Abstract

While silicon photonic resonant cavities have been widely investigated for biosensing applications, enhancing their sensitivity and detection limit continues to be an area of active research. Here, we describe how to engineer the effective refractive index and mode profile of a silicon-on-insulator (SOI) waveguide using sub-wavelength gratings (SWG) and report on its observed performance as a biosensor. We designed a 30 μm diameter SWG ring resonator and fabricated it using Ebeam lithography. Its characterization resulted in a quality factor, Q, of 7 · 103, bulk sensitivity Sb = 490 nm/RIU, and system limit of detection sLoD = 2 · 10−6 RIU. Finally we employ a model biological sandwich assay to demonstrate its utility for biosensing applications.

© 2016 Optical Society of America

1. Introduction

Silicon photonics is an emerging chip-scale technology focused on manipulating near-infrared light in sub-micron silicon wires [1]. Its compatibility with mainstream CMOS foundry processes facilitates the fabrication of complex chip-scale photonic systems at economies of scale [2, 3] for optical multiplexing [4], modulation [5], and biosensing [6]. While the large index contrast among the silicon waveguide, substrate, and cladding, helps to confine and guide the light, a portion of its electric field extends outside the waveguide as an evanescent field. This field is sensitive to refractive index changes outside the waveguide, such as accumulating molecules binding on its surface.

Many biosensors utilize a resonant cavity such as a ring [6–8], disk [9–11], grating [12, 13], or photonic crystal [14] for biosensing. As molecules bind to the surface, their adsorption increases the local refractive index causing a change in the mode’s overall effective index resulting in a cavity’s resonance wavelength shift. This change in the resonant condition can be determined using a tunable laser source and calibrated to the mass of bound molecules [15]. Silicon photonic resonant cavities have been used in a variety of clinically relevant biosensing applications including nucleic acid detection [6, 16], protein biomarkers for cancer [17, 18], viral [19, 20], and environmental toxins [21].

Ring resonators have been extensively investigated as silicon photonic biosensors due to their design simplicity and ease of fabrication. The commercially available silicon photonic biosensing platform, Genalyte, utilizes ring resonators for TE polarized light and provides a bulk sensitivity of 54 nm/RIU and detection limit of 1 ng/mL, or 10−5 RIU [22, 23] (for simplicity quasi - TE and - TM modes are referred to as TE and TM modes). Yet many clinical diagnostic assays require lower detection limits [24] requiring secondary amplification [25]. While achieving clinically relevant sensitivities includes both robust surface chemistries that resist fouling while allowing high densities of capture molecules and the native performance of the sensor, many groups have sought to improve the ring resonator’s sensitivity.

The sensitivity is determined by the overlap of the electric field with the analyte and can be improved by increasing that overlap. Because of the high index contrast of Si/SiO2 (or Si/H2O) most of the electric field is confined in the core of the waveguide for TE polarized light. A way to improve the sensitivity for TE light is to decrease the waveguide thickness, as was demonstrated by Talebi Fard et al. with 90 nm thick waveguide that achieved a bulk sensitivity of 100 nm/RIU [26]. Both European collaborative biosensing projects SABIO and InTopSens demonstrated the use of TE polarized slot waveguides [27, 28] with a sensitivity of 212 nm/RIU and 298 nm/RIU, respectively [29, 30], and detection limits on the order of 5·10−6 RIU. For a comparable waveguide geometry, the confinement of the TM polarized light is weaker improving sensitivities to 200 nm/RIU [22, 31]. Finally, our group demonstrated a slot waveguide Bragg grating with sensitivity of 340 nm/RIU [13].

In this paper, we report on the biosensing performance of a sub-wavelength grating (SWG) ring resonator designed for TE polarized light, resulting in a 2X sensitivity improvement over the best TM ring / slot rings. Sub-wavelength grating waveguides allow the designer to engineer the effective index of the guiding structure to minimize loss, enhance guiding capabilities, and more importantly improve the field overlap with biomolecules on the waveguide’s surface. SWG gratings in silicon-on-insulator (SOI) waveguides have recently been proposed by the National Research Council of Canada (NRC) [32–34]. And while sub-wavelength gratings have been demonstrated experimentally in applications like fiber-to-chip couplers to minimize mode mismatch loss [35–38], meta material lenses [39], waveguide crossings [32], and filtering applications [40], they have yet to be experimentally demonstrated for biosensing applications [41, 42]. Wangüemert-Pérez et al. proposed the use of SWG waveguides for biosensing [42] and employed a Fourier-type 2D vectorial simulation tool to analyze the effect of various duty cycles on the sensing performance. They also performed a full 3D FDTD simulation to determined the theoretical sensitivity but do not report any experimental results. Similarly, our group has also demonstrated the fabrication and measurement of ring resonators and investigated their theoretical sensing performance [43]. In this work, we show that we can further improve the performance of TE mode ring resonator and present experimental results that show our biosensors achieve 10× enhanced sensitivity over their TE-mode strip waveguide counterparts. This achievement expands their use in applications that require greater sensitivities and detection limits that what can be achieved today.

1.1. Theory of operation

Electromagnetic wave propagation in periodic media can be described by the Bloch-Floquet formalism [44–46]. Depending on wavelength, propagation can be divided into three wavelength zones for a fixed period Λ of the grating [45]: 1) the sub-wavelength zone in which the wavelength to period ratio is λΛ>2neff. This corresponds to the wavelength range longer than the Bragg wavelength and the waveguide behaves like a conventional waveguide. The periodic structure supports a true lossless mode in this case [47]; 2) The wavelength range corresponding to the photonic bandgap where Bragg reflections occur; and 3) the wavelength range shorter than the Bragg wavelength where the Bloch wave becomes leaky and part of the energy is radiated out of the waveguide and the propagation loss is determined by reflection and diffraction at the segment boundaries due to the high index contrast [48]. By having Λ ≪ λ the mode is without loss because the reflection and diffraction effects are suppressed. This is analogous to the electron distribution in periodic potentials, like in semiconducting materials.

For a photonic circuit designer, SWG waveguides are attractive because they allow tailored propagation properties (namely the mode shape and dispersion) by varying the duty cycle (η), period (Λ), waveguide width (w) and thickness (t). The waveguide is divided into small, slab segments (blocks of Si with refractive index ncore) with length Λη, where Λ is the period and η is the duty cycle. The small, slab-segment cross-section is comparable to traditional waveguides. Figure 1 shows the schematic of a SWG waveguide. The substrate material with refractive index, nsub, and thickness, tsub = 2 μm, is SiO2 and as cladding material, nclad we used water since most biological applications require an aqueous solution.

 figure: Fig. 1

Fig. 1 Schematic of SWG waveguide: w is the waveguide width and t the thickness; Λ is the SWG period and the length of the Si blocks is determined by the duty cycle η.

