Abstract

A high-power, wavelength-tunable, all-fiber integrated thulium-doped fiber laser (TDFL) at 2 μm is presented. The TDFL has a compact configuration which only consists of a low power seed oscillator and a stage of fiber power amplifier. The seed oscillator adopts a tunable band-pass filter as the wavelength selective element, matching the gain spectrum of thulium-doped fiber. It can provide ~5 W single-mode seed laser with superb spectral characteristics, and the lasing wavelength is adjustable from 1890 to 2050 nm. The fiber power amplifier provides a total gain of ~17 dB at 2 μm which boosts the signal power to the 300 W-level. The maximum average power reaches 327.5 W at 1930 nm with the highest slope efficiency of 57.4%. This TDFL can afford >270 W lasing operation over the whole tuning range of 140 nm spanning from 1910 to 2050 nm, together with high spectral quality and power stability. This is the first demonstration, to the best of our knowledge, on an all-fiber integrated wavelength-widely-tunable TDFL at 2 μm with output power at the 300 W-level. The results are of great interest for many applications.

© 2016 Optical Society of America

1. Introduction

Laser sources at the eye-safe 2 μm region are useful and beneficial for a wide range of scientific and technical applications such as material processing [1], laser surgery [2, 3], atmospheric sensing [4], free space communication and nonlinear optics [5]. Comparing to bulk lasers, fiber lasers exhibit proven advantages in beam quality, thermal management and stability [6, 7]. Thulium-doped fiber (TDF) offers the potential to efficiently lase from ∼1.7 to 2.1 μm [8] which broadens the lasing regions of rare-earth doped fiber lasers. Theoretically, there are higher nonlinear thresholds due to the larger mode field area of 2 μm laser light in fibers. When pumped at 790 nm, the well-know “2 for 1” cross relaxation process enables TDFLs to own efficient slope efficiency, allowing a theoretical value of ~80% [9]. In 2010, there was a demonstration of 1 kW high-power thulium-doped fiber laser (TDFL) at 2045 nm [10] which motivated the wide investigations of 2 μm fiber laser sources. Up to now, there are many reports of thulium-doped fiber lasers (TDFLs) at 2 μm with versatile output [11–22].

Meanwhile, with the developments of TDFLs, application requirements of 2 μm lasers become more and more explicit. Firstly, high-power lasers with wavelengths at 1900-1970 nm could be used as the efficient pump light for tandem-pumped TDFLs [23, 24] and holmium-doped fiber lasers [25]. A recent demonstration has shown that a tandem-pumped TDFL can achieve a slope efficiency higher than 90% [23]. Secondly, although laser light at 1940 nm matches the water absorption peak in tissues, it is shown that the average power should be >150 W to achieve the clinically acceptable ablation rates [2]. Thirdly, TDFLs at 2 μm locate at the short-wave side of the 2-2.5 μm atmospheric window [26], which are potential to be used in long-range eye-safe atmospheric applications (such as LIDAR, free space communication and standoff chemical detection). Results have shown that there are high transmissions with lasing wavelengths >1960 nm [27]. It is believed that robust and reliable high-power TDFLs at specific wavelengths could meet with the aforementioned application requirements. Importantly, the addition of a wide-wavelength tunability to a single TDFL brings great advantages to meet these different applications [4]. However, there are only few reports of high-power, wavelength-tunable TDFLs with limited output power at present [22, 28–31]. What’s more, most of the present high-power TDFL (with single wavelength operation) adopt 3-5 stages of fiber amplifier which makes the whole laser system very complicated.

In this paper, a 300 W-level, wavelength-tunable, all-fiber integrated TDFL at 2 μm is demonstrated. The compact-designed TDFL adopts a low-power wavelength-tunable seed oscillator followed by only a cladding-pumped fiber power amplifier. The output power of the seed oscillator is maximized by optimizing the position of the tunable band-pass filter. Both the power and spectral performances of the TDFL are studied in detail. The TDFL provides >270 W laser output over 140 nm spanning from 1910 to 2050 nm. Maximum average power of 327.5 W is reached at 1930 nm with the highest slope efficiency of 57.4% and a very high spectral quality. Long-term high-power operation of the TDFL shows its outstanding temporal stability.

2. Experimental setup

The experimental setup of the all-fiber integrated TDFL is shown in Fig. 1. The seed oscillator adopts a ring cavity design. It consists a (2 + 1) × 1 signal and pump light combiner, a piece of 5 m single mode (SM) TDF fiber as the gain medium, a tunable band-pass filter (TBF) as the wavelength selective element, a fused fiber optical coupler (OC) to extract the seed laser, and an optical isolator (ISO) to ensure the unidirectional propagation of light (marked counter-clockwise on the schematic in Fig. 1). Considering of its limited power-handling (~5 W) and high insertion loss (~3 dB), the TBF is inserted between the 10% port of the OC and the gain fiber. This greatly decreases the loaded power on the TBF. The TBF has a measured 3 dB spectral bandwidth of ~1.2 nm at 1850-2050 nm. The SM-TDF has a core diameter of 10 μm with a numerical aperture (NA) of 0.15. It has a cladding-pumped absorption coefficient of ~3 dB/m at 790 nm. A multimode (MM) laser diode (LD) at 790 nm is used to backward pump the laser cavity through the (2 + 1) × 1 combiner.

 figure: Fig. 1

Fig. 1 Layout of the high-power, wavelength-tunable, all-fiber integrated TDFL.

