Abstract

Asymmetric photonic crystal (APC) has been proposed and investigated, which only allows the transmission of the incidence at a certain incident plane and angle. Simulation results show that the proposed structure exhibits both azimuth- and elevation- angular selectivity within a broad waveband under p-polarized illumination. Consequently, functional devices such as angle-frequency filter operating in the visible range can be achieved by combining the azimuth-elevation-angular selectivity and frequency selectivity. Our scheme may find potential applications in communication and imaging systems.

© 2016 Optical Society of America

1. Introduction

Photonic crystal (PhC) has attracted more and more attention due to its outstanding performance in light manipulation, such as optical filter [1], frequency splitter [2] and optical reflector [3], etc. The past decades have witnessed tremendous progresses in frequency selectivity and polarization selectivity by taking advantage of photonic band gaps and Brewster angle of PhCs [4–6]. However, an essential problem needs to be solved is that how to guarantee electromagnetic waves (EMWs) propagate along a certain angle [7–10]. Although the angular selectivity has been achieved by particle resonance [11], metamaterials [12] and photonic crystal [13], the limited operation band and frequency-sensitive performance impede its widespread applications. Therefore, it is highly desired to arrive broadband angular selectivity in many realms, especially for energy harvesting [14,15], privacy protection [16], and signal detection [17], just to name a few. Broadband angular selectivity is in infancy and methods based on anisotropic PhCs [18], plasmonic Brewster mode [19] and micro-scale geometrical optics [20] have been investigated. Quite recently, Shen et al. has proposed all-visible angular selectivity by tailoring the overlap of the band gaps of multiple one-dimensional PhCs with different periodicities [21]. Despite of its great success in operation band extension, angular selectivity transmission can only be realized among different elevation angles, while the azimuth angular selectivity cannot be fulfilled. Furthermore, for the isotropic-isotropic bilayer system in their scheme, the Brewster angle is determined solely by the two dielectric constants of these materials; hence, the selective angle (Brewster angle) is fixed once the materials are given.

In order to realize more rigorous spatial selectivity i.e., elevation-azimuth-angular selectivity, we propose the concept of asymmetry photonic crystal (APC) in this paper. Our result rests on (i) the fact that polarized light transmits without any reflection at the Brewster angle, (ii) the existence in photonic crystals of band gaps that prevent light propagation for given frequency ranges, and (iii) the band gap–broadening effect of heterostructures, (iv) additional azimuth-angular selectivity origin from the asymmetry of PhC. The proposed APCs can perform elevation-azimuth-angular selectivity in the visible range. In addition, the selective angle could be adjusted by virtue of restructuring the configuration parameters of the APC. Furthermore, broadband functional devices such as, angle-frequency filter, can be achieved by utilizing the angular selectivity and frequency selectivity when adjusting the structure of the APC.

2. Angular selectivity of proposed APC

2.1 Structure and principle

As shown in Fig. 1, the proposed APC consists of two photonic crystals (PhC1, PhC2) and a middle “transponder” layer. The PhC1, parallel to the y axis, is composed of alternative materials with permittivity of εa and εb, while the PhC2, exhibiting a special incline angle φ0 with respect to the positive y axis, is composed of alternative materials with permittivity of εa and εc. We firstly consider the transmission and angular selectivity of PhC1. To obtain broadband elevation angular selectivity, PhC1 is constructed by stacks (n bilayers in each stack) with different periods to expand the effective band gap, as done by Shen et al. in [21]. In specifically, the periods of the stacks in PhC1 form a geometric series Ti = T01*r1 (i-1) nm (i = 1, 2, 3…), where T01 is the periodicity of the first stack, r1 and is the incremental coefficients. Therefore, all the extended modes in other propagation directions are removed and there is a special propagation angle for p-polarized light, known as the Brewster angle θB1, for which the extended modes exist regardless of ω:

θB1=tan-1εbεa
where θB1 is the Brewster angle in the layers with dielectric constant εa. Notice for the 1D PhC, the light propagating at the Brewster angle from εa material to εb material automatically satisfies the Brewster condition from εb material to εa. The mechanism above provides both angular selectivity and polarization selectivity. Similarly, PhC2 constructed by multiple stacks with different periodic bilayers of {εa, εc} materials with equal thickness exhibits a different Brewster angle θB2,
θB2=tan-1εcεa
By making the periods of the stacks (n bilayers in each stack) form a geometric series Tj = T02*r2(j-1) nm (j = 1, 2, 3…), PhC2 also own the broadband angular selectivity.

 figure: Fig. 1

Fig. 1 Schematic illustration. (a) Overall view of the proposed APC (b) The layout of stack i, middle layer and stack m + j. (c) Illustration of the cross-section and βi. (d) The cross-section of the proposed PhC with different βi.

