Abstract

We demonstrate a surface-normal coupled tunable hybrid silicon laser array for the first time using passively-aligned, high-accuracy flip chip bonding. A 2x6 III-V reflective semiconductor optical amplifier (RSOA) array with integrated total internal reflection mirrors is bonded to a CMOS SOI chip with grating couplers and silicon ring reflectors to form a tunable hybrid external-cavity laser array. Waveguide-coupled wall plug efficiency (wcWPE) of 2% and output power of 3 mW has been achieved for all 12 lasers. We further improved the performance by reducing the thickness of metal/dielectric stacks and achieved 10mW output power and 5% wcWPE with the same integration techniques. This non-invasive, one-step back end of the line (BEOL) integration approach provides a promising solution to high density laser sources for future large-scale photonic integrated circuits.

© 2016 Optical Society of America

1. Introduction

Silicon photonics is a promising platform for next generation optical interconnects that require large bandwidth, high density and high power efficiency. The main advantage of silicon photonics is its high yield in large scale production and low cost manufacturing. Critical components like high speed modulators and detectors have also been demonstrated [1–6]. Despite the huge progress on both passive and active devices, a high efficiency laser source remains to be the most challenging component on this platform. High density laser array with small footprint is critical for future optical interconnect solutions with large aggregated bandwidth, which likely requires integration of a larger number of channels in the same package [7].

While monolithic silicon light sources remain far from being practical, hybrid approaches by integrating III-V materials onto Si have been much more successful. Several approaches have been developed including the actively aligned external laser source [8, 9], front end of the line (FEOL) integration by wafer bonding III-V active materials with Si followed by lithography [10–12], and the back end of the line (BEOL) integration for hybrid external cavity approach [13–15]. The active alignment required for the first approach increases cost and limits its applications to small scale integration. The FEOL integration approaches are invasive as they require interruption of normal CMOS process flow, and also increase yield and reliability concerns due to the relatively high defect density of the III-V wafers in comparison to the CMOS SOI wafers. In comparison, the III-V gain chip and silicon circuit can be independently optimized and tested with a non-invasive BEOL integration approach. Therefore, known-good gain chips can be pre-selected for integration with Si wafer for improved yield and reliability. Transfer printing has also been demonstrated for large scale, low cost III-V/Si integration. However, it is subject to the same limitations as other FEOL approaches [16] and remains challenging to achieve required alignment accuracy for BEOL integration [17]. Efficient hybrid external cavity lasers have been demonstrated using low loss and low back reflection coupling [13–15, 18–20], but the scalability of edge coupling based hybrid integration is limited due to its one dimensional (1D) nature. Such scaling limit can be eliminated using surface-normal coupling based hybrid integration. The first concept of such surface-normal coupled III-V/Si hybrid laser source was proposed and demonstrated in [7] by integrating a III-V reflective semiconductor optical amplifier (RSOA) chip with an angled facet mirror output with a SiP tunable reflector chip with grating coupler input for surface-normal coupling. Unlike edge coupling-based schemes, integration based on surface-normal coupling enables high density, 2D laser array with simpler integration process, making it more attractive for low cost mass production. Surface-normal coupled tunable hybrid laser demonstration with improved performance were further reported in [21, 22] with a waveguide-coupled wall plug efficiency (wcWPE) of 5% and an optical output power more than 5 mW. A similar concept was later published in [23], and an integrated surface-normal coupled III-V/Si hybrid laser based on that later publication was experimentally demonstrated in [24, 25].

In this paper, we present a laser off (passive alignment), low cost, wafer-scale integration process for high density, surface-normal coupled III-V/Si hybrid laser array using a custom RSOA array with integrated total internal reflection (TIR) mirrors. We first demonstrate a 2x6 surface-normal coupled tunable laser array using a one-step passive flip-chip bonding process to integrate the custom gain chip onto a CMOS SOI chip. We then further demonstrate a hybrid laser array with improved efficiency using an SOI chip without the thick BEOL metal/dielectric stacks to achieve a wcWPE of larger than 5% and an optical output power of more than 10 mW.

