Abstract

We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the saturation of the excitonic absorption. Stable periodic Rabi-type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.

© 2016 Optical Society of America

1. Introduction

Exciton-polaritons are quasiparticles emerging due to the strong coupling between quantum well excitons and cavity photons in high quality factor cavities [1]. Due to their hybrid light-matter nature, polaritons exhibit set of intriguing collective effects such as high temperature Bose-Einstein condensation (BEC) [2], superfluidity [3] and macroscopic self trapping [4]. Those phenomena originate from very small effective mass of polaritons inherited from the photonic component combined with strong polariton- polariton interactions provided by the excitonic component.

Together with the intriguing fundamental properties, exciton-polaritons are attractive for their perspective applications, mainly in the field of low-threshold bosonic lasers [5] and all-optical integrated circuits [6–13]. The advantage of the polaritonic platform over the conventional nonlinear optical materials for the purposes of the development of optical logic elements is their ultra-strong and ultra-fast nonlinear response [14–16].

One of the important features of non-equilibrium exciton-polariton BEC that can be used in practice relays to so-called permanent Rabi oscillations occurring between lower and upper branch polaritons [17] or between photonic and excitonic components of the condensate [18, 19]. An enhancement of the coherence time of polariton Rabi oscillations has been reported experimentally in [20]. The oscillation pattern strongly depends on the mechanism of the pumping, but the role of different contributions to the nonlinear excitonic responce and different types of the pumping in polariton Rabi oscillations in microcavities is still not fully clarified.

In this paper we examine the problem of the onset of permanent Rabi oscillations between excitonic and photonic components in the microcavity in the presence of strong nonlinearities caused by both exciton-exciton interaction and saturation of the excitonic absorption provided by the effects of Pauli blocking [21–24]. The latter plays major role in the regime of very strong pumps. Indeed, as exciton density nX approaches the critical concentration of 1/aB2, where aB is the excitonic Bohr radius, the system undergoes the Mott transition, and the excitons dissolve forming the electron-hole plasma. We also take into account the possibility of having two types of the pump: resonant pump of the cavity mode by external laser with well defined frequency and non- resonant pump of the excitonic component provided e.g. by electrical injection of the electrons and holes into active region [5, 25].

It is well known that one of the direct consequences of the polariton nonlinear response is the optical bistability [26, 27]. Importantly, bistable behavior was observed for the cases of both resonant optical and non- resonant pump when excitonic subsystem is pumped via the electron- hole reservoir. The mechanisms of the bistability, however, are very different in these two cases. For resonant optical pump it appears due to the resonance between interaction-induced blueshift and detuning between the energies of the cavity mode and the pumping laser. On the contrary, for the non- resonant pump bistable behavior was reported for the electrically pumped polaritonic diode as resulting from the transition to the weak coupling regime [28] or dependence of the electron-hole tunnelling lifetime on the carrier density provided by the effects of the screening [29].

In this work we consider the coupled exciton-photon system in a microcavity configuration shown in Fig. 1 subject to the simultaneous electrical and optical pump and account for the exciton-photon coupling saturation due to the Mott transition. The excitonic Mott transition [30] takes place when the exciton density reaches the limit when the average distance between excitons is of the order of the exciton Bohr radius. In this case, the excitons dissolve due to the Coulomb interactions and the system should be treated as the electron-hole plasma. We reveal that the system may exhibit the multistable behaviour as well as undergo the transitions from stationary solutions to stable periodic oscillations of excitonic and photonic components and then chaotic behaviour if the intensities of the pumps are tuned. The multistable behaviour has been previously observed in the microcavities [31–33], however conventionally the observation of multistability requires an account for spin(polarization) degree of freedom. Contrary to this case, in this paper multistability emerges due to the interplay of the exciton-exciton interaction and the saturation of the exciton-photon coupling. The chaotic behaviour of exciton polaritons has been previously studied in the optically pumped polariton Josephson junctions [34] and planar microcavities with broken polarization symmetry [35, 36]. In this work the transition to the chaotic behaviour can be achieved by tailoring the electrical pump which could be advantageous for the applications in chaos communication devices [37].

 figure: Fig. 1

Fig. 1 Sketch of the system under consideration: a polaritonic microcavity is pumped simultaneously with an electrical pump PX and optical pump PC.