Download Full Size | PPT Slide | PDF

Here we extend the theoretical analysis of SWG waveguides as biosensors and confirm the sensitivity of SWG ring resonators experimentally using a refractive index solution set. Like in the case of a uniform strip waveguide, the light is confined in the xy-plane by the index contrast (Eigenmodes). The periodicity in the z-direction (n2(z) = n2(z + Λ)) guarantees that the wave vector kz is still conserved. According to the Bloch (or Floquet) theorem an electromagnetic solutions takes the form:

E=EK(x,y,z)eiKz
where K is the Bloch wavenumber and EK(x, y, z) is a periodic function with period Λ so that EK(x, y, z) = EK(x, y, z + Λ). Similar to the dispersion relation for regular waveguides, the dispersion relation for SWG waveguides is ω = ω(K). The Bloch wave vector K can either be real or complex depending on the spectral regime. When K is real, the intensities of the Bloch wave will be a periodic function of position in the medium and propagate without loss. For a layered structure with uniform material properties in the xy-plane, analytical solutions exists [45, 46], but not for the case of index guided modes (vertical and lateral confinement) and numerical tools should be utilized. The effective index for Bloch modes is neff,B=cωK(ω) and the group index is ng=cKω [49, 50].

2. Simulation

For a SWG waveguide (one dimensional photonic crystal) an analytical solution does not exist and numerical methods have to be used. The most rigorous approach is a full 3D vectorial FDTD approach. However for large structures this approach is computationally very demanding and therefore not suitable for large parameter sweeps. Figure 2 shows the field magnitude along the propagation axis (z-axis) for a SWG waveguide with width w = 500 nm, thickness t = 220 nm, period Λ = 250 nm, and duty cycle η = 0.7. The data is reported in the xz-plane defined by a cut at y = t/2. Figures 2(b) and 2(c) show the magnitude of the z-component (Ez(x, t/2, z)) and x-component (Ex(x, t/2, z)) of the electrical field, respectively. Figures 2(d) and 2(e) show the mode profile in the cross section (xy-plane) of the SWG waveguide at the center of the silicon segment and in the gap respectively. The 3D simulation was performed with Lumerical’s FDTD Solutions. A mode source (fundamental TE mode, λ = 1.55 μm) is used to inject light into the SWG waveguide. The field is strongly confined in between the silicon segments, similar to what is observed in slot waveguides [13].

 figure: Fig. 2

Fig. 2 a) Electric field magnitude distribution in the xz-plane defined by a cut at y = t/2 for a SWG waveguide with dimensions of w = 500 nm, Λ = 250 nm, η = 0.7, and t = 220 nm; b) Distribution of the z-component (Ez); c) Distribution of the x-component (Ex); d) Cross-section in the middle of Si block, and e) Cross-section in the middle of the gap.

Download Full Size | PPT Slide | PDF

2.1. Analysis using equivalent effective refractive index

The equivalent effective index method is an efficient way to analyze the SWG waveguide. If Λ<λB2neff is true, a SWG waveguide behaves like a continuous waveguide but with a decreased refractive index. As a consequence, the light propagation can be described like in an index-guided structure. Weissman et al. showed that the averaged refractive index step is primarily dependent on the duty cycle and can be express as ([47, 51]):

Δn=ηΔn
where η is the duty cycle and Δn is the refractive index modulation of the SWG waveguide (Δn = ncorenclad) (similar findings by Li et al. [52] and Bierlein et al. [53].

This reduced refractive index step results in a decreased equivalent refractive index of the waveguide and a weaker confinement of the guided mode. The refractive index of the continuous equivalent waveguide is given by: ncore,eq = nclad + ηΔn. This method has been used by our group and others to design the building blocks of photonic circuits such as SWG waveguides, strip to SWG mode converters, directional couplers, and ring resonators [43, 54, 55]. It needs to be noted that this approach leads to a very narrowband approximation, especially for wavelength close to the Bragg condition.

2.2. FDTD analsysis

If the SWG waveguide supports multiple Bloch modes or is designed close to the photonic band gap, the equivalent model (described above) is no longer valid [33, 56, 57]. In this case, a fully vectorial 3D FDTD analysis can be done but is computationally taxing, especially for geometry sweeps. The mesh size has to be small enough to accurately resolve the periodic structure and the simulation time has to be long enough for the electromagnetic fields to fully decay. Here we make use of the periodicity, by simulating only one unit cell with Bloch boundary conditions. This approach is borrowed from band structure calculations of photonic crystals [50, 58] and we have used this method previously to determine coupling coefficients in SOI Bragg gratings [59]. Briefly, randomly distributed dipole sources are used to excite all Bloch modes in the SWG waveguide. The resonant Bloch modes are determined with a Fourier Transform of the recorded time signals for each kz-vector (Bloch boundaries are only used in the propagation direction z). The Brillouin zone for this 1-D period structure corresponds to πΛ<kz<πΛ. With this method, the group index of the fundamental Bloch mode is calculated using the first order approximation as used for strip waveguides: ng=neff,Bλneff,Bλ. Figure 3 shows the effective refractive and group index for different duty cycles and a waveguide geometry w = 500 nm, Λ = 250 nm, and t = 220 nm. The effective index is limited by the photonic band gap (Bragg reflection) and the index of the substrate. At 1550 nm the effective index is neff = 1.56, neff = 1.67, and neff = 1.71 for duty cycles of η = 0.5, η = 0.6, and η = 0.7 respectively. The group indices for these same duty cycles were calculated to be ng = 2.41, ng = 2.85, and ng = 3.31 respectively.

 figure: Fig. 3

Fig. 3 a) Effective and group index of SWG waveguide with geometry: w = 500 nm, Λ = 250 nm, and t = 220 nm; The blue dash-dotted lines indicate the substrate (nsub) and the Brillouin zone (nbz) limits. For a duty cycle η = 0.7 the equivalent effective index approximation is shown; b) zoomed in to show the refractive index range 1.4 to 2.4 (range of effective index).

Download Full Size | PPT Slide | PDF

As can be seen, the group index dramatically increases as the effective index approaches the band gap of the periodic structure. As the wavelength is far away from the band gap the equivalent effective index model can be used (in Fig. 3(b) the equivalent effective index is shown for a duty cycle η = 0.7). Figure 4 depicts the effective index for different grating periods. The Bragg condition limit, λB2Λ, moves to longer wavelength as the period increases. However at the wavelength of 1550 nm the effective index is not much affected. For E-Beam lithography the minimum feature size is well below 75 nm (required for a period Λ = 250 nm and duty cycle η = 0.7) and SWGs can be designed far away from the bandgap. However, for foundry processes, employing deep-UV lithography, the minimum feature size is around 130 nm and designs will be much closer to the bandgap where the equivalent refractive index model is not valid anymore.

 figure: Fig. 4

Fig. 4 Effective index of SWG waveguide with geometry w = 500 nm and t = 220 nm for grating periods Λ = 250 nm (black), Λ = 300 nm (red), and Λ = 350 nm (green); The blue dash-dotted lines indicate the substrate (nsub) and the Brillouin zone (nbz) limits. If not indicated the duty cycle of the grating is η = 0.5.

