Abstract

Polarization holography is the superposition of differently polarized beams. Due to its ability to record the polarization states, some extraordinary optical phenomena were found in the polarization holography. For example, the recently reported null-reconstruction phenomenon in polarization volume hologram is odd for the conventional holography which only records the amplitude and phase. In this paper, we perform a thorough investigation of the null reconstruction of polarization hologram recorded by orthogonal circularly polarized waves. To explore the mechanism behind this phenomenon, an interferometry was built to measure the phase difference between the same polarized components within the reconstructed wave. The phase difference of π was secured in our experiment, indicating a destructive interfering effect, which nicely explains the extraordinary null reconstruction observed in the polarization hologram.

© 2016 Optical Society of America

1. Introduction

Polarization holography is the coherent interference of the beams that can have the different polarized states [1]. Besides amplitude and phase, polarization is additionally recorded in such materials that have the polarization-sensitive molecular orientations [2–11]. Due to its ability to record polarization, polarization holography has invoked much interest and experienced continuously developments both in theory and experiments since its discovery.

The early-stage theory of polarization holography is based on Jones matrix [12,13], where the paraxial approximation is assumed. As a result, the theory is only valid for the geometry of interfering beams with a small crossing angle. In recent years, a new tensor theory of polarization holography, i. e., the response of a polarization hologram can be expressed as the tensor product of the total electric field [14], was proposed to eliminate the limit of paraxial approximation. Thanks to this theory, the research of polarization holography has been greatly accelerated [15–17]: Not only the recording angle expands from small (< 5°) to arbitrary ones, but also the polarization states of the interfering beams evolve from linear to complex polarizations. Very recently, an extraordinary null reconstruction (ENR) of polarization hologram [18], recorded by two orthogonal circular polarizations at large crossing angle, was observed in our experiment.

In this paper, we will perform a thorough investigation of the ENR phenomenon in polarization hologram, exploring its physical conditions. Aiming at the physical mechanisms that rule the ENR, an interferometry was built to analyze the interfering effects within the reconstructed waves. The experiments secure a phase difference of π (destructive interference) between the same polarization components in the reconstruction, which is consistent with our theoretical expectations.

2. Polarization-sensitive materials

Phenanthrenequinone-doped poly(methyl methacrylate(PQ/PMMA) photopolymer is the material used in our experiment due to its sensitivity to polarization [19–21]. For PQ/PMMA, methyl methacrylate (MMA) solution, azo-bis-isobutyronitrile(AIBN), and phenanthrenequinone(PQ) were used as the monomer, the thermo-initiator, and the sensitizer, respectively. We made the material under the temperature of 333K and the saturation concentration of AIBN and PQ dissolved in MMA solution we chose were 0.4% and 0.8%, respectively. After uniformly mixing the raw materials, we put the materials into a ultrasonic cleaner(JR-120D) at the temperature of 333K for 1.5 hours to make the solution mixed thoroughly. Then, we placed the solution in a dying oven(DGX-9003) to make it viscous and the temperature was set at 333K. Subsequently, we poured viscous solution into a container and put it in the drying oven of 333K again for about 20 hours to complete the polymerization process. Finally, the container was put into a freezer for an hour to stop the polymerization reaction. The sample was took out from the container and covered with tinfoil to block the light. The size of the sample is 50 × 40 × 1(W × L × H) mm3.

To confirm the polarization-sensitivity of the home-made material, we measured its photo-anisotropy spectrum within the wavelength range of 600-820 nm by using an ellipsometer (J.A. Woollam Company VASE). Before exposure, the molecules were randomly distributed in all directions in the material. As shown in Fig. 1(a), the material was isotropic, since there was no retardance between the polarizations. After the material being exposed by s-linearly polarized beam at the wavelength of 473nm for about 10 minutes, the orientations of molecules were modulated by the polarization and an obvious spectral curve of phase-retardance between s and p polarizations, shown in Fig. 1(b), solidly guarantees the material being changed from isotropic to anisotropic.

 figure: Fig. 1

Fig. 1 The photo-anisotropy of the material (a) before and (b) after exposure. Insets: the status of molecules before and after exposure.

Download Full Size | PPT Slide | PDF

3. Ensure the condition of null reconstruction (α + β = 0)

In our experiment, the two orthogonal circular polarizations, i. e., O=12(sO+ipO), R=12(sRipR), were used to record the hologram. Using the original (R) and orthogonal (R¯) reference polarizations to read the hologram, the reconstructed beams S and S¯ could be written as,

S[β+14(α+β)(1+cos2θ)12(αβ)cosθ](sO+ipO)+14(α+β)(1cos2θ)(sOipO)
S¯14(α+β)(1cos2θ)(sO+ipO)+14(α+β)(1cosθ)2(sOipO)
where θ is the crossing angle between O and R and α and β are coefficients of the scalar and tensor components of the photo-induced change in the dielectric tensor. α and β are not fixed values, they were changing all the time in the process of experiment. From the Eq. (2) we could find that, in the case of non-paraxial approximation, the ENR (S¯0) only takes place in the condition of α + β = 0. Therefore, the first step is to lock the polarization hologram at the status of α + β = 0.