Download Full Size | PPT Slide | PDF

The remaining paper is organized as follows. In section 2 we introduce the Hamiltonian of the system and obtain the equations of motion for the excitonic and photonic amplitudes as functions of time. In section 3 the analysis of the stationary solutions is performed. Section 4 contains the stability analysis of the stationary solutions. Moreover, the regimes of limit cycles characterized by permanent oscillations for excitonic and photonic field amplitudes as well as Hopf bifurcations and transition to chaos through period- doubling cascade are discussed. The conclusions are presented in section 5.

2. Model

We consider the coupled exciton-photon semiclassical Hamiltonian written as

=h¯ωCϕϕ+h¯ωXχχ+g2|χ|4+h¯ΩR(1λaB2|χ|2)(ϕχ+χϕ),
where ϕ,χ are the complex amplitudes of the photonic and excitonic macroscopic wave functions, respectively, ωCX are the frequencies of the excitonic and photonic mode, g defines the strength of the exciton-exciton interaction and can be approximated by [38] g6EbaB2, where Eb is the exciton binding energy and aB is the exciton Bohr radius. The dimensionless constant λ defines the efficiency of the saturation of the excitonic absorption. If λ = 0 the saturation is absent and one regains the conventional Hamiltonian of coupled excitons and photons with only source of nonlinearity provided by exciton-exciton interactions which was extensively used for description of the polariton dynamics and leads to the standard bistable behavior in the regime of the resonant pump (see e.g. [39] and references therein). We also note that the kinetic energy term has been omitted in the Hamiltonian (1). Moreover the semiclassical approximation implies that the exciton and photon field operators commute with their conjugates [ϕ, ϕ*][χ,χ*] = 0, whereas recently a number of works have been presented where both the kinetic energy and the noncommutativity of the field operators have been accounted for [40]. However, in this paper our main goal will be to analyze the additional source of nonlinearity appearing for λ ≠ 0. Note, that Mott transition from excitons to electron-hole plasma occurs roughly when the distance between the individual excitons become comparable to their Bohr radius, and thus realistically λ ≈ 1.

Throughout the paper we neglect spatial degree of freedom assuming the condensate to be at zero momentum state. Equations of motions for the excitonic and photonic amplitudes are derived from the Hamiltonian as iξ˙=/ξ, ξ = {φ, ϕ}. We also will phenomenologically add the terms corresponding to the exciton and photon damping γX, γC, as well optical and electrical pumping terms, PCe−iωt, PXχ(1λaB2|χ|2), respectively. Note, that saturation of the incoherent pump originating from the same effect of Mott transition is introduced. Making the substitution ξ=ξ˜eiωtaB1, ξ = {ϕ, χ} and introducing the dimensionless time τ = ΩRt brings us to a couple of dimensionless differential equations:

iϕ˜˙=(δ˜Ciγ˜C)ϕ˜+(1λ|χ˜|2)χ˜+P˜C,iχ˜˙=(δ˜Xiγ˜X)χ˜+(1λ|χ˜|2)ϕ˜2λχ˜Re(ϕ˜*χ˜)+g˜|χ˜|2χ˜+iP˜Xχ˜(1λ|χ˜|2),
where δ˜C(X)=(ωC(X)ω)/ΩR are detunings of the excitonic and photonic modes with respect to the laser frequency and all the parameters with the dimension of energy were normalized to ΩR. Thereafter we remove tilde sign from the symbols to spare the notations.

In the stationary case ϕ˙=0, χ˙=0, the photon amplitude can be expressed via the exciton amplitude as

ϕ=eiφ0δC2+γC2([1λ|χ|2]χ+PC),
where tanϕ0 = γCC. Equation (3) can then be substituted to the equation for χ. We then can look for the solution for χ in the form χ = Xe, X, ϕ. The equation for χ can then be decomposed into two equations with real coefficients yielding (here and throughout the manuscript we neglect the exciton damping γx assuming it to be much smaller than all characteristic energies of the system):
δXX+gX3(13λX2)PCcos(φφ0)(X4λX3+3λX5)cosφ0=0,
sin(φφ0)=XPC[(1λX2)sinφ0PXα0],
where α0=δC2+γC2,{g,δX}={g,δX}×δC2+γC2.

Equations (4), (5) are the subject of our analysis below.

3. Stationary solutions

At first, we analyse the stationary solutions of Eqs. (4),(5).