2. Design and fabrication

Figure 1(a) shows a conceptual side view of a hybrid surface-normal coupled external cavity laser. Light generated in a III-V RSOA is reflected by the facet mirror and coupled to SOI chip through a grating coupler (GC). The high reflection coated facet of the RSOA and the ring reflector on the SOI form a laser cavity. A portion of the light is extracted from the laser cavity and coupled out to the Si waveguide using a directional coupler. Lasing wavelength can be tuned by changing the resonance wavelength of the ring filter using an integrated microheater. The integration of the III-V RSOA and the SOI silicon reflector chip can be done using high accuracy flip-chip bonding. Figure 1(b) shows an integrated 2x6 hybrid external cavity laser array with a III-V RSOA chip flipped and bonded on a CMOS photonics chip. The RSOA chip contains a 2x6 RSOA array with integrated angled facet mirrors to reflect light to a matching ring reflector array on the SOI chip. Electrical power is delivered to the RSOA and the microheater through the metal traces fabricated on the CMOS photonics chip.

 figure: Fig. 1

Fig. 1 (a) Side view schematic diagram of the surface-normal coupled hybrid laser, (b) microscope image of the integrated 2x6 hybrid external cavity laser array.

Download Full Size | PPT Slide | PDF

In this demonstration, we used a custom designed, 2x2 mm RSOA chip based on a ridge waveguide structure with MQW active layers on InP. It contains a 2x6 ROSA array with an active waveguide length of 600 µm. The pitch perpendicular to the waveguide is 250 µm and along the waveguide is 1 mm as shown in Fig. 2(a). Figure 2(b) shows the etched angled facet mirror fabricated by chemically assisted ion beam etching (CAIBE). The mirror angle is designed to be 43.2° which reflects the light out with an angle of 11.3° with respect to the surface-normal direction in air to match the input beam angle of the grating couplers on the SOI chip. The back facet of the RSOA is etched and HR coated with a reflectivity larger than 95%. The top surface of the RSOA chip has antireflection coating to reduce the back reflection.

 figure: Fig. 2

Fig. 2 (a) Microscope image of the III-V chip containing a 2x6 RSOA array (will update later), (b) SEM image of the cross section near the facet mirror in the ROSA.

Download Full Size | PPT Slide | PDF

The mirror angle accuracy and uniformity are critical in achieving high efficiency coupling between the SOI and the RSOA chip. The RSOA output beam angle error was measured to be less than +/−2 degrees across the wafer, which translates to less than 1dB beam angle mismatch loss for coupling to the silicon GC. The angle decreases from the top to the bottom of the wafer and is likely due to the divergence spread of the ion beam etcher. A beam angle variation within +/−1 degree can be expected by using banded etching, i.e. splitting the wafer into multiple bands and etching them separately in multiple steps. For this demonstration, we picked devices from the middle of the wafer as they have output beam angle closest to the design target.

A matching 2x6 ring reflector array was fabricated on an SOI wafer with a 300 nm top Si layer and a 0.8 µm buried oxide layer using a 130 nm commercial CMOS process as shown in Fig. 3(a). Figure 3(b) shows the schematic diagram of one ring reflector circuit. Light is vertically coupled from/to the RSOA chip through a laser GC designed to have a mode field diameter (MFD) of 4 µm. The tunable ring reflector composes of a Y-splitter and a ring with a radius of 5 µm. A directional coupler before the Y-splitter is used to extract light from the main laser cavity to the output ports, while light from the through ports of the ring was also collected for future wavelength feedback control algorithms [26]. The cross coupling ratio of the directional couplers are 50% for the 6 devices in the top row, and 25% for those in the bottom row. The quality factor of the rings was measured to be close to the design target of 1000 in order to minimize the optical loss of the reflector. Si-resistor based micro-heaters were integrated directly in the ring for tuning the lasing wavelength. Output light was coupled to a fiber array through fiber GCs with a 10 µm MFD to match with the single mode fiber in the measurement. Bonding pad arrays matching the contacts on the RSOA chip are connected to large probing pads on both sides of the RSOA chip by metal traces fabricated in the CMOS process. In order to sustain high temperature thermal reflow in following packaging processes, we used a AuSn based high temperature bonding process with a peak temperature of 320°C. AuSn bumps were sputtered on the CMOS aluminum pads on the SOI chip following a Ti/Au under bump metallization process.

 figure: Fig. 3

Fig. 3 (a) Microscope image of the CMOS SOI chip with a 2x6 ring reflector circuit array, (b) schematic diagram of the ring reflector design on the SOI chip.