Download Full Size | PPT Slide | PDF

2.3. Loss

For regular strip waveguides (w = 500 nm, and h = 220 nm) the propagation loss for TE polarized light is around 4 dBm/cm with the main loss mechanism being scattering due to sidewall roughness [60] (the SWG rings in this work are fabricated on the same direct write electron beam lithography system as used by Bojko et al. [60]). The propagation loss is therefor dependent on the fabrication process. The loss values reported in [60] are for strip waveguides and for obvious reasons not directly applicable for SWG waveguides. A careful loss analysis (in water as cladding material) has yet to be carried out. For SWG waveguides the optical mode is delocalized which minimizes the electric field interaction with the surface scattering sources [48], but depending on thickness of the SiO2 layer can also increase substrate leakage. Furthermore, the sidewall interaction is reduced by (1 − η), due to the presence of gaps between segments. But in the same time one also has to consider the roughness of the created internal sidewall. Bock et al. reports measured loss values of 2.5 dB/cm for a SWG waveguide with slightly narrower waveguide [48]. Furthermore, a careful loss analysis (both theoretical and experimental) should also include bending losses as function of radius.

2.4. Sensitivity analysis

Assuming the equivalent continuous waveguide model, one might expect an enhanced sensitivity compared to a strip waveguide of the same cross-section. Since the average refractive index step is reduced, the mode confinement is weaker resulting in a decreased overall equivalent effective refractive index for the guided mode. Weaker mode confinement enhances the modal overlap with the analyte (increased susceptibility), thereby increasing bulk sensitivity. However, as shown in Fig. 2, the benefit of using an SWG waveguide for sensing does not only lie in the weaker mode confinement but more in the presence of a high electric field in the gaps of the SWG structure. Therefore, a sensitivity analysis based on the equivalent index method (as performed in [43]) needs to be verified with a proper 3D simulation method and also, maybe more importantly, verified experimentally.

The bulk sensitivity of a ring resonator can be defined as [61]:

Sb=ΔλresΔnclad=λresng(neffnclad)

The waveguide susceptibility neffnclad is simulated with the equivalent effective waveguide model (using MODE Solutions) and in 3D with the Bloch boundary conditions (using FDTD Solutions). The results for duty cycle η = 0.6 and η = 0.7 are shown in Fig. 5 for a waveguide geometry of w = 500 nm, grating period Λ = 250 nm, and waveguide thickness t = 220 nm. The equivalent effective waveguide model predicts as sensitivity of around 500 nm/RIU while the 3D FDTD model with Bloch boundaries shows a sensitivity between 400 nm/RIU and 480 nm/RIU, as shown in Fig. 5.

 figure: Fig. 5

Fig. 5 Comparison of MODE Solutions and FDTD Solutions sensitivity simulations for a waveguide geometry: w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle of η = 0.6 and η = 0.7 respectively.

Download Full Size | PPT Slide | PDF

In a similar way one can define the surface sensitivity as:

Ss=ΔλresΔtad=λresng(nefftad)
where tad is the uniform thickness of the adsorbed protein layer with refractive index nad. For most proteins the refractive index is around nad = 1.48 [62, 63]. The thickness of the layer is determined by the characteristic length of the protein and the orientation of the adsorbed protein. For globular shaped proteins the characteristic length corresponds to the diameter of a sphere. The refractive index of this layer is also dependent on the surface density of the protein. For a surface with all possible sites occupied by a protein, the refractive index will be nad = 1.48. In reality, not all surfaces are fully covered and so one can assume a constant refractive index of the layer, nad = 1.48, with a changing effective thickness teff < tad since the thickness changes linearly with surface concentration. This approach has been proposed and used in [64, 65]. The 3D FDTD simulation with Bloch boundary conditions estimates the susceptibility nefftad to around 1.45 μm−1 (w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle of η = 0.6) which is about 3X compared to a regular quasi TE waveguide [22].

3. Experimental approach

3.1. Design and fabrication

SWG photonic circuits were realized on a 220 nm thick SOI wafer (SOITec, Grenoble, France) using a JEOL JBX-6300FS Direct Write E-Beam Lithography System (EBeam) at the University of Washington’s Nanofabrication Facility (WNF). The EBeam provides a low-cost, fast turn-around fabrication process that has been optimized to produce consistent, robust, passive silicon photonic components [60, 66]. A SWG ring resonator sub-circuit consists of slab-to-SWG converter [54], straight-to-bent SWG waveguide directional coupler, looped-back bent SWG waveguide to create the resonant structure. The coupling coefficients for the directional coupler were estimated from [54] and multiplied by a factor 2, to take into account the H2O cladding instead of air (factor 2 based on strip waveguide simulations). SWG rings with radius of 20 μm and 30 μm, duty cycles η = [0.5, 0.6, 0.7], and coupling gaps g = [200, 250, 300, 350, 400] nm were fabricated and characterized to determine the optimal design parameters for biosensing applications. Figure 6 shows a SEM image of a SWG ring resonator with the following design parameters: waveguide width w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle η = 0.7.

 figure: Fig. 6

Fig. 6 SEM image of SWG ring resonator fabricated by Ebeam lithography. Waveguide geometry: w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle η = 0.7.

Download Full Size | PPT Slide | PDF

3.2. Microfluidcis and assay control

Devices were tested and characterized using a custom test setup and software application [55]. Briefly, a custom fiber array from PLC Connections (Columbus, OH) with four polarization maintaining fibers is used to couple the light on and off the chip through on-chip vertical gratings [38]. An Agilent 81682A 1.5 μm tunable in a 8164A mainframe together with Agilent’s N7744A power meters is used as off chip laser source and detection equipment. The chip under test sits on an a thermally tuned aluminum chuck. The temperature is controlled with a Stanford Research LDC501 controller (Stanford, CA). Two motorized stages (Micos, Germany) are used to align the chip to the fiber array. To sequence reagents from a 96-well plate additional two motorized stages are used (Velmex XSlide, Bloomfield, NY). A silicon gasket with defined 500 μm wide channels is secured by a PTFE flow cell. The silicon gasket has a thickness of 500 μm. A syringe pump (Chemiyx Nexus 3000, Houston, Tx) is used to control flow rates by drawing reagents from the wells over the sensors. Finally, a custom application written in MATLAB provides instrument control, orchestrates the acquisition sequence, and processes each acquired data set for real-time resonant peak tracking during the assay.

3.3. Reagents

The SWG ring resonator’s performance, including quality factor Q, intrinsic limit of detection, iLoD, and bulk sensitivity Sb, were characterized in an aqueous environment using NaCl refractive index standards ranging from 62.5 mM to 1 M. The RI of each solution was measured using a Reichert AR200 digital refractometer (Depew, NY). A standard sandwich assay involving well characterized reagents were used to evaluate the sensor’s utility for biosensing applications [55]. Protein-A, a 42kDa membranous protein observed to preferentially bind an immunoglobulins Fc domain, was obtained from ThermoFisher (Chicago, IL). The immunoglobulin, anti-Streptavidin (antiSA) (MW 150kDa), and its conjugate ligand, Streptavidin (SA) (MW 57kDa), were obtained from Vector Labs (Burlingame, CA). For amplification, biotin was conjugated to BSA (MW 66kDa) using a kit from Bangs Labs (San Diego, CA). A Fish-erScientific 1x PBS solution (Hampton, NH) was used to dilute reagents and rinse unbound molecules after each step.