We are looking for the real solutions for X ∈ [0;1] and φ ∈ [0;2π[. We start from the simplest case of only the optical pumping, setting PX = 0 in Eqs. (4),(5) Typical results for this limit are displayed in Fig. 2(a). In particular, Eq. (5) has two real solutions for φ for any value of X:

φ=φ0±sin1[XPC(1λX2)sinφ0]+π2(11)

In order to elucidate the multistability regime we here adopt the assumption of off-resonant pumping and high-Q cavity, assuming γCδC. We also assume zero detuning between the exciton and photon mode leading to δC = δX = δ Within this approximation, sinϕ0 ≈ 0, cosϕ0 ≈ signum(δ), and cos(ϕϕ0) ≈ ±cosϕ0. Eq. (4) thus reduces to

3λX5(gδ+4λ)X3(δ21)X±(13λX2)PC=0.

 figure: Fig. 2

Fig. 2 (a) Exciton amplitude vs the optical pump power for the absent electrical pumping at the pumping detuning equal to −9 meV (green line), −2 meV (red line) and 5 meV (black line); all other parameters can be found in the text. (b) Exciton amplitude vs the optical pump power at δC = δX = 9meV at PX = 0 (black line), 1.12 (blue line) and 1.2 (green line. (c) Exciton amplitude vs the electrical pump power at δC = δX = −9meV at PC = 0.2 (green line), 0.5 (black line), and 0.02 (blue line). In figures (a–c) solid lines correspond to the saturable case λ = 1 and dotted to λ = 0. (d) Three dimensional plot of exciton amplitude vs electrical and optical pump for λ = 1 and δC = δX = 9 meV.

Download Full Size | PPT Slide | PDF

Let us note that in the absence of the losses, the threshold for the multistability appearance should be obtained at arbitrary small pumping intensity. Thus, it is instructive to analyze the limiting case PC = 0. Then, in the non-saturable case non-trivial solutions of Eq. (7) satisfy the condition

gδX2+(δ21)=0,
and for the case with λ = 1 we get
3X4(gδ+4)X2(δ21)=0.

For the non-saturable case of Eq. (8) we can readily obtain the condition for the bistability existence, since a positive root exists only if δ ∈] ∞, −1[∪]0; 1[. Thus in the non-saturable system the bistability can arise only if the resonant pump is either above the upper polariton frequency or between the lower polariton frequency and the exciton frequency.

For the saturable case of Eq. (9), there are three distinct cases: the equation has no roots in the region ]0;1[ and thus there is no multistable behaviour in the system. If it has one root, then system will be bistable. Finally, if it has two roots, the tri-stability may be observed. In stark contrast to the non-saturable case, the tri-stability is observed in the region δ ∈] −1;0[ i.e. when the resonant pump is between the exciton and upper polariton frequency, where no bistable behaviour is observed for the case of λ = 0. We thus observe that the multistability behaviour originates merely due to the saturation nonlinearity.

In order to support the approximate analytical results we have performed the numerical calculation of the stationary solutions of the system. For the numerical calculations we use the following set of parameters: the Rabi-splitting ΩR is set to 10 meV, usual for the GaAs based structures, the photon lifetime is set to 2 ps which can be easily achieved in the state of the art high-quality microcavities and corresponds to γCR = 0.03; the binding energy EB ≈ 4 meV which is usual for the GaAs structures and the Bohr radius aB = 10 nm. The optical pumping intensity is bound by approximately 1 kW/cm2 which corresponds to the dimensionless P ≈ 1 and the electrical pumping current is bound by approximately 100μA which corresponds to PX 1. These values of optical pump intensities and currents are easily achievable in the state of the art microcavity set ups [29]. We take λ = 1 and compare the results with the case λ = 0. The results of the numerical calculations are shown in Figs. 2(a)–2(d).

In Fig. 2(a) one can see that for the detunings lying in the region ]ΩR;0[ there is no bistable behaviour in the non-saturable case (green dotted line), but we observe the tri-stability for λ = 1 (green solid line).

Despite the presence of the multistability regime in the phase diagram of the system, it is problematic to construct an experimental protocol exhibiting the multistable behaviour. this is connected to the large PC behaviour of the system. Namely, as can be seen from Eq. (7) in this limit the amplitude of the exciton field is approaching 1/3. At this limit, exciton and photon subsystems become decoupled and increasing the photon pumping will not affect the exciton subsystem. This asymptote is shown with a dashed line in Fig. 2(a). Thus it is not possible to switch between different stable exciton states by adiabatic change of the optical pump. We also note, that upon the transition to the weak coupling regime the formalism based on the Hamiltonian (1) is no more valid, and the approach based on semiconductor Bloch equations should be used instead like in [40]. In this work we consider the nonlinear phenomena occurring in the strong coupling regime.

