have the same sign, the RF beat notes have a constant spacing corresponding to the FSR difference of the signal and LO. Hence, this method effectively maps the equidistant optical frequency components of the signal source to equidistant heterodyne beat notes in the radio-frequency (RF) domain. The down-converted optical signal can be detected by a fast photodetector and measured with a conventional RF-spectrum analyzer or a sufficiently fast digitizer. In the case of FP-laser based MHS, the FSR difference (ΔFSR) is obtained by carefully selecting a laser pair with slightly different laser cavity lengths or by controlling ridge widths, turn-on voltages, and threshold currents during laser manufacturing [18].

The experimental configuration used in this work is shown in Fig. 1(a) and follows that used in previous work [18] with a few important modifications. The two most notable are; (i) a frequency discriminator locking scheme for stabilization of the beat note frequencies [see Fig. 1(b)] and (ii) the implementation of a beat note folding scheme [see Fig. 1(c)].

 figure: Fig. 1

Fig. 1 (a) Schematic overview of the experimental setup of MHS with two multimode FP-QCLs. The setup follows that used in previous work [18] with the addition of a frequency discriminator locking circuit and a beat note folding scheme. (b) Schematic circuit diagram of the frequency discriminator locking scheme. (c) Visualization of the beat note folding scheme. The negative beat notes are folded in between the positive with equidistant beat note spacing by placing the 0th beat note at |ΔFSR|/4. (d) Beat notes measured with the spectrum analyzer after implementing the beat note folding. The beat note numbering has been added for convenience. A FWHM of 1.9 MHz is measured for the 1st beat note. (e) Frequency locking performance during a time span of 600 seconds. The circles represent the center frequency of the 0th beat note during this time span, with locking (black) and without locking (orange).

Download Full Size | PPT Slide | PDF

2.1 Beat note folding

The RF beat notes shown in Fig. 1(d) originate from beating between the optical frequencies of the two multimode FP-lasers shown in the top left part of Fig. 1(a). For the particular pair of FP-QCLs used in this work the ΔFSR = FSR1-FSR2 is ~160 MHz, which implies that the maximum number of beat notes within the detector 3 dB bandwidth of 1 GHz would be roughly 6. However, this applies only if the frequency differences of all modes have the same sign. Since positive and negative frequency differences cannot be distinguished this opens up the possibility of beat note folding to double the number of beat notes (and hence the spectral coverage) within the detector bandwidth. This is accomplished by tuning the two lasers so that the center modes of the individual combs have a frequency difference of ΔFSR/4. This creates RF beat notes at a quarter of odd multiples of the absolute value of the FSR difference, i.e., (2n + 1)|ΔFSR|/4, where (n = 0, 1, 2, ...). The beat note from the center modes will appear as first beat note with the other beat notes alternatingly left of and right of the center at the higher RF frequencies. This can be seen in Fig. 1(d) where the “negative” beat notes fold in between the “positive” beat notes and a spectrum with an equidistant beat note spacing of |ΔFSR|/2 is created. By carefully keeping track of the beat note numbering, the beat notes can be unfolded during the signal processing, which reveals the absorption spectrum of interest. The beat note folding scheme doubles the number of beat notes that can be resolved within the detector bandwidth and hence doubles the spectral coverage for a particular MHS-system compared to the conventional non-aliased approach. By implementing the beat note folding scheme in this work we have mitigated the issue of narrow ~5 cm−1 spectral coverage of the prior system [18]. Within 3 dB bandwidth of the photodetector we can access 12 beat notes spaced by FSR of ~1.3 cm−1, which gives instantaneous spectral coverage of ~16 cm−1. As shown in Fig. 1(d) up to 22 beat notes can be observed at frequencies <1.7 GHz despite the bandwidth limitation of the photodetector, which corresponds to instantaneous spectral coverage of ~28 cm−1.