Download Full Size | PPT Slide | PDF

All this was pointed out by Shen recently. The new message in this paper is that, remarkably, all light on a Poincaré sphere whose elevation angle are equal to 90°-θB1 can transmit through the PhC1, regardless of its azimuth angle. In other words, only elevation angular selectivity is realized by PhC1. The challenge here is that how to achieve an optical plate with simultaneous azimuth- and elevation- angular selectivity within a broad waveband. For this purpose, the PhC2 is designed to exhibit a special incline angle φ0 with respect to the positive y axis, as shown in Fig. 1(a). And the configurations of the stack i in PhC1, the middle layer, and the stack m + j in PhC2 are shown in Fig. 1(b). Due to the “prism” profile of the middle “transponder” layer, the cross planes of the whole APC along the z axis are different at different azimuth angle, as shown in Figs. 1(c) and 1(d). Consequently, the incline angle φi in the incident plane varies in the range of 0~φ0 with the azimuth angle βi, which cause the PhC2 has elevation angular selectivity at θB2 ± φi, where the sign –( + ) is decided by the value of the elevation angle γi (γi<90° (-) or γi>90° ( + )). In this paper, only the βi between 0° and 90° are concerned, due to the symmetry along the plane xz. And we set εb < εc so that θB1 < θB2. Note that, when θB1 = θB2-φi the proposed APC not only has elevation angular selectivity at γi = 90°-θB1 and azimuth angular selectivity at corresponding βi, which is calculated as arccos(tanφi/tanφ0). That is to say, the selective γi and βi should satisfy Eq. (3). Moreover, Eq. (3) clarifies that the selective azimuth angle can be changed by adjusting the incline angle of φ0.

90γi+arctan(tanφ0*cosβi)=θB2andγi=90θB1
{90o-γi+arctan(tanφ1,0*cosβi)=θB190o-γi+arctan(tanφ2,0*cosβi)=θB2or{γi-90o-arctan(tanφ1,0*cosβi)=θB1γi-90o-arctan(tanφ2,0*cosβi)=θB2

In addition, the elevation angle can also be adjusted with the structure, which is shown in Fig. 2, where the stack i and stack m + j are both inclined. Consequently, only lights with eligible elevation angles and azimuth angles, which simultaneously satisfy |90°-γi| ± φ1,i = θB1 and |90°-γi| ± φ2,i = θB2 can transmit through the modified APC, where φ1,i = arctan(tanφ1,0*cosβi) and φ2,i = arctan(tanφ2,0*cosβi) are the incline angle of the cross-section of stack i and stack m + j along different azimuth angles, respectively. That is to say, the selective γi and βi should satisfy Eq. (4). In this paper, we use MgF2 as the dielectric a (εa = 1.9, μa = 1), MgO as the dielectric b (εb = 3, μb = 1) and SrTiO3 as the dielectric c (εc = 5.76, μc = 1). All the chosen materials are nearly lossless in visible spectrum. The Brewster angle of PhC1 and PhC2 are calculated as θB1 = 51.5°, θB2 = 60°.

 figure: Fig. 2

Fig. 2 Schematic layout of the cross-section plane of the modified APC with asymmetric PhC1 and PhC2, when βi = 0°.

Download Full Size | PPT Slide | PDF

2.2 The middle “transponder” layer

In the proposed scheme, we assume that both the APC and light source are immersed in the dielectric a, just as the scheme which proposed by Shen et al, in [21], due to the air-compatible angularly selective system has been realized [17]. And the incident light propagates from the ambient medium material to the APC with the elevation angle of γi, i.e, the incident angle of |90°-γi|. Fundamentally, it’s essential to analysis whether the “transponder” layer i.e., the middle layer, affects the angularly selective transmission of the APC or not.

