Abstract

We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

© 2016 Optical Society of America

1. Introduction

Rogue waves (RWs) have drawn widespread interest in physics systems ranging from hydrodynamics to superfluidity [1]. They have extremely large amplitude and seem unpredictable. In optics, RWs were observed for the first time in supercontinuum generation in optical fibers [2]. This subject has been extensively studied in different optics systems since then [3], as these convenient optical experiments relate to giant waves in oceans and many other scientific fields [4]. Mode-locked fiber lasers which have abundant physical effects including nonlinearity, dispersion, gain and loss, are excellent platforms for nonlinear sciences investigation such as RWs. Indeed, recently, RWs were observed in mode-locked fiber lasers under different mode-locking states [5–12]. As well known, there are several mode-locking states in fiber lasers. Soliton bunch is a state in which many solitons bound into a group [13–15]. This state provides the possibility to simplify the burst-mode amplifier systems [16,17]. Depending on the laser conditions, the solitons in the bunch can stay static, or interact with each other resulting in chaotic soliton bunch. Chaotic soliton bunch state can induce RWs resulting from interaction of solitons [5,8], but it is a challenge to identify experimentally how solitons interact mutually to generate RWs.

Besides soliton bunch, there is a mode-locking state in which multiple solitons spread across the whole cavity; for example, a total number of 380 solitons per roundtrip were observed in high-power double-cladding erbium-doped fiber lasers, and this state was dubbed as “soliton gas” [18,19]. Obviously, there are interactions between solitons in this mode-locking state. Whether RWs exist in such state is still an open question.

Spatio-temporal intensity measurements have been widely used in various systems to trace the features otherwise hidden in the one-dimensional intensity measurement [20], including discovering dynamics of vector dissipative solitons in vertical-cavity surface-emitting lasers [21], uncovering the existence of dissipative phase solitons and their interactions with turbulent state in semiconductor lasers [22], unveiling the interactions between acoustic waves and temporal cavity solitons [23,24], and manipulating solitons [25–27]. In the context of fiber lasers, such technique helped to observe the laminar–turbulent transition in a fiber laser [28], reveal non-trivial periodicity and long-scale correlations of radiation in partially mode-locked fiber lasers [29], observe soliton explosion in a passively mode-locked fiber laser [30], as well as investigate distinct regimes in quasi-CW Raman fiber lasers [31,32].

In this work, we report for the first time that RWs can be generated in another mode-locking state of a fiber laser, namely the multiple-soliton state in which a total number of ~400 solitons occupied the whole laser cavity. By using spatio-temporal intensity measurements, the interaction processes between solitons can be captured and it is found that nonlinear soliton collision accounts for RWs generation in this mode-locking state. The formation and destruction processes of RWs are revealed. Instead of using high-power double-cladding fiber lasers, a long cavity enables us to access the multiple-soliton state with solitons spreading the whole cavity in a traditional single-cladding erbium-doped fiber laser, under low pump power.

2. Experimental principle and setups

The laser setup is shown in Fig. 1(a). A 1.5-m long segment of EDF with nominal absorption coefficient of 52 dB/m at 976 nm was used as the gain medium, the dispersion of which is normal (−50 ps/nm/km). This fiber was pumped through a 980/1550 wavelength-division multiplexer (WDM) by a 976-nm laser diode. Nonlinearity of the laser was enhanced by introducing a 12-m SMF after EDF, which made the aforementioned multi-soliton state accessible under low pump power. An in-fiber polarization-dependent isolator (PDI) sandwiched with two polarization controllers (PCs), converted nonlinear polarization rotation to amplitude modulation, initiating and stabilizing mode-locked operation, and it also ensured single direction oscillation. A 10:90 fiber coupler was employed to tap 10% of laser power out of the cavity. The net dispersion of the laser cavity is + 12 ps/nm/km.

 figure: Fig. 1

Fig. 1 (a) Schematic of the fiber laser, WDM: wavelength-division multiplexer; EDF: erbium-doped fiber; SMF: single-mode fiber; PC: polarization controller; PDI: polarization-dependent isolator; OSA: optical spectrum analyzer; PD: photodetector. (b) The optical spectra of three types of mode-locking states obtained by pump power increase only: with pump power of 22 (blue), 303 (red), and 730 mW (black).

