Abstract

In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is −11.8 dB, indicating an excess coupling penalty of −5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

© 2016 Optical Society of America

1. Introduction

The last decade has seen the emergence of silicon photonics as a potential platform for low-cost sensing and point-of-care medical applications, based on re-deploying established complementary metal oxide semiconductor (CMOS) technologies, at volume, for photonic applications [1,2]. The high index-contrast in the silicon-on-insulator (SOI) architecture allows for photonic integrated circuits (PICs) with very small footprints, while CMOS lithography, implantation and deposition processes allow for the implementation of a rich catalogue of passive and active components available through multi-project wafer foundry services [3]. The most significant roadblock to realizing fully functional Si-PICs is the lack of an intrinsic light source in silicon. Despite some recent work towards CMOS-compatible Ge-based lasers [4], most research has focused on the integration of III-V materials and devices on silicon, to unlock its full photonic potential. One approach is heterogeneous integration, where III-V material is bonded or transfer-printed to the Si-PIC, and then etched to create a cavity condition for on-PIC lasing [5]. Several architectures for heterogenous III-V laser on the Si photonics platform have been successfully demonstrated [6,7], but issues around the process compatibility with a CMOS foundries remain to be resolved, in order to optimize yields and reliability still need to be resolved.

An alternative approach is hybrid integration, where stand-alone “known good” laser devices are opto-mechanically coupled to the Si-PIC, using either an edge- or grating-coupling scheme. Although it is the simplest approach, hybrid integration by butt-coupling a laser into the edge-coupler of a Si-PIC often has sub-µm alignment tolerances, and requires an optical interposer [8], making volume-packaging a challenge. Hybrid laser integration using a grating-coupler to launch light into the Si-PIC brings more relaxed alignment tolerances(typically ± 2.5 µm for 1 dB), and can be implemented using a micro-optical bench (MOB) scheme [9,10]. Although a MOB for hybrid integration brings great flexibility in terms of laser-type and additional functionality (i.e. optical-isolators), it occupies a relatively large footprint (typically 2 mm2) on the Si-PIC. Direct hybrid integration of vertical cavity surface emitting lasers (VCSELs) to the grating-coupler on the Si-PIC allows for an order-of-magnitude reduction in footprint (250 µm x 250 µm). Planar VCSEL-to-PIC integration (where the surfaces of the VCSEL and PIC are co-planar) has already been demonstrated, but requires either post-processing to deposit photoresist based “wedges” that refract the VCSEL mode onto the grating-coupler at the correct angle-of-incidence [11], or a special bi-directional coupler that launches light into a pair of wave-guides, and which cannot be trivially re-combined into a single-channel, without phase-compensation [12,13].

In our new approach, a tilted-VCSEL is bonded directly to the PIC, without any post-processing layers, such that the VCSEL mode is correctly aligned for optical insertion into a standard grating-coupler [14] - see Fig. 1. The desired tilt-angle (10°) is achieved by controlling the reflow of the solder ball deposition (SBD) for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. Essentially, this approach allows the VCSEL bond-pads, which are originally designed for wire-bond connections, to be repurposed into a means of creating a direct VCSEL-PIC electrical connection. This approach is compatible with existing flip-chip alignment and bonding technologies, and the absence of surface treatment or post-processing ensures maximum compatibility with bio-sensing applications, because it leaves functional-layers uncontaminated, and allows them to be brought into close proximity with on-PIC waveguide and resonator structures [15]. The passive-alignment of the VCSEL on the PIC is made using alignment markers, allowing for very high-speed assembly and packaging, leading to a cost-effective method of hybrid-integration of lasers on Si-PICs.

 figure: Fig. 1

Fig. 1 (a) Schematic of a single-mode fibre (SMF) grating-coupled to the test Si-PIC, showing the near-normal angle-of-incidence of approximately 10°, The top-oxide (TOX) layer, the SOI layer, the bottom-oxide layer (BOX) and the substrate (SUB) of the sample. (b) Schematic of the sample used for active-alignment measurements, where the VCSEl is bounted on an AlN sub-mount, bonded to an electrical FLEX connector that provides power to the VCSEL and offers a means of translating and tilting the sample above the grating-coupler. (c) Schematic of the tilted-VCSEL flip-chip bonded above a grating-coupler on a Si-PIC, showing the solder ball deposition (SBD) and wire-bond used to make the n- and p-type electrical-connections to the on-PIC contact-pads and tracks.