We now consider the case of simultaneous electrical and optical pump acting upon the system. One of the effects observed in this case, is the shift of the |χ| vs PC dependence to the larger values of PC as PX is increased. To illustrate that we can expand Eqs. (4),(5) for small and large PC respectively. We again assume limit of low radiative losses γCδC, i.e. sinϕ0 ≈ 0. In this case, Eq. (5) yields sinϕ = −XPXC|/PC. The requirement for the real phase ϕ leads to the condition X<PC/|(δC|PX). Thus, as electrical pump increases, the exciton amplitude will decrease slower with the optical pump intensity. This also can be observed in Fig. 2(c) where the dependence of the exciton amplitude vs electric pump for different values of PC is shown. We can see that at the low branch of the stationary solutions, lying below the asymptote |χ|=1/3 the exciton amplitude decays with increasing the pump intensity. In order to better illustrate the exciton amplitude dependence on the electrical and optical pump, the three dimensional plot of |χ| vs PC and PX is shown in Fig. 2(d).

4. Stability analysis

To analyze the stability of the obtained stationary solutions we have computed the Jacobian of the system at the stationary points [41]. The appearance of the positive real parts of at least one eigenvalue of the Jacobian indicates the unstable behaviour. The stable stationary points are shown in bold in Figs. 2(a)–2(c). We have focused at the regime of the detuning δ lying in the region [Ω;0] corresponding to the tri-stable behaviour in the saturable case. We have identified the three types of the non-stationary dynamics of the system which are shown in Figs. 3. The first type is the periodic oscillations of the excitonic and photonic components of the condensate. This behaviour is corresponding to the limit cycle [41] and is shown at Figs. 3(a)–3(c). Relevant time dependent behaviour of photonic |ϕ| and excitonic |χ| amplitudes is shown at Fig. 4. Physically, this regime occurs due to the balance between dissipation and pumping in the presence of the nonlinearity and can be recognized as permanent Rabi oscillations in the condensate [17, 18]. For the non-saturable case λ = 0 with the same parameters, the system is stable.

 figure: Fig. 3

Fig. 3 Spectrum (left column and phase space (|ϕ(t), χ(t)|) (middle column) and (Reϕ(t),Imχ(t)) (right column) trajectories of the system at δC = −9 meV and PC = 0.5, PX = 0.55 (a,b,c), PC = 0.5, PX = 0.27 (d,e,f), PC = 0.2, PX = 0.09 (g,h,i). In all figures solid black lines correspond to saturable case λ = 1, and dashed green to λ = 0. In figure (b) red point corresponds to the stationary solution for the saturable case.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Time dependance the of the exciton and photon field at the same parameters as in Fig. 3(a) for λ = 1.

Download Full Size | PPT Slide | PDF

The transition from the stationary solutions to the limit cycle occurs as we decrease the electrical pump PX and as shown at Fig. 2(c). The spectrum of the oscillations is shown at Fig. 3(a). It can be seen that the oscillations occur primarily at the frequency of Ω˜0.95ΩR. However, the small peaks corresponding to the multiples of Ω are also present. The trajectories in the phase space projections (|ϕ|,|χ|) and (Reχ,Imχ) in this case are closed contours as it is illustrated in Figs. 3(b) and 3(c). We also observed that the closed contour contains the stationary point of the dynamical system which signifies the stability of the limit cycle.

Further decreasing of PX leads to the period multiplication in the system which is shown in Figs. 3(d)–3(f). The spectrum that is shown in Fig. 3(d) exhibits the peaks at the frequencies Ω˜/5. We note that transition to 5th order multiplication of the period of the structure is sharp i.e. the system abruptly switches to the period multiplication by a factor of 5 rather than by consecutive period doubling. In this case the trajectories shown in Fig. 3(e) and 3(f) are still closed contours while with far more complex topology. For the case of λ = 0 with the same parameters, the transition to the permanent Rabi oscillations, i.e. limit cycle is observed.

As the electrical pump is decreased further the system undergoes the transition to chaotic behaviour through a series of consecutive period multiplication. The spectrum in this case, shown in Fig. 3(g) becomes effectively a continuous one and the trajectories shown in Fig. 3(h,i) become unclosed. For the non-saturable case λ = 0 at these parameters the system is stable again.

We have also observed a threshold of the optical pump intensity of 0.06, below which the solutions are stable regardless of the electrical pump intensity. For the non-saturable case the threshold corresponds to the 0.11.

5. Conclusions

We analyzed the dynamics of the excitonic and photonic fields in a microcavity under simultaneous optical and electric pump accounting for the exciton-photon coupling saturation provided by Pauli exclusion principle. We have shown that in the limit of the vanishing electrical pump the system may exhibit the multistable behaviour at certain values of the detunings between the frequencies of the photon mode and the pump. Moreover, we observed the transition from the stable solutions to the chaotic behavior through the cascade of period multiplication as electrical pump in the system is tuned. The discovered regimes can be useful for further development of applications of polariton lasers.