4. Results and discussion

4.1. Optical spectrum

Figure 7 shows the measured transmission spectrum of a SWG ring with radius R = 30 textmu m, waveguide width w = 500 nm, thickness t = 220 nm, SWG period Λ = 250 nm, and duty cycle of η = 70 % for two different coupling gaps, 300 nm and 400 nm respectively. The linewidth of the resonator with a gap of 400 nm is about 0.2 nm which corresponds to a quality factor Q of about 7 · 103. The linewidth is defined as the full width at half-maximum, FWHM. The group index, ng, of the waveguide can be extracted from the free spectral range (FSR) of a ring resonator given by ng=λ2FSRL with L the ring resonator round trip length (L = 2). For the SWG ring resonator with radius R = 30 μm and duty cycle η = 0.7, the FSR = 3.936 nm and the corresponding group index ng = 3.27. For a ring with the same radius but different duty cycle of η = 0.6, results in a FSR = 4.54 and group index of ng = 2.81. These observed results agree with the simulated (FDTD) values for ng = 3.31 and ng = 2.85, respectively.

 figure: Fig. 7

Fig. 7 a) Transmission spectrum for a ring with R = 30 μm, w = 500 nm, t = 220 nm, Λ = 250 nm, η = 70 %, and gaps of g = 300 nm and g = 400 nm respectively, exposed to DI water.

Download Full Size | PPT Slide | PDF

4.2. Bulk RI sensing

Figure 8(a) shows the measured transmission spectrum of the SWG ring exposed to ultrapure water and the refractive index solution standards. The chip stage is thermally tuned to 25 °C to limit thermal drift. For each concentration the optical spectrum was measured ten times to ensure repeatability and signal stability. The resulting stepped, resonant wavelength shifts are shown in Fig. 8(b). The slope of the resonant wavelength shifts per refractive index standard is the bulk sensitivity of the sensor, as shown in Fig. 9. The SWG ring with duty cycle η = 0.6 yields a bulk sensitivity of Sb = 491 nm/RIU (see Fig. 9) and the sensor with a duty cycle of η = 0.7 yields Sb = 405 nm/RIU. Both of these values are reported for a wavelength of around λ = 1575 nm. Compared to regular TE ring resonators [6, 18] SWG ring resonators show an 8X increase in sensitivity, and compared to TM [55] a 2X increase. SWG ring resonators provide close to twice the bulk sensitivity as slot resonators (Bragg and ring [13]). While the equivalent waveguide model tends to overestimate the bulk sensitivity (the simulated sensitivities are shown in Fig. 5, the measured sensitivities compare well to the simulated results.

 figure: Fig. 8

Fig. 8 a) Transmission peak for a ring with R = 30 μm, w = 500 nm, Λ = 250 nm, η = 70 %, t = 220 nm, and gap g = 400 nm exposed to different solutions of NaCl; b) reported peak wavelength shift.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9

Fig. 9 Sensitvity results for a SWG ring with R = 30 μm, w = 500 nm, Λ = 250 nm, η = 60 %, and t = 220 nm

Download Full Size | PPT Slide | PDF

The measured Q factor is 7 · 103, and sensitivity is Sb = 405 nm/RIU, the intrinsic limit of detection is iLoD=Δnmin=λQSb=5.5104 RIU. The intrinsic limit of detection has been propose by Chrostowski et al. [61] as a figure of merit independent on read out circuitry and data processing. The theoretical limit for the intrinsic limit of detection for an ideal resonator sensor (in water) operating at λ = 1.55 μm is 2.4 · 10−4 RIU [61]. The measured minimal detectable wavelength shift of the SWG resonator (and system) presented here is Δλmin = 1 pm, which translates into a system detection limit sLoD=ΔλminSb=2.47106 RIU for the resonator with a duty cycle η = 0.7 and sLoD = 2 · 10−6 RIU for the resonator with a duty cycle η = 0.6.

4.3. Biosensing

A sandwich assay involving well characterized biomolecules with high binding affinities were used to evaluate the biosensing performance of the SWG ring. Figure 10 depicts the sequenced steps of the assay which include: (1) physisorbing an initial adlayer onto the waveguide surface, (2) immobilizing antibodies to the adlayer, (3) blocking any remaining exposed surfaces on the sensor to limit ’biological noise’ resulting from subsequent, non-specific interactions, (4) capturing the target antigen, and (5) using a secondary molecule (label) to amplify the captured target.

 figure: Fig. 10

Fig. 10 Biosensing cartoon: Region A = anti-streptavidin (antiSA) (10 μg/mL), B = Bovine Serum Albumin (BAS) (20 μg/mL), C = streptavidin (SA) (20 μg/mL), and D = biotinylated-BSA (50 μg/mL). After each reagent the sensor is washed with PBS, indicated by the grey area mid-way through each region.

Download Full Size | PPT Slide | PDF

The experimental results in Fig. 11 show the resonant wavelength shifts over the course of the assay and demonstrate the sensor’s ability to detect molecular binding events in real time. Protein-A (1 mg/mL) was first passively adsorbed to the sensors native oxide surface by soaking the chip overnight. Protein-A, a 42kDa globular protein has a reported diameter of around 3 nm and refractive index of n = 1.48 [63]. Coen et al. observed that the initial adsorbed Protein A may denature resulting in a 1 nm thick add - layer but that subsequent adsorption of protein A forms a bioactive layer which provides the necessary binding pocket for the antibodys Fc domain [62, 67]. For the second and subsequent layer, we presume that the protein retains its 3 nm globular shape due to the observed bio activity, resulting in a 3–4 nm thick cladding layer (n = 1.48). We have shown in previous publications that our experimental and simulated results are within the range observed and reported by Coen et al. [9, 55]. After achieving a baseline in PBS buffer at 37°C, the biomolecules (as depicted in Fig. 10 step (A) through (D) were sequenced over the sensor. Each reagent was followed by a 20 minute PBS buffer rinse to remove any unbound species on the sensor or in the channel (as depicted by the grey area labeled ’PBS’).

 figure: Fig. 11

Fig. 11 Biosensing experimental results: Region A = anti-streptavidin (antiSA) (10 μg/mL), B = Bovine Serum Albumin (BAS) (20 μg/mL), C = streptavidin (SA) (20 μg/mL), and D = biotinylated-BSA (50 μg/mL). After each reagent the sensor is washed with PBS, indicated by the grey area mid-way through each region.

Download Full Size | PPT Slide | PDF

The capture antibody, anti-Streptavidin (anitSA, 10 μg/mL), was introduced to functionalize the sensor for Streptavidin detection. As can be seen in Fig. 11, Region A, the adsorption of this 160 kDa protein results in a 1.5 nm resonant wavelength shift. The linear increase suggests that the affinity reaction is transport limited rather than reaction limited. While a fully saturated surface is desired, the automated test setup used to sequence reagents and monitor the wavelength shifts did not permit extending the adsorption time during the assay. Regardless, the post-acquisition simulations and experimental results observed in Fig. 11 suggest ample surface coverage for subsequent binding events.

To show that subsequent molecular binding interactions are specific, BSA (20 μg/mL) was introduced to block any remaining exposed sensor area, as shown in Region B. The slight wavelength shift offset at the end of the Region B rinse step suggests adsorption of BSA as a result of incomplete coverage of the Protein A - antiSA complex [62].