2.2 Beat note frequency locking

With free-running FP-QCLs, drifts in the center frequencies of the beat notes limit the long term performance of the system and add significant complexity to the data acquisition and signal processing procedures. Therefore it is desirable to frequency lock the signal laser to the local oscillator laser to stabilize the beat note frequency. In our setup this is accomplished by a frequency discriminator and an active feedback control of the injection current of the signal laser via an analog PID-controller (SRS SIM-960). The discriminator shown in Fig. 1(b) is based on an Analog Devices gain and phase detector (AD8302) with two input channels, labeled VA and VB. First, the RF-beat note signal from the photodetector is filtered with a low-pass filter (Mini-Circuits BLP-50 + ) used to isolate the desired beat note [in our experiment the first RF beat note marked as 0th in Fig. 1(d) is used]. The filtered signal is then split into two parts, of which one experiences a frequency independent attenuation of −20 dB (Mini Circuits HAT-20 + ) and the other passes through a custom-made highpass RC-filter providing the required frequency dependent slope response. The two signals (VA and VB) are supplied to the inputs of the gain and phase detector, whose output voltage is proportional to log(VA/VB). This gives a discriminator output voltage that is virtually a linear function of the beat note center frequency. A set-point voltage for the PID-controller is selected such that the beat note frequency is at |ΔFSR|/4. Through this procedure, the fluctuations of the beat note center frequency are directly translated into voltage fluctuations, which serve as the error signal. The analog PID-controller limits the bandwidth of the feedback loop to 100 kHz. Figure 1(e) shows the center frequency of the lowest frequency (0th) beat note as a function of time during a time span of ~10 minutes. The center frequency without the frequency locking exhibits a drift of a few MHz over the course of 10 minutes, which reduces to below tens of kHz for the locked case.

2.3 Beat note noise characteristics

The beat note amplitude noise characteristic is an important indicator of the expected performance of the MHS spectrometer. The relative intensity noise (RIN) and the instantaneous frequency noise of a single beat note were measured (see Fig. 2), and are representative to all beat notes with comparable amplitude. The low frequency RIN (Fig. 2, orange trace) indicates that a noise-equivalent absorption (NEA) in the 10−3/√Hz range can be achieved by direct measurement of the beat note attenuation. The system clearly shows a 1/f noise limited performance and a significant improvement can be attained by shifting the detection to higher frequencies. For instance, at 10 kHz the RIN is lowered by more than an order of magnitude to 8.5⨯10−5/√Hz, which indicates that with a suitable modulation procedure NEAs of 10−4/√Hz are feasible.

 figure: Fig. 2

Fig. 2 Relative intensity noise (RIN) measurement of the 1st beat note amplitude as a function of frequency is shown by the orange trace. The instantaneous frequency noise of the same beat note is shown by the black trace.

Download Full Size | PPT Slide | PDF

2.4 Direct absorption and wavelength modulation spectroscopy

In order to perform swept direct absorption multiheterodyne spectroscopy one needs to ensure that sufficient spectral overlap between the two FP-QCLs is obtained at the frequency of the molecular transition to be probed. This is accomplished by tuning the injection currents of the lasers within the determined low-noise current regions. Once this procedure has been performed the lasers can be intermutually frequency stabilized through the frequency discriminator locking procedure and further frequency tuning can be performed by solely controlling the signal laser. Figure 3 shows the FTIR and RF beat note spectra obtained with maximum spectral overlap at the R18e N2O transition at ~1185 cm−1. In the left panel the FTIR spectra for the signal- and local oscillator laser are shown. For convenience, labels of the optical modes of the down-converted RF beat notes starting from 0 to + 5 and −5, respectively, are marked. Note that the limited resolution of the FTIR measurement, in this case 0.125 cm−1, prevents the direct observation of the FSR difference. The top panel shows a comparison of the FTIR spectra with and without absorber. The attenuation of a single optical mode of the signal laser is clearly visible and indicated by the dotted line. The right panel of Fig. 3, shows the corresponding beat notes measured in the RF domain. In this case, the beat note that is affected by the absorption from the R18e N2O line is tuned by the injection current to |ΔFSR|/4 (0th beat note). Since the absorber used for this direct absorption measurement has a rather narrow linewidth, only this particular beat note is attenuated. Of course, a broader absorber would encode spectroscopic information in adjacent beat notes as well.

 figure: Fig. 3

Fig. 3 Left panel: FTIR measurements of the signal- and local oscillator FP-lasers. The top panel shows two consecutive signal laser measurements with and without absorber. The corresponding beat notes are shown in the right panel, where the attenuated beat note is colored orange. The lower amplitude of this beat note compared to adjacent beat notes indicates the attenuation induced by the absorber.

