Abstract

We presented a method to actualize the optical vortex generation with wavelength tunability via an acoustically-induced fiber grating (AIFG) driven by a radio frequency source. The circular polarization fundamental mode could be converted to the first-order optical vortex through the AIFG, and its topological charges were verified by the spiral pattern of coaxial interference between the first-order optical vortex and a Gaussian-reference beam. A spectral tuning range from 1540 nm to 1560 nm was demonstrated with a wavelength tunability slope of 4.65 nm/kHz. The mode conversion efficiency was 95% within the whole tuning spectral range.

© 2016 Optical Society of America

1. Introduction

Optical vortex, with ability to carry orbital angular momentum (OAM) [1], has recently attracted great research interest in a wide range of applications, such as optical micromanipulation [2], quantum optics [3], nonlinear optics [4], optical communications [5, 6], etc.

Optical vortex in free space has typically been generated using cylindrical lens mode converters [7], q-plates [8], spiral phase plates [9], computer-generated holograms [10], metamaterials-based phase plates [11], subwavelength gratings [12], EIT-based light pulse storage and retrieval process [13], etc. Meanwhile, due to the advantages of long-distance/large-capacity transmission for optical communication systems, the fiber-based generation techniques are also developing rapidly. Several direct methods to generate optical vortex in fiber have been proposed [14–18], and the ± 1-order optical vortex have been experimentally generated based on the fiber gratings only with asymmetric refractive index modulation due to mechanical microbend [16,17], laser writing [18], etc. In these approaches, it is difficult to actively tune the wavelength of the optical vortex because the grating period of the fabricated fiber grating elements is fixed. Dashti et al. demonstrated that the OAM of the ± 1-order acoustic vortex can be transferred to a circularly polarized fundamental optical mode, therefore, to form a stable ± 1-order optical vortex in the fiber carrying OAM [19]. In their method, active wavelength tunability with two sets of coworking acoustic transducers and radio frequency (RF) drivers is possible but practically complicated.

In this Letter, we proposed a method to actualize the optical vortex generation with dynamic wavelength tunability based on an acoustically-induced fiber grating (AIFG) driven by an RF signal. The AIFG could selectively convert the left/right handed circular polarization fundamental mode to the + 1/-1 order optical vortex in a two-mode fiber. The optical vortex was experimentally generated within the wavelength range 1540 nm - 1560 nm by tuning the frequency of RF driving signal. A uniform mode conversion efficiency ∼95% was kept in the whole wavelength tuning range. The topological charge of the generated optical vortex was verified using the coaxial interference pattern between the optical vortex and a Gaussian-reference beam.

2. Principle and experimental configuration

In an unjacketed fiber with cylindrical symmetry, the lowest-order acoustic flexural mode F11 [20], with its vibration along the x-axis, can be excited and then propagates along the unjacketed fiber, as shown in Fig. 1(a). The F11 mode is antisymmetric with respect to its vibration direction, as shown in Fig. 1(b), the corresponding refractive index modulation induced by the F11 mode on the cross section of the unjacketed fiber is also antisymmetric and can be expressed as [21,22]

Δn(x,y)=N0x,
where, N0 = n0(1 + χ)K2u0, n0 is the refractive index of the fiber core, χ = −0.22 is the elasto-optical coefficient of silica, K and u0 are the wavevector and amplitude of the acoustic flexural wave, respectively. ϕ denotes the crossing angle between the polarizations of the acoustic mode F11 and the optical mode HE11, which are both linearly polarized, as shown in Figs. 1(b)-1(d). The mode coupling coefficient κij between the vector modes i (HE11x/y) and j (TE01, HE21even/odd, TM01) of the AIFG can be expressed as [21,23]
κij=πλε0μ0n0Ei*(x,y)·Δn(x,y)Ej(x,y)dxdy,
where, Ei(x, y) and Ej(x, y) are the transverse electric field of the fundamental vector modes (HE11x/y) and the four high-order vector modes (TE01, HE21even/odd and TM01), respectively.