Download Full Size | PPT Slide | PDF

The signal laser from the seed oscillator is then used to seed the power amplifier, which is a large-mode-area (LMA) power amplifier. Six MM LDs at 790 nm are employed as the pump light. A (6 + 1) × 1 signal and pump light combiner with matched fibers is used to couple the pump light and the seed laser into the gain fiber. The total pump light could reach ~570 W after the combiner with a coupling efficiency of ~95%. The gain fiber is a 2.7 m length of LMA-TDF which has a core/cladding diameter of 25/250 μm. The absorption coefficient of the LMA-TDF is ~9 dB/m at 790 nm. The effective NA values of the core and cladding are 0.11 and 0.46, respectively. The LMA-TDF is coiled on a radius of 7 cm to suppress high order modes. And then, it is placed in a water-cooled conductive heatsink to dissipate the heat. The cooling temperature is 15 degrees Celsius. A pump dumper with matched passive fiber is spliced to the gain fiber to strip off the residual pump light. There is a fiber endcap made of a piece of coreless silica fiber (the diameter is 400 μm) before the amplifier output. The coreless fiber is then cleaved at an angle of 7° to suppress the unwanted optical feedback from the Fresnel reflection. The residual fiber length is ~0.5 mm to ensure good beam quality.

The output power of the TDFL is measured with a thermal power meter and the spectrum is monitored by a grating-based optical spectrum analyzer with a spectral resolution of 0.05 nm. The data from the power meter is connected to a computer program to test the TDFL’s long term stability. The output beam profile is captured by an InAs Camera.

3. Experimental results and discussion

3.1 Characteristics of the seed oscillator

In the experiments, the characteristics of the seed oscillator were investigated firstly. The lasing wavelength of the seed oscillator was controlled by adjusting the TBF manually. When the pump power was increased to ~20 W, the seed oscillator provided up to ~5 W laser output. Figure 2(a) plots the measured output power at a spectral interval of 10 nm spanning from 1890 to 2050 nm. The slope efficiencies of the seed oscillator are calculated with the highest value of 27.5% at 1930 nm. Currently, the output power of the seed oscillator is limited by the power handling of the ISO. With some improvements of the ISO and the pump power, it is believed the output power of the seed oscillator could reach 10 W-level.

 figure: Fig. 2

Fig. 2 (a) The output power of the seed oscillator. (b) The seed spectra.

Download Full Size | PPT Slide | PDF

Figure 2(b) plots the measured spectra at these different lasing wavelengths. Over 54 dB amplified spontaneous emission (ASE) suppression ratio is observed except for the two short-wave lasing wavelengths of 1890 and 1900 nm. The ASE suppression ratios for 1890 and 1900 nm are 46 and 51 dB, respectively. It could be explained by the severe reabsorption of short-wave laser light in the gain fiber which emits ASE light at the longer wavelengths [28]. Nonetheless, the ratios of the signal to the total output power are >99.5% for lasing wavelengths of 1890 and 1900 nm. It means that the most of the output power from the seed oscillator is contained in the signal. The seed oscillator has a very narrow 3 dB spectral bandwidth of 0.2-0.3 nm over the 160 nm tunable range.

3.2 Characteristics of the power amplifier

Then, the seed oscillator was injected into the power amplifier for further power scaling. The idle port of the OC was used to monitor the backward propagated light (mainly the backward ASE) from the power amplifier. It is noted that ~10% backward light can be extracted at the idle port of the OC, while the other ~90% backward light should be blocked by the ISO in the seed oscillator. When the pump power increased to its maximum, the output signal power was amplified to the ~300 W-level together with superior optical spectrum.

Figure 3(a) plots the measured output spectra of the power amplifier at 1940 nm with the maximum output power. It is shown that the amplified laser at 1940 nm has a high ASE suppression ratio of over 51 dB, showing the effectiveness of the power amplifier. In fact, it is noted that all ASE suppression ratios are >50 dB when the signal wavelength is longer than 1940 nm. The upper and the lower insets of Fig. 3(a) show the output spectra at 1910 nm and 2050 nm. In this work, the large population inversion established in the gain fiber under strong pump enables this TDFA to amplify signals efficiently with wavelengths shorter than 1940 nm which is usually difficult to be amplified in cladding-pumped TDFAs. However, due to the heavy reabsorption of the signal light at the short wavelength side (<1940 nm) in the gain fiber, a portion of the amplified signal will be reabsorbed by the gain fiber and then some ASE light peaks at longer wavelengths (1960-1970 nm) will be emitted. So that the ASE suppression ratios of the amplified signal at 1910 and 1920 nm are relatively low. The ASE suppression ratio at 1910 nm is only 31 dB as shown in the upper inset of Fig. 3(a). The output 3dB spectral bandwidth for these three signal wavelengths are 0.23, 0.33 and 0.17 nm respectively, indicating that during amplification no spectral broadenings are observed.

 figure: Fig. 3

Fig. 3 (a) Output spectrum at 1940 nm. Insets of (a) plot the spectra at 1910 and 2050 nm. (b) Evolutions of the TDFL’s output power at 1910, 1940 and 2050 nm.