Acknowledgments

A.P.A. acknowledges useful discussions with Yuri Rubo. This work is supported under the project No RFMEFI58715X0020 of the Federal Targeted Programme Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014-2020 of The Ministry of Education and Science of Russia. I.A.S. acknowledges support from Singapore Ministry of Education under AcRF Tier 2 grant MOE2015-T2-1-055.

References and links

1. A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006). [CrossRef]   [PubMed]  

3. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009). [CrossRef]  

4. M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013). [CrossRef]  

5. C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013). [CrossRef]  

6. T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010). [CrossRef]  

7. T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013). [CrossRef]  

8. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013). [CrossRef]   [PubMed]  

9. M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012). [CrossRef]  

10. M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012). [CrossRef]  

11. C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011). [CrossRef]   [PubMed]  

12. A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010). [CrossRef]  

13. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008). [CrossRef]   [PubMed]  

14. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000). [CrossRef]   [PubMed]  

15. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000). [CrossRef]   [PubMed]  

16. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006). [CrossRef]  

17. S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014). [CrossRef]   [PubMed]  

18. T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014). [CrossRef]  

19. I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016). [CrossRef]   [PubMed]  

20. M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014). [CrossRef]   [PubMed]  

21. M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983). [CrossRef]  

22. O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010) [CrossRef]  

23. G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000). [CrossRef]  

24. C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003). [CrossRef]  

25. V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016). [CrossRef]   [PubMed]  

26. A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996). [CrossRef]   [PubMed]  

27. M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004). [CrossRef]  

28. D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008). [CrossRef]   [PubMed]  

29. M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015). [CrossRef]  

30. R. Zimmermann, “Nonlinear Optics and the Mott Transition in Semiconductors,” Physica Status Solidi (b) 146, 371 (1988). [CrossRef]  

31. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007). [CrossRef]   [PubMed]  

32. T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010). [CrossRef]   [PubMed]  

33. J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015). [CrossRef]  

34. D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009). [CrossRef]  

35. H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012). [CrossRef]  

36. S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

37. K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993). [CrossRef]   [PubMed]  

38. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010). [CrossRef]  

39. I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013). [CrossRef]  

40. N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015). [CrossRef]  

41. Elements of Applied Bifurcation TheoryY. A. Kuznetsov, ed. (Springer, 2004). [CrossRef]  

References

  • View by:

  1. A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).
  2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref] [PubMed]
  3. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
    [Crossref]
  4. M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
    [Crossref]
  5. C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
    [Crossref]
  6. T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
    [Crossref]
  7. T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013).
    [Crossref]
  8. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
    [Crossref] [PubMed]
  9. M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
    [Crossref]
  10. M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
    [Crossref]
  11. C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
    [Crossref] [PubMed]
  12. A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
    [Crossref]
  13. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
    [Crossref] [PubMed]
  14. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
    [Crossref] [PubMed]
  15. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
    [Crossref] [PubMed]
  16. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
    [Crossref]
  17. S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
    [Crossref] [PubMed]
  18. T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
    [Crossref]
  19. I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
    [Crossref] [PubMed]
  20. M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
    [Crossref] [PubMed]
  21. M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983).
    [Crossref]
  22. O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
    [Crossref]
  23. G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
    [Crossref]
  24. C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
    [Crossref]
  25. V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
    [Crossref] [PubMed]
  26. A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
    [Crossref] [PubMed]
  27. M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
    [Crossref]
  28. D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
    [Crossref] [PubMed]
  29. M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
    [Crossref]
  30. R. Zimmermann, “Nonlinear Optics and the Mott Transition in Semiconductors,” Physica Status Solidi (b) 146, 371 (1988).
    [Crossref]
  31. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
    [Crossref] [PubMed]
  32. T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
    [Crossref] [PubMed]
  33. J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
    [Crossref]
  34. D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
    [Crossref]
  35. H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012).
    [Crossref]
  36. S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.
  37. K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993).
    [Crossref] [PubMed]
  38. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
    [Crossref]
  39. I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
    [Crossref]
  40. N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
    [Crossref]
  41. Elements of Applied Bifurcation TheoryY. A. Kuznetsov, ed. (Springer, 2004).
    [Crossref]

2016 (2)

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

2015 (3)

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

2014 (3)

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
[Crossref]