 figure: Fig. 1

Fig. 1 (a) Example F11 mode of the acoustic flexural wave propagating along the unjacketed fiber. (b-c) Field patterns of F11 and HE11 modes on the cross-section of fiber, respectively. The arrows indicate the vibration directions of the F11 mode (b) and the polarization directions of the transverse electric field of the HE11 mode (c), which are all linearly polarized. (d) Sketch of the mode field overlap between the linearly-polarized F11 and HE11 modes on the cross section of fiber, ϕ denotes the crossing angle between the two modes. (e1-e4) Coupling coefficient κij versus ϕ for each of the first four high-order vector modes (TE01, HE21even/odd, TM01) with respect to different linear polarizations of F11 and HE11 modes.

Download Full Size | PPT Slide | PDF

The mode coupling coefficient κij in Eq. (2) was numerically calculated for the adopted step-index two-mode fiber (TMF, OFS), which is optimized to stably support the transmission of fundamental vector modes (HE11x/y) and four high-order vector modes (TE01, HE21even/oddand TM01). The transverse electric field distributions of the vector modes Ei(x, y) and Ej(x, y) were calculated using the finite element method (Comsol). Then, with the grid data of Ei(x, y) and Ej(x, y), the mode coupling efficiency κij was calculated using Eq. (2) when ϕ varied, and the polarization direction of Ei(x, y) is illustrated in Fig. 1(d). Here, the constant N0 in Eq. (1) was set to ∼10−5, and the calculation result of κij is respectively shown in Figs. 1(e1-e4), which denote the dependence of mode coupling on the polarization direction. At ϕ = 90o, HE11ycan be coupled only to TE01 andHE21odd, as shown in Figs. 1(e1) and 1(e3), respectively. Whereas at ϕ = 0o, HE11x can be converted only to HE21evenand TM01, as shown in Figs. 1(e2) and 1(e4), respectively.

To allow the mode conversion from HE11x/y to HE21even/odd while prevent the generation of TE01 and TM01 modes, the phase matching condition [24]

LB=Λ,
should be satisfied, where LB=λ/(nHE11nHE21)is the beatlength between HE11x/yand HE21even/oddmodes, λ is the resonance wavelength of the AIFG, nHE11and nHE21are the effective refractive indices of HE11x/y and HE21even/oddmodes, and both pairs of HE11x/y (HE21even/odd) modes are degenerate, respectively. Λ=(πRCext/f)1/2is the dispersion equation of the acoustic flexural wave propagating along the unjacketed fiber [21], where R is the fiber radius, Cext = 5760 m/s is the phase velocity in silica, and f is the frequency of the acoustic wave. The grating period Λ versus the acoustic frequency and the beatlength LB versus the wavelength are both plotted in Fig. 2. The beatlengths for TE01, HE21even/oddand TM01 are different with respect to each other [19, 25], thus the HE11x/y mode can be selectively converted to HE21even/oddmode at a specific wavelength by adjusting the RF driving frequency according to the phase matching condition Eq. (3), as illustrated in Fig. 2. Therefore when a left- or right-handed circular polarization mode, i.e. CP±=HE11x±iHE11y was input into the unjacketed TMF, the CP ± mode can be converted to ± 1-order optical vortex VM11±=HE21even±iHE21oddvia the AIFG. Meanwhile, Fig. 2 also suggests that the resonance wavelength of the optical vortex can be tuned in the wavelength range 1540 nm - 1560 nm by accordingly tuning the frequency of the RF driving signal from 0.3263 MHz to 0.3193 MHz.

 figure: Fig. 2

Fig. 2 Beatlength (LB) between HE11x/yand TE01, HE21even/odd, TM01 modes of the TMF. Relationship between the calculated grating period (Λ) of the AIFG and frequency of RF driving signal applied to the acoustic transducer.