Download Full Size | PPT Slide | PDF

The direct absorption measurements are obtained through a slow scan of the frequency of the signal laser. A measurement of the amplitude of the 0th beat note is recorded by the spectrum analyzer using a bandwidth of 25 MHz around the beat note center frequency. The beat note amplitude measurements are then analyzed in post-processing and a Voigt fit based on parameters from the HITRAN database is used to extract relevant spectroscopic information. This procedure follows that of conventional direct absorption spectroscopy using single mode light sources with the added benefit of freely choosing which optical mode to analyze. Since the spectroscopic information from all beat notes are available simultaneously the analysis of this information is purely limited by data acquisition, transfer, and signal processing capabilities.

The wavelength modulated measurements follow the same basic principles as the previously described swept direct absorption counterpart. However, in addition to the slow ramp a sinusoidal modulation of 10 kHz is added to the injection current. This injection current modulation causes an intensity modulation of the optical modes that is encoded in the beat note amplitude affected by absorption. By demodulating at an harmonic of the modulation frequency a wavelength modulated spectrum is obtained. This effectively moves the detection away from the baseband, which is often plagued by significant 1/f noise. A schematic of the basic principles of wavelength modulated multiheterodyne spectroscopy is shown in Fig. 4. This shows how the molecular absorption transforms the modulation of the lasers into a modulation of the beat note amplitude as the lasers are swept across the transition.

 figure: Fig. 4

Fig. 4 Basic principle of WM-MHS. The injection current of the lasers are sinusoidally modulated at 10 kHz, which is converted into an intensity modulation by the absorption feature. The intensity modulation is directly mapped to the corresponding beat note and can be demodulated by a lock-in amplifier to obtain the WM-MHS spectrum.

Download Full Size | PPT Slide | PDF

3. Results

In order to demonstrate the applicability and evaluate the potential of the multiheterodyne technique a direct absorption measurement of the R18e N2O transition at ~1185 cm−1 (~8.5 µm) was performed. A fully resolved absorption lineshape can be measured by scanning the injection current of the signal and local oscillator lasers simultaneously while observing the amplitude of the beat notes. Any attenuation due to absorption at the wavelengths of any of the signal laser modes will be directly translated to an attenuation of the corresponding beat note in the RF spectrum. Measurements of the amplitudes of each individual beat note in the RF domain within a suitable RF demodulation bandwidth (e.g., ~beat note linewidth⨯10) gives absorption information for all modes of the signal laser accessible within the photodetector bandwidth. Within the active feedback loop bandwidth of the beat note frequency locking hardware, the laser currents can be additionally modulated with a sinusoidal waveform to achieve wavelength modulation (WM) of the output multimode radiation. This allows for implementation of a WMS measurement scheme known to effectively suppress 1/f-type noise and thus improve the absorption sensitivity of MHS. In MHS, the absorption information can be recorded simultaneously at the wavelengths of all down-converted signal laser modes without the use of any wavelength selective element. This combines a high-resolution measurement (limited by a ~2 MHz width of the FP modes observed in a free-running FP-QCL), with an instantaneous broadband spectral coverage (limited by the number of detectable FP modes).