2013 (5)

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013).
[Crossref]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

2012 (3)

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012).
[Crossref]

2011 (1)

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

2010 (5)

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
[Crossref]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

2009 (2)

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

2008 (2)

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

2007 (1)

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

2006 (2)

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

2004 (1)

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

2003 (1)

C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
[Crossref]

2000 (3)

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

1996 (1)

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

1993 (1)

K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993).
[Crossref] [PubMed]

1988 (1)

R. Zimmermann, “Nonlinear Optics and the Mott Transition in Semiconductors,” Physica Status Solidi (b) 146, 371 (1988).
[Crossref]

1983 (1)

M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983).
[Crossref]

Abbarchi, M.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Abram, R. A.

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

Adrados, C.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Afanasiev, M.M.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Alodjants, A. P.

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

Alodjants, A.P.

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

Amo, A.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Amthor, M.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Anderson, M. D.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Andre, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Anton, C.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Askitopoulos, A.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Astratov, V. N.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Bajoni, D.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Ballarini, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Ballarini, M.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Barbay, S.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Bassani, F.

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

Baumberg, J.

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

Baumberg, J. J.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

Berger, M.

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

Besombes, L.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Biswas, S.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Bloch, J.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Bouchoule, S.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Bramati, A.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Brodbeck, S.

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Cancellieri, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Cavigli, L.

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

Cazzato, P.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Chen, H.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

Chen, Y.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

Chestnov, I. Yu.

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

Chestnov, Y.

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

Cingolani, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Cuomo, K. M.

K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993).
[Crossref] [PubMed]

Dang, Le Si

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Dasbach, G.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

De Giorgi, M.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Delalande, C.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Deligeorgis, G.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Demirchyan, S. S.

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Deveaud, B.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Deveaud-Pledran, B.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Diederichs, C.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Durnev, M.V.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Egorov, O. A.

O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
[Crossref]

Eleucha, H.

H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012).
[Crossref]

Emam-Ismail, M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

Espinosa-Ortega, T.

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013).
[Crossref]

Ferrier, L.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Flayac, H.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Galopin, E.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Gardiner, C. W.

M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983).
[Crossref]

Gautham, C.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Gavrilov, S. S.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

Giacobino, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Gibbs, H.M.

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

Gigli, G.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Gippius, N. A.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

Glazov, M. M.

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

Gurioli, M.

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

Hatzopoulos, Z.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Hoefling, S.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Houdr, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

Houdre, R.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Hwang, C.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

Ishida, N.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Johne, R.

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

Kalevich, V.K.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Kaliteevski, M.

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

Kamp, M.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Kavokin, A.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

Kavokin, A. V.

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

Kavokin, A.V.

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Khitrova, G.

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

Kochereshko, V.P.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Kulakovskii, V. D.

S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

Kulakovskii, V.D.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Kuszelewicz, R.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Lagoudakis, P.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Laussy, F.

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

Laussy, F.P.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Lederer, F.

O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
[Crossref]

Lefrere, J.

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Leger, Y.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Lemaitre, A.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Lematre, A.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Lien, J.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

Liew, T. C. H.

T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
[Crossref]

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

Liew, T.C.H.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Lukoshkin, V.A.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Malpuech, G.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Marchetti, F.M.

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Mariette, H.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Martin, M. D.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Metzger, C.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Morier-Genoud, F.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Nelsen, B.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Nori, F.

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

Oberli, D. Y.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Oppenheim, A.

K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993).
[Crossref] [PubMed]

Ostatnicky, T.

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

Paraiso, T. K.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Pellegrini, V.

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

Pfeiffer, L.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Piermarocchi, C.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Pigeon, S.

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Platonov, A.V.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Portella-Oberli, M. T.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Prasad, A.

H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012).
[Crossref]

Quattropani, A.

C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Roberts, J. S.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

Rochat, G.

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Roussignolm, Ph.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Rubo, Y. G.

T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
[Crossref]

Rubo, Yu.G.

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

Rubo, Yuri G.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

Sagnes, I.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Sala, V. G.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Sanvitto, D.

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Sapega, V.F.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Savenko, I.G.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Savvidis, P. G.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

Savvidis, P.G.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Schneider, C.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Schwendimann, P.

C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

Semenova, E.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Senellart, P.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Shelykh, I. A.

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

Shelykh, I.A.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Skolnick, M. S.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

Skryabin, D. V.

O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
[Crossref]

Snoke, D.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Solnyshkov, D. D.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Steger, M.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Stevenson, R. M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

Steyn-Ross, M. L.