Next, the sensor is subjected to 10 μg/mL of streptdavidin (SA) as shown in Region C. The permanent resonant shift observed during the PBS rinse cycle suggests specific and irreversible binding of SA to antiSA. This step also indicates that the antiSA bound to the Protein A retains its bioactivity and specificity. The final step (Region D) further demonstrates the biological specificity of the captured SA while amplifying overall wavelength shift.

4.4. Validation model

Although the relative resonance wavelength shifts for each new add layer correspond to refractive index changes based on the respective molecular weights of each biomolecule [62, 63, 67], the results from the FDTD simulations with varying adlayer thicknesses with refractive index nad = 1.48 (to model protein layers) were used to provide insight into the amount of adsorbed protein for the initial adlayers. From simulation we predict a surface sensitivity of 800 pm/nm (duty cycle of η = 0.6, ng = 2.81, and λ = 1550 nm). This means that the resonant wavelength shifts 800 pm for each nm of adsorbed protein layer onto the sensor’s surface. Since for protein adlayers the surface coverage (SC) is usually not 100% we assume a constant refractive index of the layer, nad = 1.48, but a changing effective thickness dad(SC). We further also use the assumption that this variation is linear [63]. Assuming an antibody can be approximately modeled as a 5 nm diameter cylinder that is 10 nm tall, a shift of 1 nm (Region A) suggests a 1.25 nm uniform adlayer, or approximately 12.5% surface coverage considering the antibody model. This result agrees well with [9,62]. A shift of 500 pm (Region C) suggests a uniform adlayer of 0.6 nm for SA. Assuming SA’s mass is approximately 1/3 of antiSA and 5 nm in diameter, the observed results suggest 13% surface coverage, which agrees well with the observed antiSA coverage. The 700 pm shift in Region D suggests a uniform adlayer of 0.87 nm on the sensor’s surface. Even though SA is tetravalent, it is unlikely all four binding sites are occupied with bBSA. The observed wavelength shift (and resulting adlayer thicknesses) ratio of 1.4:1 for bBSA:SA is consistent with this hypothesis. Passivating the surface with BSA (Region B) provides confidence that these binding interactions are specific and not precluded by sterics. In addition to validating the bioactivity and specificity of the captured species, this sandwich assay illustrates the utility of SWG rings for multi-layer biological assays.

5. Conclusion

This paper demonstrates the first experimental demonstration and the use of SWG rings for biosensing, resulting in a 2X sensitivity increase over our best TM ring and slot waveguide resonators. The reported sensitivities of 400 – 500 nm/RIU expand the use of these devices in sensing applications requiring sensitivity and detection limits beyond today’s silicon photonic ring resonator systems. And while this paper describes TE polarized light SWG rings, future work will focus on extending the simulation methods discussed here to include TM polarized resonators as well. Furthermore, to commercialize a biosensor using today’s CMOS foundries, fabrication processes must achieve the minimum feature sizes required to fabricate these structures (75 nm). While these resolutions are not achievable today, these SWG ring resonators could be designed closer to their Bragg condition (eg: with a larger period, Λ) at expense of increased loss and larger group indexes.

Acknowledgments

This work is financially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) under the Silicon Electronic-Photonic Integrated Circuits (Si-EPIC) CREATE program. Sample fabrication was performed by Richard Bojko at the University of Washington Washington Nanofabrication Facility (WNF), which is a national user facility that is a part of the National Nanotechnology Infrastructure Network (NNIN). The authors also would like to thank Prof. Jaeger at the University of British Columbia for his generous support and equipment.

References and links

1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron 12, 1678–1687 (2006). [CrossRef]  

2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010). [CrossRef]  

3. W. Bogaerts, “Design challenges in large-scale silicon photonics,” in “13th International Conference on Numerical Simulation of Optoelectronic devices (NUSOD 2013),” (2013), pp. 63–64.

4. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014). [CrossRef]  

5. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010). [CrossRef]  

6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010). [CrossRef]  

7. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I. [CrossRef]  

8. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009). [CrossRef]   [PubMed]  

9. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013). [CrossRef]   [PubMed]  

10. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007). [CrossRef]   [PubMed]  

11. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high q silicon traveling-wave microresonators,” Opt. Express 18, 19541–19557 (2010). [CrossRef]   [PubMed]  

12. P. Prabhathan, V. Murukeshan, Z. Jing, and P. V. Ramana, “Compact soi nanowire refractive index sensor using phase shifted bragg grating,” Opt. Express 17, 15330–15341 (2009). [CrossRef]   [PubMed]  

13. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013). [PubMed]  

14. Y. Liu and H. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20, 19912–19920 (2012). [CrossRef]   [PubMed]  

15. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010). [CrossRef]   [PubMed]  

16. A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010). [CrossRef]  

17. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009). [CrossRef]   [PubMed]  

18. J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013). [CrossRef]  

19. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008). [CrossRef]   [PubMed]  

20. M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012). [CrossRef]  

21. S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005). [CrossRef]  

22. J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014). [CrossRef]   [PubMed]  

23. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef]   [PubMed]  

24. J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011). [CrossRef]   [PubMed]  

25. M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011). [CrossRef]   [PubMed]  

26. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, and N. A. Jaeger et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014). [CrossRef]   [PubMed]  

27. H. Sohlström, K. B. Gylfason, and D. Hill, “Real-time label-free biosensing with integrated planar waveguide ring resonators,” Proc. SPIE Photonics Europe, (International Society for Optics and Photonics, 2010), pp. 77190B. [CrossRef]  

28. K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010). [CrossRef]   [PubMed]  

29. C. A. Barrios, M. J. Banuls, V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008). [CrossRef]   [PubMed]  

30. T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009). [CrossRef]  

31. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

32. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010). [CrossRef]   [PubMed]  

33. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015). [CrossRef]  

34. P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111. [CrossRef]  

35. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

36. P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006). [CrossRef]   [PubMed]  

37. Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U. [CrossRef]  

38. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014). [CrossRef]   [PubMed]  

39. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007). [CrossRef]   [PubMed]  

40. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014). [CrossRef]   [PubMed]  

41. S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4. [CrossRef]  

42. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014). [CrossRef]   [PubMed]  

43. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015). [CrossRef]   [PubMed]  

44. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP-USSR 2, 466–475 (1956).

45. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

46. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (the Oxford Series in Electrical and Computer Engineering) (Oxford University, 2006).

47. Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995). [CrossRef]  

48. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010). [CrossRef]   [PubMed]  

49. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994). [CrossRef]  

50. K. Sakoda, Optical properties of photonic crystals, vol. 80 (Springer Science & Business Media, 2004).

51. Z. Weissman, “Evanescent field sensors with periodically segmented waveguides,” Appl. Opt. 36, 1218–1222 (1997). [CrossRef]   [PubMed]  

52. L. Li and J. J. Burke, “Linear propagation characteristics of periodically segmented waveguides,” Opt. Lett. 17, 1195–1197 (1992). [CrossRef]   [PubMed]  

53. J. D. Bierlein, “Propagation in segmented waveguide structures,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 1992), p. QTuE2.