Download Full Size | PPT Slide | PDF

Here, the laser’s spatio-temporal intensity dynamics, I(t, T), was characterized, instead of its one-dimensional intensity dynamics, I(t); that is the evolution of the instantaneous intensity pattern, I(t), over many-cavity roundtrips, T, was recorded. An 80-GSa/s real-time oscilloscope (Agilent DSOX93204A) together with a 50-GHz fast photodetector (Finisar XPDV2320R) were used to record spatio-temporal intensity dynamics. The temporal resolution of the measurement is ~30 ps limited by the bandwidth of the oscilloscope (33 GHz), and all the following measurements were based on this temporal resolution. It is to note that probability distribution functions (PDFs) shown in the followings were built following the way in [2]. A time trace around 0.3 ms was used for all the PDFs in the followings, which gives 1.3 × 106 events in the soliton gas states; then the pulse intensities were used to build the histograms.

3. Results

3.1 Stable soliton bunch

The laser can work in different mode-locking states. In particular, stable soliton bunch can be observed at a pump power of 22 mW. The optical spectrum of this stable soliton bunch is shown in Fig. 1(b) (blue); Kelly sidebands on the spectrum are characteristics of solitons [33]. The corresponding temporal traces on the oscilloscope are shown in Fig. 2(a). As seen in the figure, the soliton bunch is circulated in the laser at the fundamental cavity repetition period of 96.6 ns (10.35 MHz) corresponding to the total cavity length of 19.8 m. By magnifying the soliton bunch, it can be seen that there are six solitons in the bunch as shown in Fig. 2(b). The soliton bunch duration is 1.6 ns, which only occupies 1.66% of the cavity space. Figure 3 shows the corresponding soliton bunch intensity evolution over 8000 consecutive roundtrips. The evolution traces of the solitons show straight lines on the figure, indicating there are no interactions between solitons. The PDF is shown in Fig. 4(a). The histogram displays a quasi-rectangular shape in log scale, which does not show rare events. The intensity is normalized to the average intensity of the solitons. The significant wave height (SWH) defined as the mean amplitude of the highest third of the waves, is 1.09.

 figure: Fig. 2

Fig. 2 Stable soliton bunch state at a pump power of 22 mW: (a) temporal trace of the stationary soliton bunch circulating at the fundamental cavity repetition period of 96.6 ns, and (b) temporal magnification of the soliton bunch.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Spatio-temporal intensity dynamics of the stable soliton bunch over 8000 roundtrips at a pump power of 22 mW.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Histogram (log scale) of the normalized soliton intensity at a pump power of (a) 22, (b) 303, and (c) 730 mW.

Download Full Size | PPT Slide | PDF

Thus, RWs are not present in this stationary soliton bunch state, in comparison with the chaotic pulse bunch state in which pulses within the bunch move relatively and interact resulting in RWs generation [5]. It is worthy to emphasize that the following experiments were carried out by increasing the pump power solely without changing in other laser parameters.

3.2 ~200 solitons occupied the whole cavity exhibiting weak interactions

Starting from the aforementioned stable soliton bunch state, increasing the pump power created more solitons in the cavity. When the pump power was increased to 303 mW, the total number of solitons reached 186 and they occupied the whole cavity as seen in Fig. 5(a). This multiple-soliton state has been observed in high-power double-cladding fiber lasers [18, 19]. Figure 5(b) shows the magnified portion of Fig. 5(a). The corresponding optical spectrum is shown in Fig. 1(b) (red) the shape of which is nearly the same as the one of the stable soliton bunch state.

 figure: Fig. 5

Fig. 5 The solitons occupied the whole laser cavity when the pump power was increased to 303 mW: (a) temporal trace of the solitons, (b) temporal magnification of the solitons with time span of 3 ns.