M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983).
[Crossref]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Szymanska, M.H.

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Takemura, N.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Tartakovskii, A. I.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

Tejedor, C.

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Tignon, J.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Tikhodeev, S. G.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

Trebaol, S.

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Tredicucci, A.

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

Tsintzos, S.I.

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Vina, L.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Wertz, E.

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

West, K.

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Whittaker, D. M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Worschech, L.

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Wouters, M.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Yamamoto, Y.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

YoungKim, N.

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

Zimmermann, R.

R. Zimmermann, “Nonlinear Optics and the Mott Transition in Semiconductors,” Physica Status Solidi (b) 146, 371 (1988).
[Crossref]

Appl. Phys. Lett. (1)

M. Steger, C. Gautham, B. Nelsen, D. Snoke, L. Pfeiffer, and K. West, “Single-wavelength, all-optical switching based on exciton-polaritons,” Appl. Phys. Lett. 101, 131104 (2012).
[Crossref]

Nat. Commun. (1)

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdr, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nat. Phys. 9, 275–279 (2013).
[Crossref]

Nature (2)

C. Schneider, A. Rahimi-Iman, N. YoungKim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “Print Share/bookmark An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Nature (London) (1)

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lematre, J. Bloch, Ph. Roussignolm, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature (London) 440, 904–907 (2006).
[Crossref]

Nature Materials (1)

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Materials 9, 655–660 (2010).
[Crossref] [PubMed]

Nature Photonics (1)

A. Amo, T. C. H. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photonics 4, 361–366 (2010).
[Crossref]

Nature Physics (1)

A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Physics 5, 805810 (2009).
[Crossref]

Phys. Lett. A (1)

H. Eleucha and A. Prasad, “Chaos and regularity in semiconductor microcavities,” Phys. Lett. A 376, 1970 (2012).
[Crossref]

Phys. Rev. A (2)

A. Tredicucci, Y. Chen, V. Pellegrini, M. Berger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996).
[Crossref] [PubMed]

M. L. Steyn-Ross and C. W. Gardiner, “Quantum theory of excitonic optical bistability,” Phys. Rev. A 27, 310 (1983).
[Crossref]

Phys. Rev. B (9)

O. A. Egorov, D. V. Skryabin, and F. Lederer, “Polariton solitons due to saturation of the exciton-photon coupling,” Phys. Rev. B 82, 165326 (2010)
[Crossref]

G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Excitonic Bloch equations for a two-dimensional system of interacting excitons,” Phys. Rev. B 61, 13856 (2000).
[Crossref]

T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, “Exciton-polariton oscillations in real space,” Phys. Rev. B 90, 245309 (2014).
[Crossref]

M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

J. Lien, Y. Chen, N. Ishida, H. Chen, C. Hwang, and F. Nori, “Multistability and condensation of exciton-polaritons below threshold,” Phys. Rev. B 91, 024511 (2015).
[Crossref]

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and G. Malpuech, “Chaotic Josephson oscillations of exciton-polaritons and their applications,” Phys. Rev. B 80, 235303 (2009).
[Crossref]

T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B 82, 033302 (2010).
[Crossref]

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B 87, 195305 (2013).
[Crossref]

N. Takemura, M. D. Anderson, S. Trebaol, S. Biswas, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, “Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime,” Phys. Rev. B 92, 235305 (2015).
[Crossref]

Phys. Rev. Lett. (10)

K. M. Cuomo and A. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65–68 (1993).
[Crossref] [PubMed]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84, 1547 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 85, 3680 (2000).
[Crossref] [PubMed]

S. S. Demirchyan, Y. Chestnov, A. P. Alodjants, M. M. Glazov, and A. V. Kavokin, “Qubits Based on Polariton Rabi Oscillators,” Phys. Rev. Lett. 112, 196403 (2014).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F.M. Marchetti, M.H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martin, D. Sanvitto, C. Anton, E. Giacobino, A. Kavokin, A. Bramati, and L. Vina, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical Bistability in a GaAs-Based Polariton Diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization Multistability of Cavity Polaritons,” Phys. Rev. Lett. 98, 236401 (2007).
[Crossref] [PubMed]

M. De Giorgi, M. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, and D. Sanvitto, “Relaxation Oscillations in the Formation of a Polariton Condensate,” Phys. Rev. Lett. 112, 113602 (2014).
[Crossref] [PubMed]

Physica Status Solidi (b) (1)

R. Zimmermann, “Nonlinear Optics and the Mott Transition in Semiconductors,” Physica Status Solidi (b) 146, 371 (1988).
[Crossref]