Download Full Size | PPT Slide | PDF

The SOI and RSOA chips were integrated by a one-step passive process using a high accuracy flip chip bonder with an alignment tolerance of ± 0.5 µm. During the process, the RSOA chip was flipped and placed on a chip tray. The bonder picked up the chip and aligned it to the SOI chip based on the matching patterns near the coupling region. The distances between the waveguide and top surface of the metal pads on both RSOA and SOI chips were measured accurately to estimate the total distance between the RSOA waveguide and the laser GC. An offset along the waveguide direction was then calculated and registered during the bonding to align the beam center to the GC mode center. After the alignment, a bonding profile with a peak temperature of 320°C was used to melt the AuSn bumps and bond two chips together. We used chip to chip bonding in this demonstration, but it can be easily expanded to a wafer scale pick-and-place process for large scale high density laser integration, as the flip-chip bonder used in this demonstration is designed for wafer scale integration. It can be programmed to automatically pick up a III/V chip from the tray, align it to the SOI wafer, bond the chips and repeat the process without manual intervention.

3. Laser array characterization

3.1 2x6 Laser Array using CMOS SOI

All lasers in the array were powered and characterized separately. Two DC power sources were used to drive the laser and the microheater through electrical probes. Light from output fiber GCs was collected by a polarization maintaining fiber array and measured by power meters and an optical spectrum analyzer. We confirmed that all 12 lasers were single-mode lasing at ring resonance wavelengths and the lasing wavelengths were tunable. Figure 4(a) and 4(d) show the measured lasing spectra for laser on top row with 50% coupling ratio DCs and the bottom row with 25% coupling ratio DCs, respectively. Both shows single mode lasing with a side mode suppression ratio (SMSR) larger than 30 dB across the tuning range. Figure 4(b) and 4(e) show the waveguide-coupled power-current-voltage (L-I-V) curves for the lasers in the top and the bottom row, respectively. The waveguide-coupled output power was obtained by subtracting out the grating coupler loss of 4 dB, measured using a reference waveguide loop, from the measured output power in the fiber. All devices exhibited maximum output power greater than 3 mW. Both designs showed small variations in threshold currents across the laser array, indicating small coupling coefficient variations across the chip. The power fluctuations on the L-I curves are caused by the mode-hopping and the parasitic cavity effect due to back reflections from the grating couplers, which is estimated to be −15 dB. Reducing the back reflection of the grating coupler can mitigate the problem. We have recently demonstrated a low back reflection grating coupler using a gradual index transition approach enabled by high resolution lithography [27]. The power variation for the bottom row is larger than that displayed by the top row. This is likely because the bottom row design is more sensitive to the misalignment between center wavelength of the ring filter and the cavity mode. Figure 4(c) and 4(f) show the wcWPE calculated from the DC power and the measured optical power for the lasers in the top row and the bottom row, respectively. All twelve lasers show a maximum wcWPE of 2%. The relatively low wcWPE is due to the large coupling loss between the RSOA and SOI chip, which will be discussed later.

 figure: Fig. 4

Fig. 4 Measured lasing spectrum, L-I-V curves and wcWPE of all six channels in the (a-c) top row and (d-f) bottom row.

Download Full Size | PPT Slide | PDF

We then measured the lasing wavelength tunability by fixing the laser drive current at 80 mA while tuning the ring microheater. Figure 5(a) shows the lasing spectra at different tuning power for a representative device in the top row. A tuning range of 12 nm from 1544 nm to 1556 nm near the wavelength center of the gain spectrum was measured. Outside this range, the laser stopped lasing at the ring resonance wavelength. The back reflection from the GC dominates in this regime and the laser starts lasing at the center of the gain spectrum near 1550 nm. Reducing the back reflection of the grating coupler and the coupling loss could extend the tuning range [25, 27]. Using smaller output power ratio as implemented on the bottom row could also increase the reflected power from the ring reflector and surpass the GC back reflection. Therefore, the tuning range can be increased as showed in Fig. 5(b) for the bottom row. A tuning range of 19 nm across the whole free spectrum range of the ring resonator was measured. The tuning efficiency for both designs is 0.2 nm/mW, which can be substantially improved using localized substrate removal technique [28].

 figure: Fig. 5

Fig. 5 Lasing spectra at different tuning power for (a) top row, (b) bottom row.