Download Full Size | PPT Slide | PDF

2. Active alignment benchmark

To benchmark the results of the passively-aligned and flip-chip bonded samples, the limits of the VCSEL-PIC insertion-loss (LVP) were first measured using an active-alignment set-up, and compared to the Fibre-PIC insertion loss (LFP). The value of LFP may be calculated directly from the Fibre-PIC-Fibre transmission (TFPF) values in Fig. 2, measured using the scheme illustrated in Fig. 3(a), and by assuming that the Fibre-PIC and PIC-Fibre insertion losses are the same: TFPF = LFP + LPF = 2 LFP. At the VCSEL emission wavelength of 1546.15nm, TFPF = −11.7dB, see Fig. 2. The values of LVP were measured using a 1550 nm long-wavelength VCSEL (225 µm x 225 µm) from VERTILAS GmbH [16] was mounted onto the Au contact-pad of a 250 µm-thick AlN sub-mount using silver epoxy. The submount was then bonded onto a two-line polyimide flexible electrical (FLEX) connector, using non-conducting thermal epoxy. A pair of wirebonds, one from the N-type bondpad on the VCSEL, and the other from the Au contact-pad of the sub-mount, were used to make the electrical connection to the FLEX – see Fig. 1(b). While the Si- PIC was securely held in place by a vacuum-chuck, the translation and tilt of the VCSEL was controlled by Newport AutoAlign system, with electrically insulating grippers holding the FLEX connector immediately beside the AlN sub-mount. The AutoAlign system allows 6-axis optimization of the position and tilt of the VCSEL during active-alignment.

 figure: Fig. 2

Fig. 2 The Fibre-PIC-Fibre transmission (TFPF) spectrum at AOI = 10°, and VCSEL power (PV) spectrum, with a drive-current of ID = 10 mA and a tilt-angle of 10°. The threshold wavelength, FWHM line-width, and suppression of the VCSEL are 1546.15 nm, <0.05 nm, and and 37 dB, respectively. The value of TFPF at the emission wavelength is −11.7 dB.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Schematics of the (a) Fibre-PIC-Fibre transmission measurement, and (b) VCSEL-PIC-Fibre transmission measurement, used to determine the Fibre-PIC insertion loss (LFP), the VCSEL-PIC insertion loss (LVP), and so the excess coupling penalty for VCSEL coupling (LEX).