Download Full Size | PPT Slide | PDF

Figure 6 shows the corresponding multiple-soliton intensity evolution over 8000 consecutive roundtrips. The time span is 3 ns the same as that in Fig. 5(b) to see the evolution clearly (the remaining solitons within the roundtrip shows the similar evolution). It can be seen that there are weak interactions between solitons, indicated by the slightly bending evolution traces of the solitons, in contrast to Fig. 3 where the traces are straight. For example, the soliton around 0.9 ns, moves weakly with respect to the neighboring solitons. In addition, there are also solitons staying static, as a result of long temporal separations from other solitons. For instance, the evolution trace of the soliton around 2 ns, shows a straight line. The PDF of this mode-locking state is shown in Fig. 4(b). The histogram displays a quasi-rectangular shape close to that in Fig. 4(a). Moreover, the SWH is also 1.09. Again, there are no rogue waves in this state, as the interactions between solitons are very weak.

 figure: Fig. 6

Fig. 6 Spatio-temporal intensity dynamics of the multiple-soliton state exhibiting weak interactions between solitons at a pump power of 303 mW.

Download Full Size | PPT Slide | PDF

3.3 ~400 solitons occupied the whole cavity exhibiting strong interactions

Further boosting the pump power only, the number of solitons continued to increase and high-amplitude pulses appeared randomly on the oscilloscope. In the following, it will show that these high-amplitude pulses are RWs. As an example, the PDF of this regime is shown in Fig. 4(c), when the pump power is 730 mW. The histogram in Fig. 4(c) differs drastically from the other two in the figure. The shape is no longer quasi-rectangular and exhibits extended long tails corresponding to extreme events occurring rarely. The SWH is 1.23 in Fig. 4(c). Wave events of amplitude higher than twice the SWH are RWs [1,5]. Here the threshold of RWs is 2.46. It can be seen from Fig. 4(c) that there are rare events above this threshold in the long tail. In contrast, Figs. 4(a) and 4(b) do not show RWs.

Figure 7(a) displays an example of the temporal trace in the multiple-soliton state discussed above. A total number of 408 solitons occupied the whole cavity, which is more than two times the number of solitons in Fig. 5(a). Moreover, the solitons interacted with each other and thus the corresponding optical spectrum became coarse as seen in Fig. 1(b) (black). Figure 7(b) shows the temporal magnification portion of Fig. 7(a) from 64 to 67 ns, which covers the positon of the highest-amplitude RW. The autocorrelation trace is displayed in Fig. 7(c). There is large pedestal present in the figure, which is typical for this multi-soliton state, resulting from relative movement of solitons during acquisition time of the autocorrelator [18]. The soliton width is 1.028 ps.

 figure: Fig. 7

Fig. 7 RWs are generated at a pump power of 730 mW: (a), temporal trace of the multiple solitons; (b), temporal magnification of the solitons with time span of 3 ns, around RW location; (c), the autocorrelation trace.

Download Full Size | PPT Slide | PDF

To reveal how RWs are generated, spatio-temporal intensity dynamics of the above multiple-soliton state are shown in Fig. 8 with solitons evolution over 5000 consecutive roundtrips. The time span in the figure is the same as that in Fig. 7(b) in order to see the evolution clearly. As seen in Fig. 8, there are extensive interactions between solitons. For example, around 64.5 ns, two solitons can collide and separate afterwards. As an example, the dashed square in the figure shows the appearance of RWs. As it can be seen, RW is generated from nonlinear soliton collision; it propagates over 106 consecutive roundtrips indicating its life time of 10.24 µs, then disappears as a result of splitting.

 figure: Fig. 8

Fig. 8 Spatio-temporal intensity dynamics of the multiple-soliton state showing strong interactions between solitons at a pump power of 730 mW. The dashed square shows an example of RWs.