Download Full Size | PPT Slide | PDF

3.2 1x4 Laser Array using SOI and fabricated with E-beam lithography

There are two main factors causing the large coupling loss - the mode size mismatch between the III-V waveguide and the laser GC, and the large gap between III-V active layer and the Si GCs. The MFD of our current RSOA is 1.3 µm in the vertical direction and 2.0 µm in the horizontal direction, while the MFDs for the laser GC are 4 µm in both directions. Further reducing the MFD of the grating coupler will increase the back reflection with the limitation from the current lithography we used. A smaller MFD is also less tolerant to the vertical gap and lateral misalignments. Figure 6 shows the coupling loss between the III-V waveguide and the Si GC calculated based on Gaussian mode coupling theory. The mode size mismatch in current design contributes more than 3 dB to the coupling loss. The gap between the III-V waveguide and the SOI grating coupler is measured to be 14 µm mainly due to the thick metal on III-V and the back-end stack-up on CMOS SOI chip. Combining the mode size mismatch and large gap, we estimate a coupling loss to be greater than 7 dB. Increasing the mode size of the RSOA waveguide is a straightforward solution to reduce the coupling loss. As shown in Fig. 6, the coupling loss could be improved by 3 dB when increasing the III-V waveguide MFD to 3x3 µm. In order to improve the wcWPE, smaller gap between III-V waveguide and Silicon GC is desirable, and can be achieved by bringing the top metal closer to the InP layer and removing the unnecessary metal/dielectric layer stacks on the SOI chip. Together with a larger mode size, we believe a coupling loss of less than 3dB is achievable. Next, we demonstrate that the laser performance could be substantially improved by reducing the thickness of the metal/dielectric stacks.

 figure: Fig. 6

Fig. 6 Simulated III-V to SOI coupling loss versus gap size for different MFDs.

Download Full Size | PPT Slide | PDF

Instead of using a CMOS SOI chip with a full metal/dielectric stack-up, we fabricated another SOI chip with 1x6 ring reflector array with the same optical design but with only a single metal layer. Directional couplers with cross coupling ratio of 50% and platinum metal heaters on the silicon ring were used. After patterning the Si layer using electron beam lithography, a 1µm silicon dioxide layer was deposited on the SOI followed by platinum heater metal, Au trace and AuSn bump depositions. A ROSA chip with the same design was then bonded to the SOI chip using the same bonding process discussed above. Figure 7(a) shows a microscope image of the integrated laser array. Comparing to the previous demonstration, the gap between III-V waveguide and silicon GC has been reduced from 14 µm to 10 µm, which improves the optical coupling by 2 dB based on the simulation results in Fig. 6. The gap can be further reduced by optimizing the contact design on the RSOA chip and reducing the thickness of the AuSn bumps.

 figure: Fig. 7

Fig. 7 (a) Microscope image of the bonded laser array, (b) measured L-I-V curves and (c) wcWPE for the 1x4 channel laser array.

Download Full Size | PPT Slide | PDF

We were only able to confirm single mode lasing and tunability on four channels as two channels were damaged during the post processing. The L-I-V curves for the four working channels show ~10 mW waveguide-coupled output powers at a driving current of 120 mA as shown in Fig. 7(b). Similar to previous demonstration, all working channels show good uniformity. The wcWPE calculated from the measured optical power is shown in Fig. 7(c), which has been improved from 2% to 5%. We believe that high efficiency laser array can be achieved by further reducing the coupling loss with larger mode size using mode size converter on the RSOA chip.

4. Conclusion

We demonstrated a 2x6 surface-normal coupled III-V/Si hybrid external cavity laser array using flip chip bonding. A custom RSOA array with integrated TIR mirrors was bonded onto a CMOS SOI chip with grating couplers and tunable ring reflectors. This one-step passive integration technique can be used as a wafer-scale pick-and-place high throughput process for fabricating high density hybrid silicon laser arrays. All the devices on the 2x6 laser array show wcWPE larger than 2%, and maximum optical power greater than 3 mW. Tuning of the lasing wavelength was demonstrated using the integrated microheaters with a tuning range of one full FSR of the ring. We further demonstrated that the laser efficiency can be improved by reducing the thickness of the metal/dielectric stacks. A 1x4 laser array with wcWPE larger than 5% and optical output power more than 10 mW was reported. Substantial improvement is expected by using III-V chip with a larger mode size. We believe this is the first demonstration of an integrated surface-normal coupled laser array. The non-invasive one-step back end of the line integration approach can be used to fabricate high density laser arrays for future high bandwidth silicon photonic links.

Acknowledgments

This work was funded, in part, by Defense Advanced Research Projects Agency under HR0011-08-9-0001. The views, opinions, and/or findings contained in this paper are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

References and links

1. X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010). [CrossRef]   [PubMed]  

2. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3. [CrossRef]  

3. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011). [CrossRef]   [PubMed]  

4. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007). [CrossRef]  

5. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014). [CrossRef]   [PubMed]  

6. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011). [CrossRef]   [PubMed]  

7. X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013). [CrossRef]  

8. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013). [CrossRef]  

9. P. De Dobbelaere, “Light source approach for silicon photonics transceivers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014).