54. V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014). [CrossRef]   [PubMed]  

55. S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

56. P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y. [CrossRef]  

57. J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).

58. M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402 (2000). [CrossRef]  

59. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014). [CrossRef]   [PubMed]  

60. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011). [CrossRef]  

61. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620. [CrossRef]  

62. M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001). [CrossRef]  

63. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004). [CrossRef]   [PubMed]  

64. P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005). [CrossRef]  

65. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002). [CrossRef]  

66. R. Bojko and B. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B 8, 1909–1913 (1990). [CrossRef]  

67. I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron 12, 1678–1687 (2006).
    [Crossref]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
    [Crossref]
  3. W. Bogaerts, “Design challenges in large-scale silicon photonics,” in “13th International Conference on Numerical Simulation of Optoelectronic devices (NUSOD 2013),” (2013), pp. 63–64.
  4. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
    [Crossref]
  5. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
    [Crossref]
  7. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
    [Crossref]
  8. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
    [Crossref] [PubMed]
  9. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
    [Crossref] [PubMed]
  10. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref] [PubMed]
  11. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high q silicon traveling-wave microresonators,” Opt. Express 18, 19541–19557 (2010).
    [Crossref] [PubMed]
  12. P. Prabhathan, V. Murukeshan, Z. Jing, and P. V. Ramana, “Compact soi nanowire refractive index sensor using phase shifted bragg grating,” Opt. Express 17, 15330–15341 (2009).
    [Crossref] [PubMed]
  13. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
    [PubMed]
  14. Y. Liu and H. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20, 19912–19920 (2012).
    [Crossref] [PubMed]
  15. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
    [Crossref] [PubMed]
  16. A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
    [Crossref]
  17. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
    [Crossref] [PubMed]
  18. J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
    [Crossref]
  19. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008).
    [Crossref] [PubMed]
  20. M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
    [Crossref]
  21. S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
    [Crossref]
  22. J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014).
    [Crossref] [PubMed]
  23. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  24. J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
    [Crossref] [PubMed]
  25. M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
    [Crossref] [PubMed]
  26. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
    [Crossref] [PubMed]
  27. H. Sohlström, K. B. Gylfason, and D. Hill, “Real-time label-free biosensing with integrated planar waveguide ring resonators,” Proc. SPIE Photonics Europe, (International Society for Optics and Photonics, 2010), pp. 77190B.
    [Crossref]
  28. K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
    [Crossref] [PubMed]
  29. C. A. Barrios, M. J. Banuls, V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
    [Crossref] [PubMed]
  30. T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [Crossref]
  31. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).
  32. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
    [Crossref] [PubMed]
  33. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
    [Crossref]
  34. P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
    [Crossref]
  35. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.
  36. P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
    [Crossref] [PubMed]
  37. Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
    [Crossref]
  38. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
    [Crossref] [PubMed]
  39. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
    [Crossref] [PubMed]
  40. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
    [Crossref] [PubMed]
  41. S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
    [Crossref]
  42. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
    [Crossref] [PubMed]
  43. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
    [Crossref] [PubMed]
  44. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP-USSR 2, 466–475 (1956).
  45. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  46. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (the Oxford Series in Electrical and Computer Engineering) (Oxford University, 2006).
  47. Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
    [Crossref]
  48. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
    [Crossref] [PubMed]
  49. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
    [Crossref]
  50. K. Sakoda, Optical properties of photonic crystals, vol. 80 (Springer Science & Business Media, 2004).
  51. Z. Weissman, “Evanescent field sensors with periodically segmented waveguides,” Appl. Opt. 36, 1218–1222 (1997).
    [Crossref] [PubMed]
  52. L. Li and J. J. Burke, “Linear propagation characteristics of periodically segmented waveguides,” Opt. Lett. 17, 1195–1197 (1992).
    [Crossref] [PubMed]
  53. J. D. Bierlein, “Propagation in segmented waveguide structures,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 1992), p. QTuE2.
  54. V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
    [Crossref] [PubMed]
  55. S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.
  56. P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y.
    [Crossref]
  57. J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).
  58. M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402 (2000).
    [Crossref]
  59. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
    [Crossref] [PubMed]
  60. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
    [Crossref]
  61. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
    [Crossref]
  62. M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
    [Crossref]
  63. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
    [Crossref] [PubMed]
  64. P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
    [Crossref]
  65. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
    [Crossref]
  66. R. Bojko and B. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B 8, 1909–1913 (1990).
    [Crossref]
  67. I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
    [Crossref] [PubMed]

2015 (2)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

2014 (8)

V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

2013 (3)

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

2012 (2)

Y. Liu and H. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20, 19912–19920 (2012).
[Crossref] [PubMed]

M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
[Crossref]

2011 (3)

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

2010 (9)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high q silicon traveling-wave microresonators,” Opt. Express 18, 19541–19557 (2010).
[Crossref] [PubMed]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

2009 (4)

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

P. Prabhathan, V. Murukeshan, Z. Jing, and P. V. Ramana, “Compact soi nanowire refractive index sensor using phase shifted bragg grating,” Opt. Express 17, 15330–15341 (2009).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

2008 (2)

2007 (3)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

2004 (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

2002 (1)

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

2001 (1)

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

2000 (1)

1997 (1)

1995 (1)

Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[Crossref]

1994 (1)

J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
[Crossref]

1992 (1)

1990 (1)

R. Bojko and B. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B 8, 1909–1913 (1990).
[Crossref]

1981 (1)

I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref] [PubMed]

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP-USSR 2, 466–475 (1956).

Abashin, M.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Adibi, A.

Aers, G. C.

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

Alda, M. J.

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

Alonso-Ramos, C.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

Arlett, J.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008).
[Crossref] [PubMed]

Baehr-Jones, T.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

Baets, R.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Bailey, R. C.

M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
[Crossref]

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Banuls, M. J.

Barceló, D.

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

Barrios, C. A.

Bartolozzi, I.

Barwicz, T.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Bielmann, M.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Bienstman, P.

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014).
[Crossref] [PubMed]

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Bierlein, J. D.

J. D. Bierlein, “Propagation in segmented waveguide structures,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 1992), p. QTuE2.

Bisra, G.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

Bock, P.

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Bock, P. J.

Bogaerts, W.

W. Bogaerts, “Design challenges in large-scale silicon photonics,” in “13th International Conference on Numerical Simulation of Optoelectronic devices (NUSOD 2013),” (2013), pp. 63–64.

Bojko, R.

Bojko, R. J.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

Böni, P.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Bowden, C. M.

J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
[Crossref]

Bowers, J. E.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Brault, N. D.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Burke, J. J.

Carlborg, C. F.

Casquel, R.

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Chen, L. R.

Cheung, K. C.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

Chrostowski, L.

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Claes, T.

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Coen, M. C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Ctyrok?, J.

P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y.
[Crossref]

Ctyroky, J.

J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).

Cunningham, J.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Dahlem, M.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Dai, D.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

De Vos, K.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Delâge, A.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Densmore, A.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref] [PubMed]

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

Dimas, C.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Doerfler, M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

Doll, T.