As discussed above, the simplest realization of the MHS technique is to perform direct absorption measurements. A frequency tuning across the absorption line was accomplished by supplying a 12.5 Hz ramp to the injection currents of the signal- and local oscillator FP-lasers simultaneously (~0.4 mA amplitude). The amplitude-vs-time recordings of the beat notes were performed with a bandwidth of 25 MHz around each beat note center frequency. In Fig. 5 the demodulated squared amplitude-vs-time trace of the beat note corresponding to the attenuated 0th mode is displayed. The trace was acquired during 37.2 ms with a sampling frequency of 25 MS/s. The gray line represents the squared amplitude-vs-time data (recalculated into transmission) measured by a Tektronix RSA6106A spectrum analyzer, whereas the orange circles represent a time-windowed average (0.5 ms) of the same data. The solid black line corresponds to a direct absorption Voigt lineshape fit to the data with a second order polynomial baseline correction.

 figure: Fig. 5

Fig. 5 Wavelength-scanned direct absorption measurement of the R18e N2O transition at ~8.5 μm. The gray trace represents the squared amplitude-vs-time measurement of the beat note signal measured at 25 Ms/s, the orange circles is the time-windowed average (0.5 ms) of the same data, and the black dotted line is a direct absorption Voigt fit to the data based on the HITRAN database [19].

Download Full Size | PPT Slide | PDF

In order to demonstrate the feasibility of higher speed modulation to overcome the 1/f noise problem, WM-MHS is performed with a sinusoidal modulation at 10 kHz that is added to the 12.5 Hz current ramp used for DA-MHS. This injection current modulation is translated to a corresponding intensity modulation of the signal laser as it is swept across the absorption feature, which, in turn, gives rise to a modulation of the corresponding beat note amplitude. After performing digital lock-in detection at twice the modulation frequency [20] the characteristic 2f-WMS lineshape is obtained (represented by the orange circles in Fig. 6). For DA-MHS comparison reasons, a lock-in time constant of 500 µs is chosen. A 2f-Voigt fit to the WM-MHS data is calculated [19, 21], shown here by the solid black line. The gray trace in Fig. 6 shows the modulated squared amplitude-vs-time trace of the beat note corresponding to the 0th mode that is affected by the N2O absorption.

 figure: Fig. 6

Fig. 6 Wavelength modulation measurements of the R18e N2O transition at 8.5 µm. The gray trace shows the squared amplitude-vs-time measurement of the beat note, the orange circles show the output of the digital lock-in signal processing, and the black dotted line shows a 2f Voigt fit to the lock-in signal. The lock-in time constant was set to 0.5 ms.

Download Full Size | PPT Slide | PDF

A signal-to-noise analysis of the DA-MHS signal show a noise equivalent absorption (NEA) of ~1.5 × 10−3/√Hz. This is improved by a factor of ~3, down to ~5 × 10−4/√Hz for WM-MHS. This follows the general trend of the RIN of the beat notes (shown in Fig. 2), which decreases from ~10−3/√Hz at low frequencies to ~10−4/√Hz at 10 kHz. The discrepancy between the reduction in RIN and the NEA improvement of the WM procedure is likely attributed to optical fringes that cause a noticeable baseline drift, which ultimately limits the performance.

4. Conclusion

In this work, direct absorption- and wavelength modulated multiheterodyne spectroscopy measurements have been performed on N2O at ~8.5 µm. The RF beat note measurements indicate that beat note linewidths down to ~2 MHz can be readily achieved together with a spectral coverage of >20 cm−1, which, in turn, shows that the FP-laser based multiheterodyne technique is indeed capable of high resolution chemical sensing. The DA-MHS measurements presented here show a noise equivalent absorption (NEA) for single beat note detection of ~1.5 × 10−3/√Hz, which agrees well with the measured relative intensity noise (RIN) of the beat notes. Noise characterization of the beat notes reveal a clear 1/f-trend, which indicates that significant noise suppression could be achieved by implementing a detection frequency shift such as provided by the WMS scheme. For this purpose, a 10 kHz sinusoidal modulation of the injection currents of the FP-QCLs followed by digital 2f lock-in detection was implemented. This improves the NEA by a factor of ~3, down to ~5 × 10−4/√Hz. It should be noted that modulation-based sensitivity enhancing techniques are highly compatible with semiconductor laser based MHS systems, but may be difficult to implement with mode-locked laser based frequency comb sources.