Initially, the interface effect between the multi-reflected light in the middle layer is analyzed by using the two dimensional Finite-Difference Time-Domain (FDTD) method. The APC has w = l = 100μm and (φ1,0, φ2,0) are (0°, 16°). The periodicity of stack i in PhC1 (i = 1, 2…8) is Ti = 150*1.125(i-1) nm, and the periodicity of stack m + j (j = 1, 2…7) in PhC2 is Tj = 130*1.165(j -1) nm. Each stack contains 7 bilayers. And the thickness of the bottom of the middle layer is 15 μm. We simulate the cross-section planes along the azimuth angle of 59° and choose the boundary conditions in x and z direction as Bloch boundary conditions and PML (perfectly matched layer), respectively. The incident light has an elevation angle of 38°. The simulated intensity distribution of (Ex2 + Ey2)1/2 is shown in Fig. 3(a). One can find that most lights penetrate through the APC and the transmittance is 0.976, which is consistent with the transmittance of 1 that calculated by TMM [22–24], as shown in Figs. 4(a) and 4(b).

 figure: Fig. 3

Fig. 3 The distribution of the electric field in the APC. (a) (φ1,0, φ2,0) are (0°, 16°) and (γi, βi) = (38°, 59°). (b) (φ1,0, φ2,0) are (−18°, −10°) and (γi, βi) = (20°, 0°).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Numerical result of the angular selectivity of the APC. (a) The simulated elevation-angular selectivity of the APC. (b) The simulated azimuth-angular selectivity of the APC. (c) The theoretically calculated angular selectivity of the APC, when φ1,0 = 0° and φ2,0 = 16°. Elevation-azimuth-angular selectivity of the APC, when (d) φ1,0 = 10° and φ2,0 = 25°; (e) φ1,0 = −25° and φ2,0 = 10° and (f) φ1,0 = −25° and φ2,0 = −10°.

Download Full Size | PPT Slide | PDF

Subsequently, the edge effect of the middle prism layer is taken into concern. Due to dielectric a is chosen as the composite of the middle layer, the transmitted lights will leak from the APC when they reach the left and right surface of the middle layer, as shown in Fig. 3(b). In order to make most lights transmit through the bottom APC directly, the incident lights should illuminate on the APC with an elevation angle range of 23°~90°. Considering the thickness of the APC, the φ1,0 and φ2,0 are set in the range of −45°~45°, the effective range of the final elevation selective angles is 23°~75°.

2.3 Numerical results and discussion

Assuming the width and length of the APC is large enough, we use the TMM to calculate the angular selectivity of the APC. The periodicity of stack i (i = 1, 2…50) in PhC1 is Ti = 180*1.0212(i-1) nm, and the periodicity of stack m + j (j = 1, 2…30) in PhC2 is Tj = 160*1.042(j -1) nm. Each stack contains 10 bilayers. Firstly, we assign φ1,0 to be 0° and φ2,0 to be 16°, as the structure shown in Fig. 1(a). Figure 4(a) shows the simulated elevation-angular selectivity of the APC. The selected elevation angle γi is 37°~40° and the angular bandwidth of transparent windows is 3°. The selected azimuth angle βi is 54°~63°, as shown in Fig. 4(b). The simulation result in Fig. 4(b) is in reasonable agreement with the theoretical result in Fig. 4(c).

Moreover, the transparent azimuth angles and elevation angles can be adjusted by restructuring the APC. The range of elevation-azimuthal selective angles can be deduced from Eq. (4). If the φ1,0 and φ2,0 are set as 0≤ φ1,0 < φ2,0 and φ2,0-φ1,0≥8.5°, the eligible γi varies in the range of 90°-θB1~90°. And the corresponding βi is fixed by Eq. (4). Analogously, γi varies in the range of 90°- θB2 ~90°- θB1 and 0~90°- θB2 can be selected by setting φ1,0 and φ2,0 as φ1,0<0< φ2,0 and φ1,0 < φ2,0<0, respectively. For example, when (φ1,0, φ2,0) are (10°, 25°), the light transmits along an elevation angle of 44° and azimuth angle of 57°, as shown in Fig. 4(d). When (φ1,0, φ2,0) are (−25°, 10°), the light transmits along an elevation angle of 32.2° and azimuth angle of 76.5°, as shown in Fig. 4(e). When (φ1,0, φ2,0) are (−25°, −10°), the light transmits along an elevation angle of 24.5° and azimuth angle of 57.5°, as shown in Fig. 4(f).