Download Full Size | PPT Slide | PDF

4. Discussion

Short- and long-range interactions of solitons exist in various systems. Direct soliton-soliton interaction accounts for short-range interaction when solitons are separated by several times their width [34,35]. Long-range interactions are mediated by different mechanisms, for instance dispersive waves [36–38] and acoustic effects [23,24,39]. The weak interactions shown in Fig. 6 in which solitons are separated by several hundred times of their duration (1 ps) indicate that these are long-range interactions. Though acoustic effect inherently exists in fiber, dispersive waves evidenced by strong Kelly sidebands (Fig. 1 (b)) may dominate these long-range interactions; moreover, as shown in Fig. 6 the separations between solitons oscillate with cavity roundtrips, agreeing with the manners of dispersive-wave induced interactions [40]. In contrast, Fig. 8 presents both long- and short-range interactions. As it can be seen in the figure, initially, the solitons are spaced by 100 and 50 ps around the positons of 64.5 and 65 ns respectively, which are 100 and 50 times the soliton durations, corresponding to long-range interactions. Then short-range direct soliton-soliton interactions dominate. Theoretical study predicted that periodic attraction and repulsion could happen during short-range two-soliton interaction [34]; remarkably, the double solitons around 64.5 ns in Fig. 8 shows this behaviour as well as the solitons around 65 ns.

5. Conclusion

In conclusion, we have observed RWs in another mode-locking state of a soliton fiber laser, namely multiple-soliton state with hundreds of solitons occupying the whole laser cavity. This state can be accessed by increasing the pump power only from a stable soliton bunch state. Benefiting from spatio-temporal intensity measurements, it is shown for the first time in experiment that nonlinear soliton collision is responsible for RWs generation in this state. This finding may also imply the existence of this mechanism in other RWs formation system. The results also show that spatio-temporal measurement technology is promising in charactering the dynamics of mode-locked fiber lasers.

Funding

European Commission Marie Curie International Incoming Fellowship (628198), ERC project ULTRALASER, H2020 project CARDIALLY, and Russian Ministry of Education and Science (project 14.584.21.0014).

References and links

1. N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010). [CrossRef]  

2. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef]   [PubMed]  

3. N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013). [CrossRef]  

4. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011). [CrossRef]   [PubMed]  

5. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012). [CrossRef]   [PubMed]  

6. A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014). [CrossRef]   [PubMed]  

7. Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40(7), 1366–1369 (2015). [CrossRef]   [PubMed]  

8. M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device,” Opt. Lett. 40(20), 4767–4770 (2015). [CrossRef]   [PubMed]  

9. C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014). [CrossRef]  

10. M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015). [CrossRef]  

11. J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011). [CrossRef]   [PubMed]  

12. A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012). [CrossRef]  

13. D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991). [CrossRef]  

14. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express 17(10), 8103–8108 (2009). [CrossRef]   [PubMed]  

15. D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015). [CrossRef]   [PubMed]  

16. H. Kalaycioglu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011). [CrossRef]   [PubMed]  

17. H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. Eldeniz, and F. Ilday, “Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation,” J. Opt. Soc. Am. B 32(5), 900–906 (2015). [CrossRef]  

18. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010). [CrossRef]  

19. F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011). [CrossRef]   [PubMed]  

20. F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992). [CrossRef]   [PubMed]  

21. M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015). [CrossRef]  

22. F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015). [CrossRef]   [PubMed]  

23. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013). [CrossRef]  

24. M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015). [CrossRef]  

25. J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015). [CrossRef]   [PubMed]  

26. B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015). [CrossRef]   [PubMed]  

27. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015). [CrossRef]   [PubMed]  

28. E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013). [CrossRef]  

29. D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015). [CrossRef]   [PubMed]  

30. A. F. Runge, N. G. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015). [CrossRef]  

31. N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015). [CrossRef]   [PubMed]  

32. S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015). [CrossRef]  

33. S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992). [CrossRef]  

34. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983). [CrossRef]   [PubMed]  

35. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12(5), 355–357 (1987). [CrossRef]   [PubMed]  

36. K. Smith and L. F. Mollenauer, “Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction,” Opt. Lett. 14(22), 1284–1286 (1989). [CrossRef]   [PubMed]  

37. W. H. Loh, A. B. Grudinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19(10), 698–700 (1994). [CrossRef]   [PubMed]  

38. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005). [CrossRef]   [PubMed]  

39. E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992). [CrossRef]  

40. M. Romagnoli, L. Socci, I. Cristiani, and P. Franco, “Role of the dispersive wave in soliton dynamics and interactions,” in New Trends in Optical Soliton Transmission Systems (Springer), 39–51 (1998).