Rev. Mod. Phys. (2)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum Fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

Sci. Rep. (1)

I. Yu. Chestnov, S. S. Demirchyan, A.P. Alodjants, Yu.G. Rubo, and A.V. Kavokin, “Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry,” Sci. Rep. 6, 19551 (2016).
[Crossref] [PubMed]

Scientific Reports (1)

V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P. Lagoudakis, and A. Kavokin, “Lasing in Bose-Fermi mixtures,” Scientific Reports 6, 20091 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

C. Ciuti, P. Schwendimann, and A. Quattropani, “Theory of polariton parametric interactions in semiconductor microcavities,” Semicond. Sci. Technol. 18, S279 (2003).
[Crossref]

M. Gurioli, L. Cavigli, G. Khitrova, and H.M. Gibbs, “Bistable optical response in quantum well semiconductor microcavity,” Semicond. Sci. Technol. 19, S345 (2004).
[Crossref]

Other (3)

A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, 2006).

S. S. Gavrilov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, “Spin oscillations and chaos in polariton condensates,” arXiv:1511.07284.

Elements of Applied Bifurcation TheoryY. A. Kuznetsov, ed. (Springer, 2004).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Sketch of the system under consideration: a polaritonic microcavity is pumped simultaneously with an electrical pump PX and optical pump PC.
Fig. 2
Fig. 2 (a) Exciton amplitude vs the optical pump power for the absent electrical pumping at the pumping detuning equal to −9 meV (green line), −2 meV (red line) and 5 meV (black line); all other parameters can be found in the text. (b) Exciton amplitude vs the optical pump power at δC = δX = 9meV at PX = 0 (black line), 1.12 (blue line) and 1.2 (green line. (c) Exciton amplitude vs the electrical pump power at δC = δX = −9meV at PC = 0.2 (green line), 0.5 (black line), and 0.02 (blue line). In figures (a–c) solid lines correspond to the saturable case λ = 1 and dotted to λ = 0. (d) Three dimensional plot of exciton amplitude vs electrical and optical pump for λ = 1 and δC = δX = 9 meV.
Fig. 3
Fig. 3 Spectrum (left column and phase space (|ϕ(t), χ(t)|) (middle column) and (Reϕ(t),Imχ(t)) (right column) trajectories of the system at δC = −9 meV and PC = 0.5, PX = 0.55 (a,b,c), PC = 0.5, PX = 0.27 (d,e,f), PC = 0.2, PX = 0.09 (g,h,i). In all figures solid black lines correspond to saturable case λ = 1, and dashed green to λ = 0. In figure (b) red point corresponds to the stationary solution for the saturable case.
Fig. 4
Fig. 4 Time dependance the of the exciton and photon field at the same parameters as in Fig. 3(a) for λ = 1.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

= h ¯ ω C ϕ ϕ + h ¯ ω X χ χ + g 2 | χ | 4 + h ¯ Ω R ( 1 λ a B 2 | χ | 2 ) ( ϕ χ + χ ϕ ) ,
i ϕ ˜ ˙ = ( δ ˜ C i γ ˜ C ) ϕ ˜ + ( 1 λ | χ ˜ | 2 ) χ ˜ + P ˜ C , i χ ˜ ˙ = ( δ ˜ X i γ ˜ X ) χ ˜ + ( 1 λ | χ ˜ | 2 ) ϕ ˜ 2 λ χ ˜ Re ( ϕ ˜ * χ ˜ ) + g ˜ | χ ˜ | 2 χ ˜ + i P ˜ X χ ˜ ( 1 λ | χ ˜ | 2 ) ,
ϕ = e i φ 0 δ C 2 + γ C 2 ( [ 1 λ | χ | 2 ] χ + P C ) ,
δ X X + g X 3 ( 1 3 λ X 2 ) P C cos ( φ φ 0 ) ( X 4 λ X 3 + 3 λ X 5 ) cos φ 0 = 0 ,
sin ( φ φ 0 ) = X P C [ ( 1 λ X 2 ) sin φ 0 P X α 0 ] ,
φ = φ 0 ± sin 1 [ X P C ( 1 λ X 2 ) sin φ 0 ] + π 2 ( 1 1 )
3 λ X 5 ( g δ + 4 λ ) X 3 ( δ 2 1 ) X ± ( 1 3 λ X 2 ) P C = 0 .
g δ X 2 + ( δ 2 1 ) = 0 ,
3 X 4 ( g δ + 4 ) X 2 ( δ 2 1 ) = 0 .

Metrics