Considering the size of the APC, assuming it has w = l = 1mm, and the φ1,0 and φ2,0 are set in the range of −45°~45°. Then, the range of elevational selective angles and azimuthal selective angles are 23°~75° and 0~85°, respectively. Note that, the elevation-azimuthal selective angles should satisfy Eq. (4). Besides, if the APC is imbedded in the air, the range of elevational selective angles and azimuthal selective angles is 0°~69° and 0~79°, respectively. In addition, the elevation-azimuthal selective angles should satisfy the following equation.

{90o-arccos(57cosγi)+arctan(tanφ1,0*cosβi)=θB190o-arccos(57cosγi)+arctan(tanφ2,0*cosβi)=θB2

3. Angle-frequency filter

Frequency selectivity can be further realized by utilizing the structure shown in Fig. 5(a). The proposed structure consists of PhC1, PhC2 and a middle “transponder” layer. The PhC1 is composed of cascading PhC3 and PhC4. And the configuration of PhC2 in this section is similar with structure of the PhC2 that discussed in section 2. The transmission characteristics of the cascading PhC3 and PhC4 are investigated firstly. PhC3 and PhC4 are constructed by multiple stacks with different periodic bilayers of {εa, εb} materials and {εa, εc} materials, respectively. Here, we use MgF2 as the dielectric a (εa = 1.9, μa = 1), MgO as the dielectric b (εb = 3, μb = 1) and SrTiO3 as the dielectric c (εc = 5.76, μc = 1). Obviously, as shown in Fig. 5 (b), both PhC3 and PhC4 are symmetry and the structure is (ab)N(ac)L, where N = 50 and L (which is adjustable) are the stack number of PhC3 and PhC4, respectively. Consequently, the structure only exhibit elevation-angle selectivity.

 figure: Fig. 5

Fig. 5 Schematic illustration. (a) The structure of the angular-frequency filter. (b) Schematic layout of the cascaded PhC, which consists of PhC3 and PhC4.

Download Full Size | PPT Slide | PDF

The location of the band gap of PhC3 and PhC4 can be controlled by adjusting the periodicity of their stacks, and the effective band gap can be enlarged when we cascade them with various periodicities together [25–27]. The wave vector map illustrated in Fig. 6(a) reveals the elevation-angular selectivity of PhC3. In addition, the location and width of the band gap of PhC4 can be shifted to 37°-40° by adjusting the periodicity and the number of stack t, as shown in Figs. 6(b) and 6(c). Therefore, elevational angle-frequency filter can be achieved by using PhC3 to realize elevation-angular selectivity and PhC4 to realize frequency selectivity. The periodicity of stack i (i = 1, 2…50) in PhC3 is Ti = 180*1.0212(i-1) nm. And each stack in PhC3 and PhC4 contains 10 bilayers. As shown in Figs. 7(a)-7(e), angle-frequency filters are realized with the structural parameters of PhC4 listed in Table 1.

 figure: Fig. 6

Fig. 6 Illustration of the wave vector map. (a) Wave vector of PhC3 when the periodicity of stack i is Ti = 180*1.0212(i-1) nm (i = 1, 2, 3…50). (b)(c) Wave vector of PhC4 when the periodicity of stack t is Tt = 200*1.021(t-1) nm: (b) t = 1 and (c) t = 3.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Numerical result of the angle-frequency filter. (a) Angle-frequency low-pass filter. (b) Angle- frequency high-pass filter. (c) Angle-frequency band-pass filter. (d) Angle-frequency band-stop filter. (e) Angle-frequency two-channel filter.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Structural parameters of PhC4

Consequently, only the incident lights with elevation angle of 90°-θB1, in specific waveband can transmit through PhC1. Then, taking PhC2 (Tj = 160*1.042(j -1) nm (j = 1, 2, 3…30)) into consideration, which is constructed by 30 stacks with different periodic bilayers of {εa, εc} materials, the APC only allows lights with certain elevation angles and azimuth angles to transmit in the specific waveband.