In summary, multiheterodyne spectroscopy with multimode semiconductor lasers offers a cost effective and robust spectroscopic technique that has the potential to provide effective access to the fundamental rotational-vibrational transitions of many molecules of interest in the mid-IR spectral region. Implementation of MHS with mutually stabilized FP-QCLs demonstrate excellent compatibility with existing standard modulation techniques thus showing great potential for high resolution, high sensitivity and broadband spectroscopy of gases at reduced and/or atmospheric pressures using fully integrated, electrically driven semiconductor spectrometers.

Funding

DARPA SCOUT program (grant# W31P4Q161001); U.S. Environmental Protection Agency (EPA) RD-83513701-0; National Science Foundation (NSF) (ERC MIRTHE), EEC-0540832.

Acknowledgments

The authors gratefully acknowledge F. Capasso, L. Diehl, and M. Troccoli for providing the FP-QCLs used in this study.

References and links

1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef]   [PubMed]  

2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002). [CrossRef]   [PubMed]  

3. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]  

4. T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. Meyer, and G. Wysocki, “Widely tunable external cavity interband cascade laser for spectroscopic applications,” CLEO, paper CThM4 (2010).

5. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond Sci Tech 25(8), (2010).

6. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016). [CrossRef]  

7. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011). [CrossRef]   [PubMed]  

8. A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011). [CrossRef]   [PubMed]  

9. A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013). [CrossRef]  

10. A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

11. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012). [CrossRef]   [PubMed]  

12. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014). [CrossRef]   [PubMed]  

13. D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014). [CrossRef]  

14. M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010). [CrossRef]  

15. J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013). [CrossRef]  

16. S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016). [CrossRef]  

17. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002). [CrossRef]   [PubMed]  

18. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014). [CrossRef]  

19. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

20. L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015). [CrossRef]   [PubMed]  

21. J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  3. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
    [Crossref]
  4. T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. Meyer, and G. Wysocki, “Widely tunable external cavity interband cascade laser for spectroscopic applications,” CLEO, paper CThM4 (2010).
  5. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond Sci Tech 25(8), (2010).
  6. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  7. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
    [Crossref] [PubMed]
  8. A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
    [Crossref] [PubMed]
  9. A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
    [Crossref]
  10. A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).
  11. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  12. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
    [Crossref] [PubMed]
  13. D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
    [Crossref]
  14. M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
    [Crossref]
  15. J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
    [Crossref]
  16. S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
    [Crossref]
  17. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  18. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
    [Crossref]
  19. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).
  20. L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
    [Crossref] [PubMed]
  21. J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
    [Crossref]

2016 (2)

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

2015 (2)

L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
[Crossref] [PubMed]

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

2014 (3)

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

2013 (2)

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

2012 (3)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
[Crossref]

2011 (2)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

2010 (1)

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

2002 (2)

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Adler, F.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Arita, Y.

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

Axner, O.

J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Ban, T.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Bewley, W. W.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Bjork, B. J.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

Blaser, S.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Briles, T. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Burghoff, D.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Cai, X. W.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Canedy, C. L.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Capasso, F.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Cappelli, F.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

Chan, C. W. I.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Coddington, I.

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Cossel, K. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Ewart, P.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

Faist, J.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Faytl, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Flaud, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Fleisher, A. J.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Gao, J. R.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Geiser, M.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Gras, B.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Hamilton, M. L.

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

Han, N. R.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Hartmann, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Hayton, D. J.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Hu, Q.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Hugi, A.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Kao, T. Y.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Kim, C. S.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Kim, M.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Maslowski, P.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Mei, L.

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Merritt, C. D.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Meyer, J. R.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Newbury, N.

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Northern, J. H.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

O’Hagan, S.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Reno, J. L.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Ritchie, G. A. D.

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Schiller, S.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Soskind, M. G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Svanberg, S.

Swann, W.

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Thompson, A. W. J.

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Tyuterev, Vl. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Villares, G.

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vurgaftman, I.

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

Wang, J. Y.