Download Full Size | PPT Slide | PDF

The experimental configuration for the actively wavelength tunable all-fiber optical vortex generation and examination is sketched in Fig. 3. The output beam from a tunable laser was amplified by an erbium doped fiber amplifier (EDFA) and then divided into two paths by a 3-dB coupler. One path was adopted for generating the optical vortex VM11± and the other was used as a reference beam to interfere with the generatedVM11± mode. For the path of VM11±generation, the beam was firstly coupled into a section of a single-mode fiber (SMF, Corning SMF-28) and the intensity was controlled by a tunable attenuator. The linear polarization characteristic of the beam was further purified by a polarizer, and then the linearly polarized beam was converted to a circularly polarized mode CP ± by a polarization controller (PC). The SMF was directly spliced to the TMF, the fusion splice between the two kinds of fiber was pretty smooth to guarantee high coupling efficiency. Moreover, to further eliminate the effects of the unwanted high-order vector modes (TE01, HE21even/odd, TM01) before the AIFG, a mode tripper (MS), which was made of 5 turns of TMF wound on a 12 mm diameter rod [26], was used to ensure a pure CP ± mode launching. The diameter of the TMF for forming the AIFG was etched down to 40 µm by hydrofluoric (HF) acid in order to adjust the resonance wavelength based on the phase matching condition Eq. (3) and to enhance the overlap between the acoustic and optical waves [21], thus increasing the acousto-optic coupling efficiency of the AIFG within the 50 mm long etched segment. One end of the unjacketed fiber was glued with epoxy to the tip of the horn-like acoustic transducer and the other end was fixed on an optical fiber clamp.

 figure: Fig. 3

Fig. 3 Experimental configuration of the actively wavelength tunable all-fiber optical vortex generation and examination. EDFA: Erbium doped fiber amplifier. SMF: single mode fiber. PC: polarization controller. MS: mode stripper. TMF: two mode fiber. MO: micro-objective. NPBS: Non polarizing beam splitter prism. CCD: charge coupled device.

Download Full Size | PPT Slide | PDF

By tuning the power and frequency of the RF driving signal applied to the acoustic transducer and adjusting the input polarization state through controlling the PC, the input CP ± mode was converted to the VM11± mode when the phase matching condition was satisfied. Subsequently, the TMF output terminal was collimated using a 40 × micro-objective (MO) and the mode intensity image was recorded using an infrared charge coupled device (IR CCD). Because the frequency of the VM11± mode was downshifted from that of the CP ± mode by an amount equal to the frequency of the acoustic flexural wave [24,27], a phase modulator was used to adjust the reference beam at the acoustic frequency to create a sideband of the same frequency as that of the VM11± mode [19]. The interference pattern formed by the lower sideband reference and the VM11± mode was captured by the IR CCD. The topological charge number of the VM11± mode could be identified from the interference pattern [17, 19].

3. Experimental results and discussions

Upon tuning of the optical wavelength, the frequency of RF driving signal was adjusted accordingly to satisfy the phase matching condition. As a proof of principle, Figs. 4 (a1-e1) and (a3-e3) depict the near-field intensity distributions of the VM11± modes at λ = 1540 nm,1545 nm, 1550 nm, 1555 nm and 1560 nm, while the frequency of RF driving signal was correspondingly set to be f = 0.2972 MHz, 0.2983 MHz, 0.2994 MHz, 0.3004 MHz and 0.3015 MHz, respectively. The corresponding grating period of the AIFG was calculated to be about Λ = 1103.5 µm, 1101.5 µm, 1099.4 µm, 1097.6 µm and 1095.6 µm, respectively. TheVM11±modes were obtained in the wavelength range from 1540 nm to 1560 nm and exhibited the annular shapes with null intensity in the center as the characteristic of the first-order vortex. Moreover, the spiral images, which are the signature of the VM11± modes, were experimentally recorded using coaxial interference between the VM11±modes and the Gaussian-reference beams, as shown in Figs. 4(a2-e2) and 4(a4-e4). The rotating spiral interference patterns at λ = 1550 nm are shown in Visualization 1 and Visualization 2, respectively.

 figure: Fig. 4

Fig. 4 (a1-e1) and (a3-e3) are the mode intensity patterns of the VM11± modes at different resonance wavelengths of λ = 1540 nm, 1545 nm, 1550 nm, 1555 nm and 1560 nm, respectively. The annular shape with null intensity in the center is characteristic of these modes. (a2-e2) and (a4-e4) are images of the VM11±modes output when coaxially interfered with Gaussian-reference beams at above resonance wavelengths. The rotating spiral interference patterns at λ = 1550 nm are shown in Visualization 1 and Visualization 2, respectively.