4. Discussions

The fabrication of the middle “transponder” layer with a tapered profile in the scale of the 100 µm ~1mm is not an issue nowadays and it is realized in many ways by employing various techniques [28–31]. Nevertheless, the requirements (e.g. surface roughness) for the microoptical components working in visible and near-infrared wavelength ranges are not fulfilled due to the material removal nature of fabrication technologies [32]. Recently, micro/nanofabrication based on multiphoton polymerization (MPP) direct laser writing (DLW) is attracting a lot of attention as it possesses the intrinsic ability to fabricate three-dimensional (3D) structures such as PhC, plasmonic and metamaterial components, voids or channels, and many other components with complicated geometry. Since, the MPP technology is based on non-linear light and mater interaction, the achievable resolution of the photostructurable element can be below diffraction limits, which has been demonstrated own the ability of fabrication tapered structure with high quality [33,34].

For the involved materials above with εa = 1.9, μa = 1, εb = 3, μb = 1, εc = 5.76, μc = 1, MgF, MgO and SrTiO3 can be used in practice due to the matched dielectric constant with the theoretical design as well as low material loss in the visible band. Furthermore, desire effective permittivity can also be obtained by mixing two different materials (ε1 and ε2) with subwavelength thickness (d1 and d2), as the scheme previously proposed by Shen et al. in [35]. The effective dielectric permittivity tensor {εx, εy, εz} can be expressed as:

εx=εy=ε1+rε21+r,
1εz=11+r(1ε1+rε2),
where r is the ratio of the thickness of the two materials (ε1 and ε2) r = d1/d2. Therefore, it is also possible to adjust the Brewster angle by changing the thickness ratio r.

5. Conclusions

In conclusion, we have proposed APCs for spatial selective transmission. Theoretical results showed the APC exhibits elevation-azimuth-angular selectivity within a broad waveband under p-polarized illumination. Furthermore, we show that by simply changing the geometric parameters of the APC, the selective angle can be tuned to a broad range of angles. A multifunctional angle-frequency filter for all-visible spectrum was realized by adjusting the structure of the APC. Simulation results are consisted with the theoretical results. The proposed APC and elevation-azimuth-angular selectivity feature may have the potential of leading some new applications. For example, in privacy protection, simultaneous elevation- and azimuth- angular selectivity can significantly decrease the detection probability of the underneath object. In the realm of solar cells, the emission loss is mainly due to radiative recombination [36] and incomplete absorption (especially in thin film solar cells). A broadband elevation-azimuth- angularly selective system can help mitigate losses from both of these causes, through the effects of photon-recycling (for radiative recombination) and light trapping (for reflected sunlight) [37].

Funding

National Basic Research Program of China (2013CBA01704, 2012CB315704); Natural Science Foundation of China (61335005, 61325023); Research Fund for the Doctoral Program of Higher Education of China (20130184110015).

References and links

1. M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016). [CrossRef]  

2. A. C. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. M. Soukoulis, “Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures,” Opt. Express 23(11), 13972–13982 (2015). [CrossRef]   [PubMed]  

3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef]   [PubMed]  

4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef]   [PubMed]  

5. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993). [CrossRef]  

6. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000). [CrossRef]  

7. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011). [CrossRef]   [PubMed]  

8. K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012). [CrossRef]  

9. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012). [CrossRef]  

10. C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012). [CrossRef]  

11. F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]  

12. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003). [CrossRef]  

13. J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010). [CrossRef]  

14. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011). [CrossRef]   [PubMed]  

15. V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014). [CrossRef]   [PubMed]  

16. S. W. MacMaster, U.S. patent 7052746 filed 26 November 2003, issued 30 May 2006.

17. Y. Shen, C. W. Hsu, J. D. Joannopoulos, and M. Soljačić, “Air-compatible broadband angular selective material systems,” http://arxiv.org/abs/1502.00243.