J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
[Crossref]

Wang, W.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Wang, Y.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Westberg, J.

J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
[Crossref]

Wysocki, G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Yang, Y.

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Ye, J.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (4)

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013).
[Crossref]

M. L. Hamilton, G. A. D. Ritchie, Y. Arita, and P. Ewart, “Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques,” Appl. Phys. B 100(3), 665–673 (2010).
[Crossref]

J. H. Northern, A. W. J. Thompson, M. L. Hamilton, and P. Ewart, “Multi-species detection using multi-mode absorption spectroscopy (MUMAS),” Appl. Phys. B 111(4), 627–635 (2013).
[Crossref]

S. O’Hagan, J. H. Northern, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers,” Appl. Phys. B 122(6), 173 (2016).
[Crossref]

Appl. Phys. Lett. (1)

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Faraday Discuss. (1)

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31, discussion 113–160 (2011).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 4–50 (2012).

J. Westberg, J. Y. Wang, and O. Axner, “Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting,” J. Quant. Spectrosc. Radiat. Transf. 113(16), 2049–2057 (2012).
[Crossref]

Nat. Commun. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(5192), 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Burghoff, T. Y. Kao, N. R. Han, C. W. I. Chan, X. W. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (1)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Hugi, M. Geiser, G. Villares, F. Cappelli, S. Blaser, and J. Faist, “All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology,” Proc. SPIE 9370, 93701 (2015).

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Other (2)

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. Meyer, and G. Wysocki, “Widely tunable external cavity interband cascade laser for spectroscopic applications,” CLEO, paper CThM4 (2010).

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond Sci Tech 25(8), (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic overview of the experimental setup of MHS with two multimode FP-QCLs. The setup follows that used in previous work [18] with the addition of a frequency discriminator locking circuit and a beat note folding scheme. (b) Schematic circuit diagram of the frequency discriminator locking scheme. (c) Visualization of the beat note folding scheme. The negative beat notes are folded in between the positive with equidistant beat note spacing by placing the 0th beat note at |ΔFSR|/4. (d) Beat notes measured with the spectrum analyzer after implementing the beat note folding. The beat note numbering has been added for convenience. A FWHM of 1.9 MHz is measured for the 1st beat note. (e) Frequency locking performance during a time span of 600 seconds. The circles represent the center frequency of the 0th beat note during this time span, with locking (black) and without locking (orange).
Fig. 2
Fig. 2 Relative intensity noise (RIN) measurement of the 1st beat note amplitude as a function of frequency is shown by the orange trace. The instantaneous frequency noise of the same beat note is shown by the black trace.
Fig. 3
Fig. 3 Left panel: FTIR measurements of the signal- and local oscillator FP-lasers. The top panel shows two consecutive signal laser measurements with and without absorber. The corresponding beat notes are shown in the right panel, where the attenuated beat note is colored orange. The lower amplitude of this beat note compared to adjacent beat notes indicates the attenuation induced by the absorber.
Fig. 4
Fig. 4 Basic principle of WM-MHS. The injection current of the lasers are sinusoidally modulated at 10 kHz, which is converted into an intensity modulation by the absorption feature. The intensity modulation is directly mapped to the corresponding beat note and can be demodulated by a lock-in amplifier to obtain the WM-MHS spectrum.
Fig. 5
Fig. 5 Wavelength-scanned direct absorption measurement of the R18e N2O transition at ~8.5 μm. The gray trace represents the squared amplitude-vs-time measurement of the beat note signal measured at 25 Ms/s, the orange circles is the time-windowed average (0.5 ms) of the same data, and the black dotted line is a direct absorption Voigt fit to the data based on the HITRAN database [19].
Fig. 6
Fig. 6 Wavelength modulation measurements of the R18e N2O transition at 8.5 µm. The gray trace shows the squared amplitude-vs-time measurement of the beat note, the orange circles show the output of the digital lock-in signal processing, and the black dotted line shows a 2f Voigt fit to the lock-in signal. The lock-in time constant was set to 0.5 ms.

Metrics