Download Full Size | PPT Slide | PDF

Furthermore, the transmission spectra of the AIFG were measured to deduce the mode conversion efficiency of CP±VM11± [16]. Spontaneous emission spectrum of EDFA was used as the broadband light source at the input, while the output terminal of the AIFG was directly spliced to a segment of SMF to prevent resultant VM11± modes from coupling into the SMF, and the output spectra were measured by an optical spectrum analyzer (OSA). Figure 5 (a) depicts the transmission spectra of the AIFG with the same frequencies and powers of RF driving signals as those used in Fig. 4. We obtained ~13 dB (95%) of mode conversion efficiency at five resonance wavelengths. With increasing the frequency of the RF driving signal, the resonance wavelength shifted toward long wavelength with a spectral tunability slope of 4.65 nm/kHz, as shown in Fig. 5(b).

 figure: Fig. 5

Fig. 5 Transmission spectra of the AIFG used to deduce the mode conversion efficiency. (a) Mode conversion efficiency were all kept ~13 dB with its resonance wavelength at λ = 1540 nm, 1545 nm, 1550 nm, 1555 nm and 1560 nm, respectively, when the RF driving frequency was set at f = 0.2972 MHz, 0.2983 MHz, 0.2994 MHz, 0.3004 MHz and 0.3015 MHz, respectively. (b) The resonance wavelength versus the RF driving frequency. The resonance wavelength tunability slope was measured to be 4.65 nm/kHz.

Download Full Size | PPT Slide | PDF

The switching time between the modes is mainly determined by the transit time of the acoustic flexural wave propagating through the acousto-optic coupling region of the AIFG [28, 29], and can be expressed as

τ=L/πRCextf
where L is the acousto-optic coupling length of the AIFG, R is the fiber radius, Cext = 5760 m/s is the velocity of acoustic wave silica, and f is the frequency of the acoustic wave. Using the Eq. (4), the switching time between the modes at above five resonance wavelengths were calculated to be τ = 152.5 µs, 152.2 µs, 151.9 µs, 151.6 µs, and 151.4 µs, respectively. Therefore, with an acousto-optic coupling length L of the order of tens of millimeters, the switching time τ between the modes can be of the order of hundreds of µs.

4. Conclusions

In conclusion, we developed a method for optical vortex generation in TMF with the wavelength tunability. An AIFG driven by an RF source successfully converted the circularly-polarized fundamental mode to the first-order optical vortex, while actively wavelength tunability was demonstrated in the wavelength range 1540 nm - 1560 nm by varying RF frequency and with a spectral tuning rate of 4.65 nm/kHz. The mode conversion efficiency was kept at ~95% in the whole wavelength tuning range. The topological charge was chosen by controlling the polarization state of the input light, and verified by the spiral pattern using coaxial interference between the VM11± mode and a Gaussian-reference beam. The demonstrated compact all-fiber device with capability of active wavelength tunability is advantageous for practical applications.

Funding

This work is financially supported by the 973 Programs (2012CB921900, 2013CB328702), the National Natural Science Foundation (NSFC) (11404263, 61377055, 61405161, 11174153, and 11574161), and the Fundamental Research Funds for the Central Universities (3102015ZY060).

Acknowledgments

The authors would like to thank Wei Gao in Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Science for the helpful discussions.