Domier, L. L.

M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
[Crossref]

Donzella, V.

Dortu, F.

Dowling, J. P.

J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
[Crossref]

Engelmann, S.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Fainman, Y.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Fard, S. T.

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Flueckiger, J.

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Fortier, P.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Galli, C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gevorgyan, H.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Ghetie, V.

I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref] [PubMed]

Girones, J.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

Glesk, I.

Gold, J.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Gonzalez-Pedro, V.

Gonzalo Wangüemert-Pérez, J.

Gorshkov, B.

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

Griol, A.

Grist, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Grist, S. M.

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Gröning, P.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

Gylfason, K. B.

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

Hall, T. J.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

Hendel, I.

Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[Crossref]

Hill, D.

H. Sohlström, K. B. Gylfason, and D. Hill, “Real-time label-free biosensing with integrated planar waveguide ring resonators,” Proc. SPIE Photonics Europe, (International Society for Optics and Photonics, 2010), pp. 77190B.
[Crossref]

Hochberg, M.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

Holgado, M.

Höök, F.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Hoste, J.-W.

Hughes, B.

R. Bojko and B. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B 8, 1909–1913 (1990).
[Crossref]

Ikeda, K.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

Jaeger, N. A.

Janta-Polczynski, A.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Janz, S.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref] [PubMed]

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

Jiang, S.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Jing, Z.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Kazmierczak, A.

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008).
[Crossref] [PubMed]

Khater, M.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Khilo, A.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Khumwan, P.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Kirk, J.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

Kirk, J. T.

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Krishnamoorthy, A.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Ksenevich, T.

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

Kulik, P.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Kurrat, R.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Kwiecien, P.

P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y.
[Crossref]

J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).

Kwok, E.

Lamontagne, B.

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Lehmann, R.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Leidy, R.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Levy, U.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

Li, L.

Li, Q.

Liang, Z.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Liu, A.

Liu, Y.

Loncar, M.

Lopinski, G.

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

Luchansky, M. S.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

Ma, R.

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Maling, J.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Maquieira, A.

Marco, M.-P.

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

Martel, S.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Martin, T. A.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

McClellan, M. S.

M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
[Crossref]

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Mischki, T.

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Molina-Fernández, I.

Molina-Fernández, I. n.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

Moraru, G.

I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref] [PubMed]

Mota, I. S. J.

I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref] [PubMed]

Murukeshan, V.

Myers, E.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Nie, B.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Nikitin, E.

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

Nikitin, P. I.

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

Orcutt, J. S.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Ortega-Moñux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

Ouellet, E.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Pérez-Galacho, D.

Pond, J.

Popelka, S.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

Prabhathan, P.

Qavi, A. J.

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

Ramana, P. V.

Ramsden, J.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Ratner, D. M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Reid, A.

Richter, I.

J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).

P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y.
[Crossref]

Rodahl, M.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Rodriguez-Mozaz, S.

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

Roukes, M.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP-USSR 2, 466–475 (1956).

Sakoda, K.

K. Sakoda, Optical properties of photonic crystals, vol. 80 (Springer Science & Business Media, 2004).

Salemink, H.

Sanchez, B.

Schacht, E.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Schachtb, E.

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Scherer, A.

Schlapbach, L.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

Schmid, J.

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Schmid, J. H

Schmid, J. H.

Schmidt, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Schmidt, S. A.

Shahin, M. M.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Sherwali, A.

Shi, W.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Sohlström, H.

C. A. Barrios, M. J. Banuls, V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[Crossref] [PubMed]

H. Sohlström, K. B. Gylfason, and D. Hill, “Real-time label-free biosensing with integrated planar waveguide ring resonators,” Proc. SPIE Photonics Europe, (International Society for Optics and Photonics, 2010), pp. 77190B.
[Crossref]

Soltani, M.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron 12, 1678–1687 (2006).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

Spencer, N.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Stemme, G.

Taha, A.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

TalebiFard, P.

TalebiFard, S.

Tengvall, P.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Textor, M.

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Thibodeau, Y.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

Thompson, E. R.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

van der Wijngaart, W.

Vivien, L.

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008).
[Crossref] [PubMed]

Voort, B.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

Vuckovic, J.

Waldron, P.

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

Wang, J.

Wang, Q.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Wang, X.

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide bragg gratings,” Opt. Lett. 39, 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Wang, Y.

Wangüemert-Pérez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

Washburn, A. L.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Webb, M.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Weissman, Z.

Z. Weissman, “Evanescent field sensors with periodically segmented waveguides,” Appl. Opt. 36, 1218–1222 (1997).
[Crossref] [PubMed]

Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[Crossref]

Werquin, S.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Wu, W.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

Wu, Y.

Xu, D. X.

Xu, D.-X.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (the Oxford Series in Electrical and Computer Engineering) (Oxford University, 2006).

Yegnanarayanan, S.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (the Oxford Series in Electrical and Computer Engineering) (Oxford University, 2006).

Yousuf, S.

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

Yun, H.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Anal. Chem. (1)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Angew. Chem. (1)

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of micrornas using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

Appl. Opt. (1)

Biophys. J. (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

Biosens. Bioelectron. (4)

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Soi optical microring resonator with poly (ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009).
[Crossref] [PubMed]

M. S. McClellan, L. L. Domier, and R. C. Bailey, “Label-free virus detection using silicon photonic microring resonators,” Biosens. Bioelectron. 31, 388–392 (2012).
[Crossref]

Colloids Surf., B (1)

F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. Ramsden, M. Textor, N. Spencer, P. Tengvall, and J. Gold, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf., B 24, 155–170 (2002).
[Crossref]

IEEE J. Sel. Topics Quantum Electron (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron 16, 654–661 (2010).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schachtb, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

J. Biophotonics (1)

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821–828 (2013).
[PubMed]

J. ColloidInterface Sci. (1)

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein a on silicon surfaces studied by afm and xps,” J. ColloidInterface Sci. 233, 180–189 (2001).
[Crossref]

J. Lightwave Technol. (2)

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402 (2000).
[Crossref]

Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[Crossref]

J. Mod. Opt. (1)

J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
[Crossref]

J. Vac. Sci. Technol., B (2)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29, 06F309 (2011).
[Crossref]

R. Bojko and B. Hughes, “Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technol., B 8, 1909–1913 (1990).
[Crossref]

Lab Chip (1)

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab Chip 11, 2042–2044 (2011).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, and I. n. Molina-Fernández, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9, 25–49 (2015).
[Crossref]

Mol. Immunol. (1)

I. S. J. Mota, G. Moraru, and V. Ghetie, “Protein a as a molecular probe for the detection of antigen induced conformational change in fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref] [PubMed]

Nanophotonics (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Nat. Nanotechnol. (1)

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

Opt. Express (15)

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. TalebiFard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

Y. Liu and H. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20, 19912–19920 (2012).
[Crossref] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high q silicon traveling-wave microresonators,” Opt. Express 18, 19541–19557 (2010).
[Crossref] [PubMed]

P. Prabhathan, V. Murukeshan, Z. Jing, and P. V. Ramana, “Compact soi nanowire refractive index sensor using phase shifted bragg grating,” Opt. Express 17, 15330–15341 (2009).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref] [PubMed]

P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, and et al., “Performance of ultra-thin soi-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
[Crossref] [PubMed]

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807–2820 (2014).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator forsensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. TalebiFard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on soi chips,” Opt. Express 22, 21037–21050 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of soi micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23, 4791–4803 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci 105, 20701–20704 (2008).
[Crossref] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Sens. Actuators, B (1)

P. I. Nikitin, B. Gorshkov, E. Nikitin, and T. Ksenevich, “Picoscope, a new label-free biosensor,” Sens. Actuators, B 111, 500–504 (2005).
[Crossref]

Soviet Physics JETP-USSR (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP-USSR 2, 466–475 (1956).