References

  • View by:

  1. N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010).
    [Crossref]
  2. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  3. N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
    [Crossref]
  4. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
    [Crossref] [PubMed]
  5. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
    [Crossref] [PubMed]
  6. A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
    [Crossref] [PubMed]
  7. Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40(7), 1366–1369 (2015).
    [Crossref] [PubMed]
  8. M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device,” Opt. Lett. 40(20), 4767–4770 (2015).
    [Crossref] [PubMed]
  9. C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014).
    [Crossref]
  10. M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
    [Crossref]
  11. J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
    [Crossref] [PubMed]
  12. A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
    [Crossref]
  13. D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
    [Crossref]
  14. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express 17(10), 8103–8108 (2009).
    [Crossref] [PubMed]
  15. D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
    [Crossref] [PubMed]
  16. H. Kalaycioglu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011).
    [Crossref] [PubMed]
  17. H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. Eldeniz, and F. Ilday, “Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation,” J. Opt. Soc. Am. B 32(5), 900–906 (2015).
    [Crossref]
  18. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
    [Crossref]
  19. F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
    [Crossref] [PubMed]
  20. F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
    [Crossref] [PubMed]
  21. M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
    [Crossref]
  22. F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
    [Crossref] [PubMed]
  23. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
    [Crossref]
  24. M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
    [Crossref]
  25. J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
    [Crossref] [PubMed]
  26. B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
    [Crossref] [PubMed]
  27. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
    [Crossref] [PubMed]
  28. E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
    [Crossref]
  29. D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
    [Crossref] [PubMed]
  30. A. F. Runge, N. G. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
    [Crossref]
  31. N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015).
    [Crossref] [PubMed]
  32. S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
    [Crossref]
  33. S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  34. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983).
    [Crossref] [PubMed]
  35. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12(5), 355–357 (1987).
    [Crossref] [PubMed]
  36. K. Smith and L. F. Mollenauer, “Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction,” Opt. Lett. 14(22), 1284–1286 (1989).
    [Crossref] [PubMed]
  37. W. H. Loh, A. B. Grudinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19(10), 698–700 (1994).
    [Crossref] [PubMed]
  38. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
    [Crossref] [PubMed]
  39. E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
    [Crossref]
  40. M. Romagnoli, L. Socci, I. Cristiani, and P. Franco, “Role of the dispersive wave in soliton dynamics and interactions,” in New Trends in Optical Soliton Transmission Systems (Springer), 39–51 (1998).

2015 (15)

Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40(7), 1366–1369 (2015).
[Crossref] [PubMed]

M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device,” Opt. Lett. 40(20), 4767–4770 (2015).
[Crossref] [PubMed]

M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
[Crossref]

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. Eldeniz, and F. Ilday, “Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation,” J. Opt. Soc. Am. B 32(5), 900–906 (2015).
[Crossref]

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

A. F. Runge, N. G. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
[Crossref]

N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015).
[Crossref] [PubMed]

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

2014 (2)

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014).
[Crossref]

A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
[Crossref] [PubMed]

2013 (3)

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

2012 (2)

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

2011 (4)

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

H. Kalaycioglu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011).
[Crossref] [PubMed]

A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
[Crossref] [PubMed]

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

2010 (2)

N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

2009 (1)

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2005 (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

1994 (1)

1992 (3)

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

1991 (1)

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

1989 (1)

1987 (1)

1983 (1)

Afanasjev, V. V.

Afzal, M. I.

M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
[Crossref]

Aguergaray, C.

Akçaalan, Ö.

Akhmediev, N.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
[Crossref] [PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010).
[Crossref]

Alameh, K.

M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
[Crossref]

Amrani, F.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Arecchi, F. T.

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

Babin, S.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Balle, S.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

Barland, S.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

Brambilla, M.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Broderick, N. G.