References and links

1. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [CrossRef]  

2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

3. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010). [CrossRef]   [PubMed]  

4. X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015). [CrossRef]   [PubMed]  

5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]   [PubMed]  

6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]   [PubMed]  

8. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016). [CrossRef]  

9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994). [CrossRef]  

10. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef]   [PubMed]  

11. J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016). [CrossRef]   [PubMed]  

12. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012). [CrossRef]   [PubMed]  

13. Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013). [CrossRef]  

14. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012). [CrossRef]   [PubMed]  

15. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013). [CrossRef]   [PubMed]  

16. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

17. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015). [CrossRef]   [PubMed]  

18. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016). [CrossRef]   [PubMed]  

19. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006). [CrossRef]   [PubMed]  

20. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009). [CrossRef]   [PubMed]  

21. T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996). [CrossRef]  

22. J. Zhao and X. Liu, “Fiber acousto-optic mode coupling between the higher-order modes with adjacent azimuthal numbers,” Opt. Lett. 31(11), 1609–1611 (2006). [CrossRef]   [PubMed]  

23. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997). [CrossRef]  

24. B. Y. Kim, H. E. Engan, H. J. Shaw, and J. N. Blake, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986). [CrossRef]   [PubMed]  

25. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012). [CrossRef]   [PubMed]  

26. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016). [CrossRef]   [PubMed]  

27. W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015). [CrossRef]   [PubMed]  

28. A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003). [CrossRef]  

29. W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters,” Opt. Express 21(14), 16621–16628 (2013). [CrossRef]   [PubMed]  

References

  • View by:

  1. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  3. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
    [Crossref] [PubMed]
  4. X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
    [Crossref] [PubMed]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  8. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
    [Crossref]
  10. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  11. J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
    [Crossref] [PubMed]
  12. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  13. Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
    [Crossref]
  14. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
    [Crossref] [PubMed]
  15. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
    [Crossref] [PubMed]
  16. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).
  17. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [Crossref] [PubMed]
  18. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  19. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref] [PubMed]
  20. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009).
    [Crossref] [PubMed]
  21. T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
    [Crossref]
  22. J. Zhao and X. Liu, “Fiber acousto-optic mode coupling between the higher-order modes with adjacent azimuthal numbers,” Opt. Lett. 31(11), 1609–1611 (2006).
    [Crossref] [PubMed]
  23. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  24. B. Y. Kim, H. E. Engan, H. J. Shaw, and J. N. Blake, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986).
    [Crossref] [PubMed]
  25. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [Crossref] [PubMed]
  26. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
    [Crossref] [PubMed]
  27. W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015).
    [Crossref] [PubMed]
  28. A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
    [Crossref]
  29. W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters,” Opt. Express 21(14), 16621–16628 (2013).
    [Crossref] [PubMed]

2016 (4)

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref] [PubMed]

W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (5)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters,” Opt. Express 21(14), 16621–16628 (2013).
[Crossref] [PubMed]

2012 (4)

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (1)

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (2)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

J. Zhao and X. Liu, “Fiber acousto-optic mode coupling between the higher-order modes with adjacent azimuthal numbers,” Opt. Lett. 31(11), 1609–1611 (2006).
[Crossref] [PubMed]

2003 (2)

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

1997 (1)

1996 (1)

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1986 (1)

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Andrés, M. V.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

Barnett, S. M.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Birks, T. A.

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Blake, J. N.

Bo, F.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, R. W.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Cruz, J. L.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

Culverhouse, D. O.

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Delgado-Pinar, M.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

Díez, A.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dolinar, S. J.

Du, C.

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Engan, H. E.

Erdogan, T.

Fazal, I. M.

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Franke-Arnold, S.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Gao, F.

Gao, H.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Gao, P.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Gao, W.

Golowich, S.

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Haakestad, M. W.

Hu, X.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, L.

Ireland, D. G.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jack, B.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jha, A. K.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jiang, B.

Jin, J.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Kim, B. Y.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Leach, J.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Li, P.

Li, S.

Li, X.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Li, Z. X.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Liu, X.

Liu, Y.

Luo, J.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Luo, X.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Mao, D.

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Mei, T.

Mo, Q.

Mora, J.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Pu, M.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romero, J.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Russell, P. St. J.