Talanta (1)

S. Rodriguez-Mozaz, M. J. Alda, M.-P. Marco, and D. Barceló, “Biosensors for environmental monitoring: A global perspective,” Talanta 65, 291–297 (2005).
[Crossref]

Other (16)

H. Sohlström, K. B. Gylfason, and D. Hill, “Real-time label-free biosensing with integrated planar waveguide ring resonators,” Proc. SPIE Photonics Europe, (International Society for Optics and Photonics, 2010), pp. 77190B.
[Crossref]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in Proceedings Photonics North 2013, (International Society for Optics and Photonics, 2013), pp. 89150U.
[Crossref]

P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D.-X. Xu, R. Ma, A. Densmore, A. Delâge, and B. Lamontagne, “Subwavelength and diffractive waveguide structures and their applications in nanophotonics and sensing,” Proc. SPIE OPTO, (International Society for Optics and Photonics, 2011), pp. 794111.
[Crossref]

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An o-band metamaterial converter interfacing standard optical fibers to silicon nanopho-tonic waveguides,” in Proceedings of Optical Fiber Communication Conference, (Optical Society of America, 2015), pp. Th3F–3.

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol.2008 (2008).

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in pdms microfluidic channels,” Proc. SPIE MOEMS-MEMS, (International Society for Optics and Photonics, 2011), pp. 79290I.
[Crossref]

W. Bogaerts, “Design challenges in large-scale silicon photonics,” in “13th International Conference on Numerical Simulation of Optoelectronic devices (NUSOD 2013),” (2013), pp. 63–64.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (the Oxford Series in Electrical and Computer Engineering) (Oxford University, 2006).

S. Yousuf, M. M. Shahin, H. Gevorgyan, B. Voort, A. Taha, C. Dimas, M. Dahlem, and A. Khilo, “Suspended microring resonator sensor using internal sub-wavelength grating,” in Proc. Advanced Photonics 2015, (Optical Society of America, 2015), p. SeS4C.4.
[Crossref]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. T. Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, and P. Kulik, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” in Proc. SPIE (International Society for Optics and Photonics, 2014), pp. 91660M.

P. Kwiecien, I. Richter, and J. Čtyrokỳ, “Comparison of 2d and 3d fourier modal methods for modeling subwavelength-structured silicon waveguides,” in Photonics Prague 2011, (International Society for Optics and Photonics, 2011), pp. 83060Y.
[Crossref]

J. Ctyroky, P. Kwiecien, and I. Richter, “Dispersion properties of subwavelength grating soi waveguides,” in Integrated Optical Passive and Active Components for Communication and Sensing Applications p. 1415 (2013).

K. Sakoda, Optical properties of photonic crystals, vol. 80 (Springer Science & Business Media, 2004).

J. D. Bierlein, “Propagation in segmented waveguide structures,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 1992), p. QTuE2.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, and Z. Liang, “Silicon photonic resonator sensors and devices,” Proc. SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 823620.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of SWG waveguide: w is the waveguide width and t the thickness; Λ is the SWG period and the length of the Si blocks is determined by the duty cycle η.
Fig. 2
Fig. 2 a) Electric field magnitude distribution in the xz-plane defined by a cut at y = t/2 for a SWG waveguide with dimensions of w = 500 nm, Λ = 250 nm, η = 0.7, and t = 220 nm; b) Distribution of the z-component (Ez); c) Distribution of the x-component (Ex); d) Cross-section in the middle of Si block, and e) Cross-section in the middle of the gap.
Fig. 3
Fig. 3 a) Effective and group index of SWG waveguide with geometry: w = 500 nm, Λ = 250 nm, and t = 220 nm; The blue dash-dotted lines indicate the substrate (nsub) and the Brillouin zone (nbz) limits. For a duty cycle η = 0.7 the equivalent effective index approximation is shown; b) zoomed in to show the refractive index range 1.4 to 2.4 (range of effective index).
Fig. 4
Fig. 4 Effective index of SWG waveguide with geometry w = 500 nm and t = 220 nm for grating periods Λ = 250 nm (black), Λ = 300 nm (red), and Λ = 350 nm (green); The blue dash-dotted lines indicate the substrate (nsub) and the Brillouin zone (nbz) limits. If not indicated the duty cycle of the grating is η = 0.5.
Fig. 5
Fig. 5 Comparison of MODE Solutions and FDTD Solutions sensitivity simulations for a waveguide geometry: w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle of η = 0.6 and η = 0.7 respectively.
Fig. 6
Fig. 6 SEM image of SWG ring resonator fabricated by Ebeam lithography. Waveguide geometry: w = 500 nm, grating period Λ = 250 nm, waveguide thickness t = 220 nm, and duty cycle η = 0.7.
Fig. 7
Fig. 7 a) Transmission spectrum for a ring with R = 30 μm, w = 500 nm, t = 220 nm, Λ = 250 nm, η = 70 %, and gaps of g = 300 nm and g = 400 nm respectively, exposed to DI water.
Fig. 8
Fig. 8 a) Transmission peak for a ring with R = 30 μm, w = 500 nm, Λ = 250 nm, η = 70 %, t = 220 nm, and gap g = 400 nm exposed to different solutions of NaCl; b) reported peak wavelength shift.
Fig. 9
Fig. 9 Sensitvity results for a SWG ring with R = 30 μm, w = 500 nm, Λ = 250 nm, η = 60 %, and t = 220 nm
Fig. 10
Fig. 10 Biosensing cartoon: Region A = anti-streptavidin (antiSA) (10 μg/mL), B = Bovine Serum Albumin (BAS) (20 μg/mL), C = streptavidin (SA) (20 μg/mL), and D = biotinylated-BSA (50 μg/mL). After each reagent the sensor is washed with PBS, indicated by the grey area mid-way through each region.
Fig. 11
Fig. 11 Biosensing experimental results: Region A = anti-streptavidin (antiSA) (10 μg/mL), B = Bovine Serum Albumin (BAS) (20 μg/mL), C = streptavidin (SA) (20 μg/mL), and D = biotinylated-BSA (50 μg/mL). After each reagent the sensor is washed with PBS, indicated by the grey area mid-way through each region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E = E K ( x , y , z ) e i K z
Δ n = η Δ n
S b = Δ λ res Δ n clad = λ res n g ( n eff n clad )
S s = Δ λ res Δ t ad = λ res n g ( n eff t ad )

Metrics