Download Full Size | PPT Slide | PDF

The VCSEL power (PV) and spectrum were measured as a function of drive-current (ID), by collecting the emission into a multi-mode fibre (MMF) - see Fig. 2. To avoid thermal drift and damage during the alignment, the VCSEL was driven by a low duty-cycle (<1% at 10 kHz) pulsed power-supply. All values and figures in this article are scaled to the equivalent DC power. The VCSEL emission was centered at 1546.15 nm, with over 35 dB of polarization/side-band suppression. After optimizing the alignment and tilt of the VCSEL above the input grating-coupler, and aligning a standard SMF-28 telecom-fibre above the output grating-coupler, the VCSEL-PIC-Fibre (PVPF) power and VCSEL-PIC-Fibre transmission (TVPF) were measured as a function of ID, using the geometry illustrated in Fig. 3. The VCSEL-PIC-Fibre transmission (TVPF) is calculated in units of dB and dBm by TVPF(ID) = PVPF(ID) - PV(ID), and is illustrated in Fig. 4. As expected for a normalized transmission value, TVPF(ID) is almost completely independent of the drive-current, and has an average value of −16.2 dB. The excess insertion-loss of the VCSEL with respect to the Fibre (LEX) is given by LEX = TVPFTFPF = −16.2 dB + 11.7 dB = −4.5 dB. The total VCSEL-PIC insertion loss is the sum of this excess and the intial Fibre-PIC insertion loss: LVP = LEX + LFP = −4.5 dB – 5.9 dB = −10.4 dB.The −4.5 dB excess insertion-loss of the VCSEL is considerable. 3D finite difference time domain (3D-FDTD) simulations indicate that it is mainly due to footprint and numerical aperture mis-match between the VCSEL-mode and the grating-coupler. As shown schematically in Fig. 4, the MFD of the fibre-mode incident on the grating-coupler is approximately 11 µm, while that of the the VCSEL-mode is 15µm. The larger spot-size of the VCSEL on the PIC is due to the greater divergence of the VCSEL-mode and subsequent refraction at the VCSEL-Air interface, compounded by a larger offset above the PIC surface, owing to the greater size of the VCSEL (225 µm x 225 µm) compared to the fibre (125 µm diameter). As shown in Fig. 5, the FDTD simulations predict a higher insertion-loss for the larger, more divergent VCSEL-mode on a standard 1D focusing grating-coupler (220nm SOI, 70nm Etch-depth, 630nm Pitch, 0.50 Duty-Cycle, and an approximately 11 µm x 11µm footprint). The calculated excess insertion-loss is LEX = −3.7 dB, which is a good match to the experimentally measured value of −4.5 dB. After re-optimizing the grating-coupler design to a15 µm x 15 µm footprint (and increasing the Pitch to 640nm, while reducing the Duty-Cycle to and 0.45), the excess insertion-loss can be reduced to −1.5 dB. Completely eliminating the excess-loss is not possible for uniform grating-couplers, because the larger divergence of the VCSEL-mode acts to widen the coupling-spectrum, reducing the peak coupling-efficiency. Non-periodic apodized grating-coupler designs based on genetic optimization may offer even lower VCSEL-PIC insertion losses.

 figure: Fig. 4

Fig. 4 (a) The VCSEL power (PV), VCSEL-PIC-Fibre (PVPF), VCSEL-PIC-Fibre transmission (TVPF), and Fibre-PIC-Fibre transmission (TFPF) as a function of drive-current (ID). As expected, for drive-currents higher than approximately twice the threshold, the VCSEL-PIC-Fibre transmission is independent of ID. Given that the average value of TVPF is −16.2 dB and that TFPF = −11.7 dB at the emission wavelength, the VCSEL-PIC insertion-loss (LVP) is −10.4 dB. This corresponds to an excess coupling-penalty of (LEX) of −4.5 dB, compared to the Fibre-PIC insertion-loss of the same grating-coupler. (b) and (c) Schematic of the mode-field diameter (MFD) of the fibre- and VCSEL-mode reaching the grating-coupler on the PIC surface

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 3D-FDTD simulations of the Fibre-PIC and VCSEL-PIC insertion losses to the standard grating-coupler used in the experimental measurements, and the reduced VCSEL-PIC insertion-loss for coupling to an optimized large-footprint grating-coupler.

Download Full Size | PPT Slide | PDF

The alignment tolerance of the VCSEL with respect to PIC was determined by scanning the VCSEL along and across the symmetrical axis of the grating-coupler - see Fig. 6. In both directions, the 1dB alignment tolerance of the VCSEL is ± 1.6 µm, which is comparable to the Fibre-PIC alignment tolerance of a grating-coupler, and within reach of passively-aligned flip-chip alignment tools.

 figure: Fig. 6

Fig. 6 Alignment tolerance of the VCSEL across (X) and along (Y) the symmetrical axis of the grating-coupler, made using active-alignment VCSEL-PIC-Fibre (PVPF) measurements at ID = 10 mA. The 1dB alignment tolerance is ± 1.6 µm in both directions. The inset shows a plan-view of the corresponding grating-coupler structure studied in the 3D-FDTD simulations.