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Shaw, H. J.

Shen, B.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Shi, Y.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Skaar, J.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, J.

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref] [PubMed]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, T.

Wang, W.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Wang, X.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Wei, K.

Wen, J.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xu, H.

Xu, J.

Xu, J. J.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

Xu, Z.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Yang, D.

Yang, J. Y.

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, L.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Yi, L.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhai, Z. H.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

Zhang, C.

Zhang, G.

Zhang, G. Q.

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

Zhang, L.

Zhang, W.

Zhang, X.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

Zhao, Z.

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technol. Lett. 15(1), 84–86 (2003).
[Crossref]

J. Lightwave Technol. (1)

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Nat. Photonics (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Z. H. Zhai, Z. X. Li, J. J. Xu, and G. Q. Zhang, “Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid,” Phys. Rev. A 88(3), 035807 (2013).
[Crossref]

Phys. Rev. Lett. (3)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6, 24286 (2016).
[Crossref] [PubMed]

Science (3)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
Visualization 1: MP4 (296 KB)      1 order vortex output when coaxially interfered with a Gaussian-reference beam at 1550 nm.
Visualization 2: MP4 (369 KB)      1 order vortex output when coaxially interfered with a Gaussian-reference beam at 1550 nm.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Example F11 mode of the acoustic flexural wave propagating along the unjacketed fiber. (b-c) Field patterns of F11 and HE11 modes on the cross-section of fiber, respectively. The arrows indicate the vibration directions of the F11 mode (b) and the polarization directions of the transverse electric field of the HE11 mode (c), which are all linearly polarized. (d) Sketch of the mode field overlap between the linearly-polarized F11 and HE11 modes on the cross section of fiber, ϕ denotes the crossing angle between the two modes. (e1-e4) Coupling coefficient κij versus ϕ for each of the first four high-order vector modes (TE01, HE 21 e v e n / o d d , TM01) with respect to different linear polarizations of F11 and HE11 modes.
Fig. 2
Fig. 2 Beatlength (LB) between HE 11 x / y and TE01, HE 21 e v e n / o d d , TM01 modes of the TMF. Relationship between the calculated grating period (Λ) of the AIFG and frequency of RF driving signal applied to the acoustic transducer.
Fig. 3
Fig. 3 Experimental configuration of the actively wavelength tunable all-fiber optical vortex generation and examination. EDFA: Erbium doped fiber amplifier. SMF: single mode fiber. PC: polarization controller. MS: mode stripper. TMF: two mode fiber. MO: micro-objective. NPBS: Non polarizing beam splitter prism. CCD: charge coupled device.
Fig. 4
Fig. 4 (a1-e1) and (a3-e3) are the mode intensity patterns of the VM 11 ± modes at different resonance wavelengths of λ = 1540 nm, 1545 nm, 1550 nm, 1555 nm and 1560 nm, respectively. The annular shape with null intensity in the center is characteristic of these modes. (a2-e2) and (a4-e4) are images of the VM 11 ± modes output when coaxially interfered with Gaussian-reference beams at above resonance wavelengths. The rotating spiral interference patterns at λ = 1550 nm are shown in Visualization 1 and Visualization 2, respectively.
Fig. 5
Fig. 5 Transmission spectra of the AIFG used to deduce the mode conversion efficiency. (a) Mode conversion efficiency were all kept ~13 dB with its resonance wavelength at λ = 1540 nm, 1545 nm, 1550 nm, 1555 nm and 1560 nm, respectively, when the RF driving frequency was set at f = 0.2972 MHz, 0.2983 MHz, 0.2994 MHz, 0.3004 MHz and 0.3015 MHz, respectively. (b) The resonance wavelength versus the RF driving frequency. The resonance wavelength tunability slope was measured to be 4.65 nm/kHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x , y ) = N 0 x ,
κ i j = π λ ε 0 μ 0 n 0 E i * ( x , y ) · Δ n ( x , y ) E j ( x , y ) d x d y ,
L B = Λ ,
τ = L / π R C e x t f

Metrics