A laser at the wavelength of 473 nm was used to record and reconstruct the hologram (see Fig. 2). The beam reflected from PBS1 served as signal beam, and it was regulated to left-handed circular polarized beam by P1 and QWP1. Likewise, the beam transmitted through PBS1 was regulated to right-handed circular polarization by using P2 and QWP2. The signal and reference beams were plane waves and the intensity ratio of them was 1:1. They were incident in the common plane with the crossing angle of θ≈42°(non-paraxial approximation). The diameter of the beam exposed on the material was about 6-mm, and the power density was 13.35mW/cm2. The left- and right-handed circularly polarized components of the reconstructed beam could be regulated to p- and s-linearly polarized beams by using QWP3 and PBS2. The intensity of each component could then be respectively measured.

 figure: Fig. 2

Fig. 2 Experimental setup of polarization holography based on the orthogonal circularly polarized wave: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer. Inset: schematic of the recording and reading process.

Download Full Size | PPT Slide | PDF

In Eq. (1), the coefficient of component sO-ipO is 1/4(α + β)(1-cos2θ). Thus, the large crossing angle θ≈42° in our experiment setup guarantees that α + β = 0 can be secured when the intensity of component sO-ipO in the reconstruction goes to zero. Figure 3 shows the intensity of left- and right-handed circularly polarized components of the reconstructed beam that was reconstructed by the original reference beam. After about 100s’ exposure, the right-handed circularly polarized component (sO-ipO) of the reconstructed wave decreased to the minimum, indicating that the condition of α + β = 0 for ENR was satisfied.

 figure: Fig. 3

Fig. 3 The intensity of the component sO-ipO in the reconstructed beam. The intensity drops down to the minimum at the exposure time of 100 s, indicating the status of α + β = 0 being secured in the material.

Download Full Size | PPT Slide | PDF

4. Explore the ENR through an interferometry

From Eq. (2), we get to know that ENR takes place in the hologram at α + β = 0, when R¯=sR+ipRis used to read the hologram. The most straightforward way is to decompose the R¯ into two linearly polarized beams sR- and ipR- and then analyze the correlations between the two reconstructions. In the case of α + β = 0 when ENR occurs, using sR- and ipR- to read the hologram, the two reconstructions are written as,

SsR[2β+α(1cosθ)]sO+[(1+cosθ)β]ipO=[(1+cosθ)β]sO+[(1+cosθ)β]ipO
SipRβ(1+cosθ)sO+[αcosθ(α+β)cos2θβ]ipO=[(1+cosθ)β]sO[(1+cosθ)β]ipO

The opposite sign of the coefficients shows a phase difference of π between the same polarizations in the two reconstructions, indicating a destructive interference that leads to ENR. However, in the practical interferometry, it is difficult to guarantee an exact π/2 phase delay between sR and pR, that is to say, instead of sR and ipR, the two linearly polarized reading waves should be sR and epR, where φ is the actual delay between sR and pR. Using epR to read the hologram, the reconstruction of hologram at α + β = 0 is expressed as,

SeiφpRβeiφ(1+cosθ)isO+[αcosθ(α+β)cos2θβ]eiφpO=βei(φ+π/2)(1+cosθ)sO+βei(φ+π)(1+cosθ)pO

Comparing Eq. (3) and Eq. (5), the phase difference between the same polarizations are φ + π/2. Since φ is not precisely controlled, our strategy is to measure both φ + π/2 and φ through two isolated interference patterns. If the values of φ obtained from two interferences agree with each other, the phase difference of φ + π/2 between the same polarizations can thus be verified.

As shown in Fig. 4, two linearly polarized waves, epR and sR, respectively transmitted through upper-open aperture 2 and lower-open aperture 3. A linear polarization s was generated by P4 to interfere with the reconstructed waves S¯eiφ¯PR¯ and S¯SR. Demonstrated in Fig. 5a, the displacement of upper and lower fringes captured by CMOS 1 records the phase difference φ + π/2≈π/2 between s components in S¯eiφ¯PR¯ and S¯SR. Similarly, a 45° -orientation linearly polarized wave was generated by P3 to interfere with the directly transmitted sR and epR. As expected, almost no displacement, shown in Fig. 5b, is found between the upper and lower fringes captured by CMOS 2, again verifying φ≈0.

 figure: Fig. 4

Fig. 4 Experimental setup of simultaneous reconstructions by s and ep linearly polarized beams: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 Interference patterns on (a) CMOS1 and (b) on CMOS2

Download Full Size | PPT Slide | PDF

The values of φ measured by two interferences being nicely in agreement with each other, solidly guarantee the phase difference of φ + π/2 between the same polarizations in Eq. (3) and Eq. (5). Therefore, at φ = π/2, i. e., using circular polarization to read the hologram, a π- phase destructive interference is proved to bring the ENR phenomenon.