18. R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011). [CrossRef]  

19. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013). [CrossRef]  

20. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013). [CrossRef]  

21. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014). [CrossRef]   [PubMed]  

22. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994). [CrossRef]  

23. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015). [CrossRef]   [PubMed]  

24. Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015). [CrossRef]   [PubMed]  

25. C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000). [CrossRef]  

26. B. Perilloux, Thin-film Design: Modulated Thickness and other Stopband Design Methods (SPIE Press, 2002).

27. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002). [CrossRef]  

28. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011). [CrossRef]  

29. R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011). [CrossRef]  

30. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005). [CrossRef]  

31. H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011). [CrossRef]  

32. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010). [CrossRef]   [PubMed]  

33. M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011). [CrossRef]  

34. A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012). [CrossRef]  

35. Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014). [CrossRef]  

36. W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957). [CrossRef]  

37. Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

References

  • View by:

  1. M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
    [Crossref]
  2. A. C. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. M. Soukoulis, “Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures,” Opt. Express 23(11), 13972–13982 (2015).
    [Crossref] [PubMed]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  5. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [Crossref]
  6. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
    [Crossref]
  7. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
    [Crossref] [PubMed]
  8. K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
    [Crossref]
  9. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
    [Crossref]
  10. C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
    [Crossref]
  11. F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  12. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003).
    [Crossref]
  13. J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
    [Crossref]
  14. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
    [Crossref] [PubMed]
  15. V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
    [Crossref] [PubMed]
  16. S. W. MacMaster, U.S. patent 7052746 filed 26 November 2003, issued 30 May 2006.
  17. Y. Shen, C. W. Hsu, J. D. Joannopoulos, and M. Soljačić, “Air-compatible broadband angular selective material systems,” http://arxiv.org/abs/1502.00243 .
  18. R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
    [Crossref]
  19. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [Crossref]
  20. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  21. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
    [Crossref] [PubMed]
  22. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
    [Crossref]
  23. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
    [Crossref] [PubMed]
  24. Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
    [Crossref] [PubMed]
  25. C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
    [Crossref]
  26. B. Perilloux, Thin-film Design: Modulated Thickness and other Stopband Design Methods (SPIE Press, 2002).
  27. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
    [Crossref]
  28. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  29. R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
    [Crossref]
  30. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
    [Crossref]
  31. H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
    [Crossref]
  32. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  33. M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
    [Crossref]
  34. A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
    [Crossref]
  35. Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
    [Crossref]
  36. W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
    [Crossref]
  37. Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

2016 (2)

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

2015 (3)

2014 (3)

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

2013 (2)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

2012 (4)

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

2011 (7)

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

2010 (2)

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

2007 (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

2005 (1)

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

2003 (1)

2002 (1)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

2000 (2)

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1994 (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

1993 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1957 (1)

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Akozbek, N.

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Aközbek, N.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Alù, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

Atwater, H. A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Baumgarten, T.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Beresna, M.

Bermel, P.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Bian, H.

Bloemer, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Bloemer, M. J.

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Candiani, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Celanovic, I.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Chang, S. J.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, F.

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Chien, J. C.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

D’Aguanno, N.

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Das, S.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

De Abajo, F. G.

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

de Ceglia, D.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Dumke, W. P.

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Farsari, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fotakis, C.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gadonas, R.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gecevicius, M.

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Gray, D.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Greulich-Weber, S.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Guo, R.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Guo, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
[Crossref] [PubMed]

Hamam, R. E.

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Hou, C.

Hou, X.

Hsieh, H. T.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsieh, J. L.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsu, C. W.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Hu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Jia, W.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Joannopoulos, J. D.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Johnson, S. G.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

Kabouraki, E.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Kafesaki, M.

Kazansky, P. G.

Koschny, T.

Kosten, E. D.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

Li, Y.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Liang, W.

Lin, V.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Liu, H.

Liu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Luo, B.

Luo, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Ma, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Malinauskas, M.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Melninkaitis, A.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Miclea, P.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Pan, W.

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Piestun, R.

Piskarskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Pissadakis, S.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Polman, A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pu, M.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Purlys, V.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Qiao, F.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Ran, L.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Reinhardt, C.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Rinnerbauer, V.

Sakellari, I.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Scalora, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Schäffler, F.

Schwartz, B. T.

Sciuka, M.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Shen, Y.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Si, J.

Soljacic, M.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Soljacic, M. S.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Soukoulis, C. M.

Su, G. D. J.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Tasolamprou, A. C.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Tikuisis, K. K.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Trimm, R.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Üpping, J.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Vamvakaki, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Vincenti, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Wan, J.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Wang, C.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Wang, L.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Wang, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Wang, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Wehrspohn, R.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Wu, C. J.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Wu, M. R.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Wu, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Xu, C.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yan, L.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
[Crossref] [PubMed]

Yang, Q.