Cai, Z. R.

Chabchoub, A.

A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
[Crossref] [PubMed]

Churkin, D.

N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015).
[Crossref] [PubMed]

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Churkin, D. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

Coen, S.

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

Columbo, L.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Dianov, E.

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Dudley, J.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

Egorov, O.

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

Eken, K.

Eldeniz, Y.

Erkintalo, M.

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

A. F. Runge, N. G. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
[Crossref]

A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

Falkovich, G.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Garbin, B.

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

Giacomelli, G.

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

Giudici, M.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

Gordon, J. P.

Grelu, P.

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

Grudinin, A. B.

Gustave, F.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Haboucha, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Hoffmann, N. P.

A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
[Crossref] [PubMed]

Hu, S.

Ilday, F.

Ilday, F. Ö.

Iliew, R.

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Jang, J. K.

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

Javaloyes, J.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

Kalaycioglu, H.

Kelleher, B.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Kelly, S.

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Khorev, S.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

Kobtsev, S. M.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

Komarov, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Korobko, D. A.

Laming, R.

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Lapucci, A.

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

Leblond, H.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Lecaplain, C.

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Lederer, F.

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

Lee, Y. T.

M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
[Crossref]

Liu, M.

Liu, Z.

Loh, W. H.

Luchnikov, A.

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Luo, A. P.

Luo, K.

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

Luo, Z. C.

Marconi, M.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

Matsas, V. J.

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Meucci, R.

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

Mitschke, F. M.

Mollenauer, L. F.

Murdoch, S. G.

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

Okhotnikov, O. G.

Payne, D. N.

W. H. Loh, A. B. Grudinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19(10), 698–700 (1994).
[Crossref] [PubMed]

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Pelinovsky, E.

N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010).
[Crossref]

Phillips, M. W.

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Pilipetskii, A.

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Podivilov, E.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Prati, F.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Prokhorov, A.

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Richardson, D.

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Runge, A. F.

Salhi, M.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Sanchez, F.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Shu, X.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Smirnov, S.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Smirnov, S. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

Smith, K.

Solli, D.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Soto-Crespo, J. M.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

Sugavanam, S.

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015).
[Crossref] [PubMed]

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Tam, H. Y.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express 17(10), 8103–8108 (2009).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Tarasov, N.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

N. Tarasov, S. Sugavanam, and D. Churkin, “Spatio-temporal generation regimes in quasi-CW Raman fiber lasers,” Opt. Express 23(19), 24189–24194 (2015).
[Crossref] [PubMed]

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Tissoni, G.

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Turitsyn, S.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

Turitsyn, S. K.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

Turitsyna, E.

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Tykalewicz, B.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

Wabnitz, S.

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

Wise, F. W.

Wu, X.

Xu, W. C.

Yavas, S.

Zaviyalov, A.

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

Zhang, H.

Zhang, S.

Zhao, B.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Bunch of restless vector solitons in a fiber laser with SESAM,” Opt. Express 17(10), 8103–8108 (2009).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Zolotovskii, I. O.

Appl. Phys. B (2)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

E. Dianov, A. Luchnikov, A. Pilipetskii, and A. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54(2), 175–180 (1992).
[Crossref]

Electron. Lett. (2)

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

D. Richardson, R. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Pulse repetition-rates in a passive, self-starting, femtosecond soliton fibre laser,” Electron. Lett. 27(16), 1451–1453 (1991).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

N. Akhmediev and E. Pelinovsky, “Editorial–Introductory remarks on “Discussion & Debate: Rogue waves–towards a unifying concept?”,” Eur. Phys. J. Spec. Top. 185(1), 1–4 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. I. Afzal, K. Alameh, and Y. T. Lee, “Blue-Shifted rogue waves generation in normal dispersion fiber laser,” IEEE Photonics Technol. Lett. 27(22), 2323–2326 (2015).
[Crossref]

J. Opt. (1)

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15(6), 060201 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Sugavanam, N. Tarasov, S. Wabnitz, and D. V. Churkin, “Ginzburg–Landau turbulence in quasi‐CW Raman fiber lasers,” Laser Photonics Rev. 9(6), L35–L39 (2015).
[Crossref]