Download Full Size | PPT Slide | PDF

3. Flip-chip integration

For the previous actively-aligned measurements, the emphasis was on determining the minimum VCSEL-PIC insertion-loss and alignment tolerances, without a permanent bonding. However, for the actual hybrid integration process, the alignment and bonding are critically important. The Si-PIC was prepared for electrical routing to the VCSEL by the post-process deposition of Au bond-pads and tracks. Note that for real applications, CMOS-compatible AlCu bond-pads and tracks would be used. A pair of 50 µm solder balls were jetted onto the Au bond-pads, to provide the n-type electrical connection to the VCSEL, as well as a mechanic connection between the VCSEL and PIC. To ensure that the tilted-VCSEL has the correct tilt-angle after flip-chip bonding, the height of the SBD after solder reflow must be controlled. As shown in Fig. 7, this was achieved by controlling the area of the Au bond-pads that are “wetted” during the solder reflow. Since the volume of the SBD is fixed, an increase in the area of the bond-pad gives a decrease in the solder height. The ± 3µm tolerance of the 50 µm solder ball diameter introduces a small uncertainty in (i) the vertical offset and (ii) the angle of the VCSEL-mode incident on the grating-coupler. Using FDTD simulations, we find that the combined impact of these effects on the VCSEL-PIC insertion-loss is on the order of0.5 dB. A second source of fabrication tolerance is the ± 10 µm tolerance on the nominal size of VCSEL die. This also translates to an analogous uncertainty in vertical offset and angle-of-incidence for the VCSEL-mode on the PIC. Again, FDTD simulations indicate that dicing tolerances impact the VCSEL-PIC insertion-loss on the order of 0.5 dB, giving a total fabrication-related tolerance (in addition to the alignment tolerance) of approximately 1 dB.

 figure: Fig. 7

Fig. 7 (a) A series of SEM images showing solder ball deposition (SBD) deposited on test-structures, to calibrate the height of the SBD-reflow as a function of the contact-pad area. (b) Plot showing the SBD-reflow height as a function of square contact-pad width, and the corresponding tilt-angle of the VCSEL on the PIC.

Download Full Size | PPT Slide | PDF

After process optimization, the flip-chip bonding, carried-out at a peak temperature of 270 °C for 30 s on a FineTech system, could achieve a tilt-angle of 10° with a high degree of reproducibility. For the bonding, the VCSEL and Si-PIC were not actively-aligned, but brought into coincidence using beam-splitter imaging on the flip-chip system - see Fig. 8. Coarse alignment is made using paried alignment marks on the VCSEL and PIC, and fine alignment is made by centering the VCSEL aperture on the grating-coupler, and making a small compensation to allow for beam-travel due to the 10° tilt-angle.

 figure: Fig. 8

Fig. 8 (a) Schematic of the relevant area of the Si-PIC, showing the grating-coupler, and waveguide, the solder ball deposition (SBD), and the Au-tracks and bond-pads for contacting the VCSEL. (b) Schematic of the VCSEL, mounted on the flip-chip pick-up tool, showing the bond-pads for electrical-connection and the aperture for laser emission. (c) Combined image of the Si-PIC and VCSEL from the flip-chip bonder, which uses a beam-splitting mirror to simultaneously image both components, to allow for precision alignment.

Download Full Size | PPT Slide | PDF

After the flip-chip bonding, a wire-bond is added between a track on the PIC and the rear of the VCSEL, to make the p-type connection. The p-contact pads on the top side of the VCSELs and the integrated gold heatsink which covers the entire back side of the VCSEL are connected by via-holes through the Benzocyclobutene material that covers most of the n-side of the structure. In principle, an index-matching epoxy under-fill could be added between the VCSEL and PIC, to improve mechanical adhesion and increase thermal conduction from the laser, but that was not carried-out for this work.