5. Conclusion

We have systematically investigated the extraordinary null reconstruction in polarization volume hologram. By decomposing the reading wave into s and ep linear polarizations, the phase difference of φ + π/2 between the same polarizations in the reconstructed wave was experimentally verified. At this stage, it is safe to conclude that, at the status of α + β = 0, ENR only occurs in such polarization hologram when using circular polarization as the reading wave. Because only the circular polarization with φ = π/2 provides the π-phase destructive interference effect that is able to generate the ENR. In the following work, the recording and reading waves will be extended to more complex polarization states and some other interesting phenomenon may be discovered at the status of α + β = 0.

Acknowledgments

This work is supported by a grant from the National Natural Science Foundation of China (Grant No. 61475019 and 61205053).

References and links

1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge U. Press, 2009).

2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef]   [PubMed]  

3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005). [CrossRef]   [PubMed]  

4. X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014). [CrossRef]  

5. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991). [CrossRef]  

6. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984). [CrossRef]  

7. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984). [CrossRef]   [PubMed]  

8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984). [CrossRef]   [PubMed]  

9. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985). [CrossRef]   [PubMed]  

10. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986). [CrossRef]  

11. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997). [CrossRef]  

12. T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993). [CrossRef]  

13. T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995). [CrossRef]  

14. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011). [CrossRef]  

15. K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2. [CrossRef]  

16. D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012). [CrossRef]   [PubMed]  

17. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013). [CrossRef]   [PubMed]  

18. A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015). [CrossRef]   [PubMed]  

19. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014). [CrossRef]   [PubMed]  

20. Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015). [CrossRef]  

21. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2. [CrossRef]  

References

  • View by:

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge U. Press, 2009).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  4. X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
    [Crossref]
  5. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
    [Crossref]
  6. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
    [Crossref]
  7. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  9. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
    [Crossref] [PubMed]
  10. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
    [Crossref]
  11. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
    [Crossref]
  12. T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
    [Crossref]
  13. T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
    [Crossref]
  14. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  15. K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
    [Crossref]
  16. D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
    [Crossref] [PubMed]
  17. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
    [Crossref] [PubMed]
  18. A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
    [Crossref] [PubMed]
  19. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  20. Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
    [Crossref]
  21. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
    [Crossref]

2015 (2)

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (1)

2011 (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

2005 (1)

1997 (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

1995 (1)

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

1993 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

1986 (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

1985 (1)

1984 (3)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Ando, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Andruzzi, F.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Barada, D.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
[Crossref] [PubMed]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Chi, S.

Cho, S. L.

Chou, S. F.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

Fujimura, R.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Fukuda, T.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Hayasaki, Y.

Horimai, H.

Hsu, K. Y.

Huang, T.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Hvilsted, S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Kang, G.

Kawata, S.

Kuroda, K.

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
[Crossref] [PubMed]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Li, J.

Li, Z.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Lin, C. M.

Lin, J. H.

Lin, S. H.

Lin, X.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Liu, Y.

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Masaki, K.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Nikolova, L.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
[Crossref] [PubMed]

Ochiai, T.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Ramanujam, P. S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Shimizu, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Shimura, T.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Stoyanova, K.

Tan, X.

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Todorov, T.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
[Crossref] [PubMed]

Tomova, N.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Uchida, E.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Wagner, K. H.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Wang, J.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Wu, A.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Yatagai, T.

Zang, J.

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Appl. Opt. (4)

Frontiers Optoelectron. (1)

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Opt. Rev. (2)

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Other (3)

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge U. Press, 2009).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The photo-anisotropy of the material (a) before and (b) after exposure. Insets: the status of molecules before and after exposure.
Fig. 2
Fig. 2 Experimental setup of polarization holography based on the orthogonal circularly polarized wave: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer. Inset: schematic of the recording and reading process.
Fig. 3
Fig. 3 The intensity of the component sO-ipO in the reconstructed beam. The intensity drops down to the minimum at the exposure time of 100 s, indicating the status of α + β = 0 being secured in the material.
Fig. 4
Fig. 4 Experimental setup of simultaneous reconstructions by s and ep linearly polarized beams: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer.
Fig. 5
Fig. 5 Interference patterns on (a) CMOS1 and (b) on CMOS2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S[β+ 1 4 (α+β)(1+ cos 2 θ) 1 2 (αβ)cosθ]( s O +i p O ) + 1 4 (α+β)(1 cos 2 θ)( s O i p O )
S ¯ 1 4 (α+β)(1 cos 2 θ)( s O +i p O ) + 1 4 (α+β) (1cosθ) 2 ( s O i p O )
S s R [2β+α( 1cosθ )] s O +[(1+cosθ)β]i p O =[ (1+cosθ)β ] s O +[(1+cosθ)β]i p O
S i p R β( 1+cosθ ) s O +[αcosθ( α+β ) cos 2 θβ]i p O =[ (1+cosθ)β ] s O [(1+cosθ)β]i p O
S e iφ p R β e iφ ( 1+cosθ )i s O +[ αcosθ( α+β ) cos 2 θβ ] e iφ p O =β e i( φ+π/2 ) ( 1+cosθ ) s O +β e i( φ+π ) ( 1+cosθ ) p O

Metrics