Ye, D.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Yeng, Y. X.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Yuan, D. J.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Yuan, X. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zhang, C.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Zhang, L.

Zhang, L. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zhao, Z.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Zi, J.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Zukauskas, A.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Appl. Phys. Lett. (4)

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

IEEE Photonics J. (1)

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

J. Appl. Phys. (2)

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Journal of Micromachines and Microengineering (1)

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Light Sci. Appl. (1)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Metamaterials (Amst.) (1)

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Photon. Nanostructures (1)

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Phys. Rev. (1)

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Phys. Rev. A (1)

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Phys. Rev. B (4)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Rev. Mod. Phys. (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Sci. Rep. (1)

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Science (2)

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Other (3)

S. W. MacMaster, U.S. patent 7052746 filed 26 November 2003, issued 30 May 2006.

Y. Shen, C. W. Hsu, J. D. Joannopoulos, and M. Soljačić, “Air-compatible broadband angular selective material systems,” http://arxiv.org/abs/1502.00243 .

B. Perilloux, Thin-film Design: Modulated Thickness and other Stopband Design Methods (SPIE Press, 2002).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration. (a) Overall view of the proposed APC (b) The layout of stack i, middle layer and stack m + j. (c) Illustration of the cross-section and βi. (d) The cross-section of the proposed PhC with different βi.
Fig. 2
Fig. 2 Schematic layout of the cross-section plane of the modified APC with asymmetric PhC1 and PhC2, when βi = 0°.
Fig. 3
Fig. 3 The distribution of the electric field in the APC. (a) (φ1,0, φ2,0) are (0°, 16°) and (γi, βi) = (38°, 59°). (b) (φ1,0, φ2,0) are (−18°, −10°) and (γi, βi) = (20°, 0°).
Fig. 4
Fig. 4 Numerical result of the angular selectivity of the APC. (a) The simulated elevation-angular selectivity of the APC. (b) The simulated azimuth-angular selectivity of the APC. (c) The theoretically calculated angular selectivity of the APC, when φ1,0 = 0° and φ2,0 = 16°. Elevation-azimuth-angular selectivity of the APC, when (d) φ1,0 = 10° and φ2,0 = 25°; (e) φ1,0 = −25° and φ2,0 = 10° and (f) φ1,0 = −25° and φ2,0 = −10°.
Fig. 5
Fig. 5 Schematic illustration. (a) The structure of the angular-frequency filter. (b) Schematic layout of the cascaded PhC, which consists of PhC3 and PhC4.
Fig. 6
Fig. 6 Illustration of the wave vector map. (a) Wave vector of PhC3 when the periodicity of stack i is Ti = 180*1.0212( i -1) nm (i = 1, 2, 3…50). (b)(c) Wave vector of PhC4 when the periodicity of stack t is Tt = 200*1.021( t -1) nm: (b) t = 1 and (c) t = 3.
Fig. 7
Fig. 7 Numerical result of the angle-frequency filter. (a) Angle-frequency low-pass filter. (b) Angle- frequency high-pass filter. (c) Angle-frequency band-pass filter. (d) Angle-frequency band-stop filter. (e) Angle-frequency two-channel filter.

Tables (1)

Tables Icon

Table 1 Structural parameters of PhC4

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ B 1 = tan - 1 ε b ε a
θ B 2 = tan - 1 ε c ε a
90 γ i + arc tan ( tan φ 0 * cos β i ) = θ B 2 and γ i = 90 θ B 1
{ 90 o - γ i + arc tan ( tan φ 1 , 0 * cos β i ) = θ B 1 90 o - γ i + arc tan ( tan φ 2 , 0 * cos β i ) = θ B 2 or { γ i - 90 o - arc tan ( tan φ 1 , 0 * cos β i ) = θ B 1 γ i - 90 o - arc tan ( tan φ 2 , 0 * cos β i ) = θ B 2
{ 90 o - arc cos ( 5 7 cos γ i ) + arc tan ( tan φ 1 , 0 * cos β i ) = θ B 1 90 o - arc cos ( 5 7 cos γ i ) + arc tan ( tan φ 2 , 0 * cos β i ) = θ B 2
ε x = ε y = ε 1 + r ε 2 1 + r ,
1 ε z = 1 1 + r ( 1 ε 1 + r ε 2 ) ,

Metrics