Using the same procedure as for the active-alignment measurements, the typical VCSEL-PIC insertion loss for the passively-aligned and flip-chip bonded VCSEL was determined as LVP = −11.8 dB, corresponding to an excess coupling-penalty of LEX = −5.9 dB. Note that this penalty is just 1.3 dB higher than that achieved with the active-alignment, demonstrating that the coupling performance is not significantly limited by the alignment tolerances of the assembly process. Based on the tolerances measured in Fig. 6, the flip-chip bonding system has an alignment tolerance of approximately ± 2 µm. The normalized VCSEL-PIC power (LVP) spectrum and LI-curve are shown in Fig. 9, and give an indication of the laser power and performance that can currently be achieved using this new cost-effective hybrid integration approach. At roll-over, the maximum optical power injected into the PIC was −8.6 dBm = 138 µW. As mentioned previously, with grating-couplers optimized for the VCSEL-mode, future insertion-losses can be further reduced.

 figure: Fig. 9

Fig. 9 (a) Power spectrum (PVP) and (b) LI-curve of a flip-chip bonded and packaged tilted-VCSEL on the Si-PIC. The emission is centered at 1547.15 nm, and has a polarization/side-band suppression of 35 dB. At roll-over, the maximum optical-power injected into the PIC is 138 µW = −8.6 dBm. The slope-efficiency of the injected power is 1.6%.The inset of (a) shows a microscope image of the VCSEL bonded onto the PIC, before the top-side wire-bond was added, and the inset of (b) shows an SEM image of a 10° tilted-VCSEL on a PIC, with false colors to more easily identify the VCSEL (purple), electrical contacts (gold), SBD (blue), and waveguide structures (green).

Download Full Size | PPT Slide | PDF

4. Conclusions

We have shown that it is possible to flip-chip bond a tilted-VCSEL above the grating-coupler, for cost-effective hybrid integration of a laser-source on a Si-PIC. We have demonstrated a VCSEL-PIC insertion loss of −11.8 dB after passive-alignment and flip-chip bonding, which is only 1.3 dB higher than that possible using active-alignment. The relatively high VCSEL-PIC insertion loss, compared to the Fibre-PIC loss of −5.9 dB, is mainly due to a mismatch between the modes of VCSEL and the grating-coupler, and can be addressed in future with optimized grating-coupler designs.

Acknowledgments

The authors would like to thank Marc Rensing and Noreen Nudds for their help in sample preparation. Huihui Lu would like to acknowledge the support she received under Grant Number SFI/12/RC/2276 and SFI/14/ADV/RC2761 from Science Foundation Ireland.

References and links

1. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013). [CrossRef]  

2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009). [CrossRef]  

3. Si-Photonics at EuroPractice - www.europractice-ic.com/SiPhotonics_technology.php

4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015). [CrossRef]  

5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef]   [PubMed]  

6. B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014). [CrossRef]  

7. B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013). [CrossRef]  

8. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014). [CrossRef]   [PubMed]  

9. P. De Dobbelaere, “External source approach for silicon photonics transceivers,” in ECOC 2014 (IEEE, 2014).

10. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013). [CrossRef]  

11. K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23(22), 28264–28270 (2015). [CrossRef]   [PubMed]  

12. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015). [CrossRef]   [PubMed]  

13. Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

14. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010). [CrossRef]   [PubMed]  

15. S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013). [CrossRef]  

16. M. Ortsiefer, B. Kögel, J. Rosskopf, M. Gorblich, Y. Xu, C. Greus, and C. Neumeyr, “Long wavelength high speed VCSELs for long haul and data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (2014), paper W4C.2.