Nat. Commun. (3)

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6(5), 7004 (2015).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, “Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons,” Nat. Commun. 6(6), 7370 (2015).
[Crossref] [PubMed]

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun. 6(1), 5915 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics 7(8), 657–663 (2013).
[Crossref]

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9(7), 450–455 (2015).
[Crossref]

E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

M. Erkintalo, K. Luo, J. K. Jang, S. Coen, and S. G. Murdoch, “Bunching of temporal cavity solitons via forward Brillouin scattering,” New J. Phys. 17(11), 115009 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (11)

D. A. Korobko, O. G. Okhotnikov, and I. O. Zolotovskii, “Long-range soliton interactions through gain-absorption depletion and recovery,” Opt. Lett. 40(12), 2862–2865 (2015).
[Crossref] [PubMed]

H. Kalaycioglu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011).
[Crossref] [PubMed]

A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
[Crossref] [PubMed]

Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40(7), 1366–1369 (2015).
[Crossref] [PubMed]

M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device,” Opt. Lett. 40(20), 4767–4770 (2015).
[Crossref] [PubMed]

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8(11), 596–598 (1983).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12(5), 355–357 (1987).
[Crossref] [PubMed]

K. Smith and L. F. Mollenauer, “Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction,” Opt. Lett. 14(22), 1284–1286 (1989).
[Crossref] [PubMed]

W. H. Loh, A. B. Grudinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19(10), 698–700 (1994).
[Crossref] [PubMed]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40(20), 4755–4758 (2015).
[Crossref] [PubMed]

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (3)

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, “Two-dimensional representation of a delayed dynamical system,” Phys. Rev. A 45(7), 4225–4228 (1992).
[Crossref] [PubMed]

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90(1), 013805 (2014).
[Crossref]

A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Phys. Rev. A 85(1), 013828 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref] [PubMed]

A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106(20), 204502 (2011).
[Crossref] [PubMed]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Other (1)

M. Romagnoli, L. Socci, I. Cristiani, and P. Franco, “Role of the dispersive wave in soliton dynamics and interactions,” in New Trends in Optical Soliton Transmission Systems (Springer), 39–51 (1998).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the fiber laser, WDM: wavelength-division multiplexer; EDF: erbium-doped fiber; SMF: single-mode fiber; PC: polarization controller; PDI: polarization-dependent isolator; OSA: optical spectrum analyzer; PD: photodetector. (b) The optical spectra of three types of mode-locking states obtained by pump power increase only: with pump power of 22 (blue), 303 (red), and 730 mW (black).
Fig. 2
Fig. 2 Stable soliton bunch state at a pump power of 22 mW: (a) temporal trace of the stationary soliton bunch circulating at the fundamental cavity repetition period of 96.6 ns, and (b) temporal magnification of the soliton bunch.
Fig. 3
Fig. 3 Spatio-temporal intensity dynamics of the stable soliton bunch over 8000 roundtrips at a pump power of 22 mW.
Fig. 4
Fig. 4 Histogram (log scale) of the normalized soliton intensity at a pump power of (a) 22, (b) 303, and (c) 730 mW.
Fig. 5
Fig. 5 The solitons occupied the whole laser cavity when the pump power was increased to 303 mW: (a) temporal trace of the solitons, (b) temporal magnification of the solitons with time span of 3 ns.
Fig. 6
Fig. 6 Spatio-temporal intensity dynamics of the multiple-soliton state exhibiting weak interactions between solitons at a pump power of 303 mW.
Fig. 7
Fig. 7 RWs are generated at a pump power of 730 mW: (a), temporal trace of the multiple solitons; (b), temporal magnification of the solitons with time span of 3 ns, around RW location; (c), the autocorrelation trace.
Fig. 8
Fig. 8 Spatio-temporal intensity dynamics of the multiple-soliton state showing strong interactions between solitons at a pump power of 730 mW. The dashed square shows an example of RWs.

Metrics