10. J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef]   [PubMed]  

12. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013). [CrossRef]   [PubMed]  

13. J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015). [CrossRef]   [PubMed]  

14. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014). [CrossRef]   [PubMed]  

15. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012). [CrossRef]   [PubMed]  

16. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016). [CrossRef]   [PubMed]  

17. X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015). [CrossRef]  

18. K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218. [CrossRef]  

19. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13. [CrossRef]  

20. N. Fujioka and M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators,” J. Lightwave Technol. 28(21), 3115–3120 (2010).

21. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

22. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013). [CrossRef]   [PubMed]  

23. P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259. [CrossRef]  

24. B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

25. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016). [CrossRef]   [PubMed]  

26. J. H. Lee, D. Y. Lee, J. Bovington, I. Shubin, S. Lin, J. Yao, Y. Luo, S. S. Djordjevic, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Si/III-V hybrid external-cavity laser stabilization using real-time micro-ring monitoring and feedback control,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W2A.21. [CrossRef]  

27. J. Yao, X. Zheng, I. Shubin, S. Lin, J. H. Lee, Y. Luo, S. S. Djordjevic, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “A CMOS-compatible low back reflection grating coupler for on-chip laser sources integration,” in Optical Fiber Communication Conference, OSA Technical Digest, (Optical Society of America, 2016), paper W2A.9. [CrossRef]  

28. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
    [Crossref] [PubMed]
  2. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
    [Crossref]
  3. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
    [Crossref] [PubMed]
  4. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
    [Crossref]
  5. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  6. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  7. X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
    [Crossref]
  8. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
    [Crossref]
  9. P. De Dobbelaere, “Light source approach for silicon photonics transceivers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014).
  10. J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  12. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
    [Crossref] [PubMed]
  13. J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
    [Crossref] [PubMed]
  14. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
    [Crossref] [PubMed]
  15. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
    [Crossref] [PubMed]
  16. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
    [Crossref] [PubMed]
  17. X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
    [Crossref]
  18. K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218.
    [Crossref]
  19. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
    [Crossref]
  20. N. Fujioka and M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators,” J. Lightwave Technol. 28(21), 3115–3120 (2010).
  21. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.
  22. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
    [Crossref] [PubMed]
  23. P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
    [Crossref]
  24. B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
  25. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
    [Crossref] [PubMed]
  26. J. H. Lee, D. Y. Lee, J. Bovington, I. Shubin, S. Lin, J. Yao, Y. Luo, S. S. Djordjevic, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Si/III-V hybrid external-cavity laser stabilization using real-time micro-ring monitoring and feedback control,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W2A.21.
    [Crossref]
  27. J. Yao, X. Zheng, I. Shubin, S. Lin, J. H. Lee, Y. Luo, S. S. Djordjevic, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “A CMOS-compatible low back reflection grating coupler for on-chip laser sources integration,” in Optical Fiber Communication Conference, OSA Technical Digest, (Optical Society of America, 2016), paper W2A.9.
    [Crossref]
  28. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (1)

2011 (2)

2010 (3)

2009 (1)

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

2007 (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

2006 (1)

Abolghasem, P.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Alon, E.

Amberg, P.

Asghari, M.

Baets, R.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Behfar, A.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
[Crossref]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Bickel, N.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Bickford, J.

Bijlani, B. J.

Bordel, D.

Bovington, J.

Bower, C.

Bowers, J.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

Bowers, J. E.

Bowker, J.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Cardile, P.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Cohen, O.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Contu, P.

P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
[Crossref]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Corbett, B.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
[Crossref]

Cunningham, J. E.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Davids, P. S.

Dayringer, M.

De Dobbelaere, P.

P. De Dobbelaere, “Light source approach for silicon photonics transceivers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014).

De Groote, A.

Delbeke, D.

DeRose, C. T.

Djordjevic, S. S.

Dong, P.

Duan, G.-H.

Fang, A.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

Fang, A. W.

Fathololoumi, S.

Fecioru, A. M.

Fedeli, J.-M.

Feng, D.

Fisher, M.

Fong, J.

Fujioka, N.

Gainsley, J.

Ho, R.

Ishizaka, M.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Jany, C.

Jeong, S.-H.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Jones, R.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Keyvaninia, S.

Kita, T.

K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218.
[Crossref]

Klamkin, J.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
[Crossref]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Krishnamoorthy, A. V.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Kurahashi, T.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Lamponi, M.