References

  • View by:
  • |
  • |
  • |

  1. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
    [Crossref]
  2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
    [Crossref]
  3. Si-Photonics at EuroPractice - www.europractice-ic.com/SiPhotonics_technology.php
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  6. B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
    [Crossref]
  7. B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
    [Crossref]
  8. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
    [Crossref] [PubMed]
  9. P. De Dobbelaere, “External source approach for silicon photonics transceivers,” in ECOC 2014 (IEEE, 2014).
  10. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
    [Crossref]
  11. K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23(22), 28264–28270 (2015).
    [Crossref] [PubMed]
  12. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
    [Crossref] [PubMed]
  13. Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.
  14. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  15. S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
    [Crossref]
  16. M. Ortsiefer, B. Kögel, J. Rosskopf, M. Gorblich, Y. Xu, C. Greus, and C. Neumeyr, “Long wavelength high speed VCSELs for long haul and data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (2014), paper W4C.2.

2015 (3)

2014 (2)

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

2013 (4)

B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
[Crossref]

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

2010 (1)

2009 (1)

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

2006 (1)

Absil, P.

Amann, M.-C.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Baets, R.

Bakir, B. B.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Bauwelinck, J.

Bickford, J.

Bogaerts, W.

Bojko, R.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Bordel, D.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Bower, C.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Bowers, J. E.

Brianceay, P.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cardile, P.

Carron, V.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Chang-Hasnain, C. J.

Cheung, K. C.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chrostowski, L.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Cohen, O.

Corbett, B.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
[Crossref]

Cunningham, J. E.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Descos, A.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Djordjecvic, S. S.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Djordjevic, S. S.

Donzella, V.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Duprez, H.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fang, A. W.

Fard, S. T.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Fecioru, A.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Ferrara, J.

Flueckiger, J.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Grist, S. M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gubbins, M.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Guo-Qiang Lo, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hassan, K.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Jaeger, N. A. F.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Jany, C.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Jones, R.

Justice, J.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Kaur, K. S.

Krishnamoorthy, A. V.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Lee, J. H.

Lepage, G.

Lim, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Lin, S.

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Luo, Y.

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Menezo, S.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Meyer, R.

Millspaugh, A.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Mooney, M.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Muller, M.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

O’Brien, P.

Paniccia, M. J.

Park, H.

Qiao, P.

Raj, K.

Ratner, D. M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Roelkens, G.

Sanchez, L.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Schmidt, S. A.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Sciancalepore, C.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Selvaraja, S.

Shi, W.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Shubin, I.

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Snyder, B.

Spiga, S.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Subramanian, A. Z.

Thacker, H. D.

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Van Kerrebrouck, J.

Van Steenberge, G.

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Verplancke, R.

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, X.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Wang, Y.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Webb, M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Yang, W.

Yao, J.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Zheng, X.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Zhu, L.

ECS Trans. (1)

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (5)

Opt. Photonics News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Proc. IEEE (1)

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Proc. SPIE (1)

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Other (4)

P. De Dobbelaere, “External source approach for silicon photonics transceivers,” in ECOC 2014 (IEEE, 2014).

Si-Photonics at EuroPractice - www.europractice-ic.com/SiPhotonics_technology.php

M. Ortsiefer, B. Kögel, J. Rosskopf, M. Gorblich, Y. Xu, C. Greus, and C. Neumeyr, “Long wavelength high speed VCSELs for long haul and data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (2014), paper W4C.2.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of a single-mode fibre (SMF) grating-coupled to the test Si-PIC, showing the near-normal angle-of-incidence of approximately 10°, The top-oxide (TOX) layer, the SOI layer, the bottom-oxide layer (BOX) and the substrate (SUB) of the sample. (b) Schematic of the sample used for active-alignment measurements, where the VCSEl is bounted on an AlN sub-mount, bonded to an electrical FLEX connector that provides power to the VCSEL and offers a means of translating and tilting the sample above the grating-coupler. (c) Schematic of the tilted-VCSEL flip-chip bonded above a grating-coupler on a Si-PIC, showing the solder ball deposition (SBD) and wire-bond used to make the n- and p-type electrical-connections to the on-PIC contact-pads and tracks.
Fig. 2
Fig. 2 The Fibre-PIC-Fibre transmission (TFPF) spectrum at AOI = 10°, and VCSEL power (PV) spectrum, with a drive-current of ID = 10 mA and a tilt-angle of 10°. The threshold wavelength, FWHM line-width, and suppression of the VCSEL are 1546.15 nm, <0.05 nm, and and 37 dB, respectively. The value of TFPF at the emission wavelength is −11.7 dB.
Fig. 3
Fig. 3 Schematics of the (a) Fibre-PIC-Fibre transmission measurement, and (b) VCSEL-PIC-Fibre transmission measurement, used to determine the Fibre-PIC insertion loss (LFP), the VCSEL-PIC insertion loss (LVP), and so the excess coupling penalty for VCSEL coupling (LEX).
Fig. 4
Fig. 4 (a) The VCSEL power (PV), VCSEL-PIC-Fibre (PVPF), VCSEL-PIC-Fibre transmission (TVPF), and Fibre-PIC-Fibre transmission (TFPF) as a function of drive-current (ID). As expected, for drive-currents higher than approximately twice the threshold, the VCSEL-PIC-Fibre transmission is independent of ID. Given that the average value of TVPF is −16.2 dB and that TFPF = −11.7 dB at the emission wavelength, the VCSEL-PIC insertion-loss (LVP) is −10.4 dB. This corresponds to an excess coupling-penalty of (LEX) of −4.5 dB, compared to the Fibre-PIC insertion-loss of the same grating-coupler. (b) and (c) Schematic of the mode-field diameter (MFD) of the fibre- and VCSEL-mode reaching the grating-coupler on the PIC surface
Fig. 5
Fig. 5 3D-FDTD simulations of the Fibre-PIC and VCSEL-PIC insertion losses to the standard grating-coupler used in the experimental measurements, and the reduced VCSEL-PIC insertion-loss for coupling to an optimized large-footprint grating-coupler.
Fig. 6
Fig. 6 Alignment tolerance of the VCSEL across (X) and along (Y) the symmetrical axis of the grating-coupler, made using active-alignment VCSEL-PIC-Fibre (PVPF) measurements at ID = 10 mA. The 1dB alignment tolerance is ± 1.6 µm in both directions. The inset shows a plan-view of the corresponding grating-coupler structure studied in the 3D-FDTD simulations.
Fig. 7
Fig. 7 (a) A series of SEM images showing solder ball deposition (SBD) deposited on test-structures, to calibrate the height of the SBD-reflow as a function of the contact-pad area. (b) Plot showing the SBD-reflow height as a function of square contact-pad width, and the corresponding tilt-angle of the VCSEL on the PIC.
Fig. 8
Fig. 8 (a) Schematic of the relevant area of the Si-PIC, showing the grating-coupler, and waveguide, the solder ball deposition (SBD), and the Au-tracks and bond-pads for contacting the VCSEL. (b) Schematic of the VCSEL, mounted on the flip-chip pick-up tool, showing the bond-pads for electrical-connection and the aperture for laser emission. (c) Combined image of the Si-PIC and VCSEL from the flip-chip bonder, which uses a beam-splitting mirror to simultaneously image both components, to allow for precision alignment.
Fig. 9
Fig. 9 (a) Power spectrum (PVP) and (b) LI-curve of a flip-chip bonded and packaged tilted-VCSEL on the Si-PIC. The emission is centered at 1547.15 nm, and has a polarization/side-band suppression of 35 dB. At roll-over, the maximum optical-power injected into the PIC is 138 µW = −8.6 dBm. The slope-efficiency of the injected power is 1.6%.The inset of (a) shows a microscope image of the VCSEL bonded onto the PIC, before the top-side wire-bond was added, and the inset of (b) shows an SEM image of a 10° tilted-VCSEL on a PIC, with false colors to more easily identify the VCSEL (purple), electrical contacts (gold), SBD (blue), and waveguide structures (green).

Metrics