Le Liepvre, A.

Lee, D. C.

Lee, J. H.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

Lelarge, F.

Lexau, J.

Li, G.

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Li, J.

Liang, D.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Lin, S.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Liu, F.

Luff, B. J.

Luo, Y.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Make, D.

Mekis, A.

Moghadam, H. F.

Morito, K.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Nemoto, K.

K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218.
[Crossref]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

O’Brien, P.

Pakeltis, G.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Paniccia, M.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Paniccia, M. J.

Park, H.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Patil, D.

Pinguet, T.

Pinna, S.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Qian, W.

Raj, K.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Ristic, S.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Robert, C.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Roelkens, G.

Rogers, J. A.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

Seddighian, P.

Sekiguchi, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Shafiiha, R.

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Sheng, X.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Shi, J.

Shubin, I.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Snyder, B.

Song, B.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Stagarescu, C.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
[Crossref]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Starbuck, A. L.

Subramanian, A. Z.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Tanaka, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Tanaka, Y.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

Thacker, H.

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Thacker, H. D.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Trotter, D. C.

Van Thourhout, D.

Wang, S.

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Watts, M. R.

Yamada, H.

K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218.
[Crossref]

Yao, J.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Zheng, X.

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. H. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Efficient WDM laser sources towards terabyte/s silicon photonic interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

Zilkie, A. J.

Zortman, W. A.

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196 (2007).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev. 9(4), L17–L22 (2015).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Opt. Express (12)

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[Crossref] [PubMed]

J. H. Lee, J. Bovington, I. Shubin, Y. Luo, J. Yao, S. Lin, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser,” Opt. Express 23(9), 12079–12088 (2015).
[Crossref] [PubMed]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[Crossref] [PubMed]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[Crossref] [PubMed]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24(10), 10435–10444 (2016).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

Opt. Photonics News (1)

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News 21, 28–33 (2009).

Other (9)

P. De Dobbelaere, “Light source approach for silicon photonics transceivers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014).

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 1–3.
[Crossref]

K. Nemoto, T. Kita, and H. Yamada, “Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators,” in Proceedings of The 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 216–218.
[Crossref]

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “Highly-efficient, low-noise Si hybrid laser using flip-chip bonded SOA,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2012), pp. 12–13.
[Crossref]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. Thacker, J. H. Lee, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III/V- CMOS SOI hybrid external-cavity laser,” in Proceedings of IEEE Optical Interconnects Conference, (IEEE, 2014), pp. 79–80.

J. H. Lee, D. Y. Lee, J. Bovington, I. Shubin, S. Lin, J. Yao, Y. Luo, S. S. Djordjevic, J. E. Cunningham, K. Raj, A. V. Krishnamoorthy, and X. Zheng, “Si/III-V hybrid external-cavity laser stabilization using real-time micro-ring monitoring and feedback control,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W2A.21.
[Crossref]

J. Yao, X. Zheng, I. Shubin, S. Lin, J. H. Lee, Y. Luo, S. S. Djordjevic, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “A CMOS-compatible low back reflection grating coupler for on-chip laser sources integration,” in Optical Fiber Communication Conference, OSA Technical Digest, (Optical Society of America, 2016), paper W2A.9.
[Crossref]

P. Contu, C. Stagarescu, A. Behfar, and J. Klamkin, “3D integrated silicon photonic external cavity laser (SPECL),” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 258–259.
[Crossref]

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Side view schematic diagram of the surface-normal coupled hybrid laser, (b) microscope image of the integrated 2x6 hybrid external cavity laser array.
Fig. 2
Fig. 2 (a) Microscope image of the III-V chip containing a 2x6 RSOA array (will update later), (b) SEM image of the cross section near the facet mirror in the ROSA.
Fig. 3
Fig. 3 (a) Microscope image of the CMOS SOI chip with a 2x6 ring reflector circuit array, (b) schematic diagram of the ring reflector design on the SOI chip.
Fig. 4
Fig. 4 Measured lasing spectrum, L-I-V curves and wcWPE of all six channels in the (a-c) top row and (d-f) bottom row.
Fig. 5
Fig. 5 Lasing spectra at different tuning power for (a) top row, (b) bottom row.
Fig. 6
Fig. 6 Simulated III-V to SOI coupling loss versus gap size for different MFDs.
Fig. 7
Fig. 7 (a) Microscope image of the bonded laser array, (b) measured L-I-V curves and (c) wcWPE for the 1x4 channel laser array.

Metrics