Download Full Size | PPT Slide | PDF

By spectral integration, the ratio of the signal to the total power is calculated to be 89.7%. When the 1910 nm signal was amplified to its maximum, the backward ASE power was ~50 mW. It is found that with the adjusting of the signal wavelength to the short-wave side, the backward ASE power increased rapidly. So that in the experiments, signals with wavelength shorter than 1910 nm are not amplified. The typical power evolution curves for the signals at 1910, 1940 and 2050 nm are plotted in Fig. 3(b). No roll-over phenomenon of the output power is observed, showing the robustness and reliability of the whole TDFL. The slope efficiency of the power amplifier has the lowest value of 47.7% at 2050 nm, and the highest value of ~57% at 1910-1950 nm.

Figure 4(a) plots the measured wavelength-dependent output power and calculated signal power data when the 790 nm pump power reached ~570 W. The signal power are obtained by excluding the ASE light power from spectral integration. It is shown that although the measured power is 327.5 W at 1910 nm, the actual signal power is only 294 W. In addition, it is found that when the signal wavelength is longer than 1930 nm, there is nearly no ASE light. It shows the TDFL has a very superior spectral characteristics at the long-wave side. There is a trend that the output power of the TDFL towards longer wavelengths is decreasing, which mainly originates from the decreasing of the emission cross-section area of the LMA-TDF. Nevertheless, the results show that the TDFL can provide >270 W laser output over 140 nm spanning from 1910 to 2050 nm. For the investigation of the beam profile, a collimator together with a 3° wedge (∼4% reflectivity) was used before the InAs camera. Limited by the power handling of the 2 μm light collimator, the measurement was conducted with signal power of ~30 W. The inset of Fig. 4(a) shows the measured beam shape of the TDFL at 1940 nm. No beam deterioration was observed in the experiments at the low-power level. The Gaussian-like beam profile indicates the high quality of the power amplifier and the fiber endcap.

 figure: Fig. 4

Fig. 4 (a) Output maximum power of the TDFL. (b) Long-term power stability test. Inset of (a) shows the measured beam profile when the output power is 30 W at 1940 nm. Inset of (b) plots the histogram of the power measurements.

Download Full Size | PPT Slide | PDF

To investigate the long-term stability of the TDFL, the output power was monitored with a computer program. Considering the effective thermal managements of the LDs with high-power operation, the drive current of the LDs was adjusted to 5.5 A (the full value is 6 A). This resulted in a 295 W laser output at 1940 nm. The long-term power data was recorded at a sample rate of 10 Hz over 20 minutes as plotted in Fig. 4(b). In order to quantify the stability of the TDFL, the root mean square (RMS) value of the power data is calculated to be 0.86 W, showing an excellent power stability of the TDFL. The small fluctuation of the output power is due to the thermal managements of the pump LDs. No nonlinear effects and gain saturation effect have been observed at present, indicating that there is still possibility for further power scaling of such a wavelength-tunable TDFL.

4. Conclusion

In conclusion, a 300 W-level, wavelength-tunable, all-fiber integrated TDFL is demonstrated, which is, to the best of our knowledge, the highest output power of wavelength-tunable TDFL. The TDFL has superb spectral characteristics at 1910-2050 nm and high stability. The output power of the TDFL can be further scaled up with enhanced pump power. It is believed that the reported results in this work are of great interest for lots of practical applications.

Acknowledgment

The authors thank Mr. Sen Guo and Xu Yang at the National University of Defense Technology for their kind supports for the experiments. The authors thank PhD candidates Lingchao Kong and Xiaoxi Jin for their fruitful discussions. This work is supported by National Natural Science Foundation of China (Grant No. 61235008 and 61435009), Hunan Provincial Natural Science Foundation of China (Grant No. 14JJ3001) and Graduate Student Innovation Foundation of National University of Defense Technology (Grant No. B150703).

References and links

1. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012). [CrossRef]  

2. N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005). [CrossRef]   [PubMed]  

3. J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016). [PubMed]  

4. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, ““All-fiber” tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51(29), 7011–7015 (2012). [CrossRef]   [PubMed]  

5. N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012). [CrossRef]  

6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]  

7. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014). [CrossRef]   [PubMed]  

8. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014). [CrossRef]   [PubMed]  

9. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004). [CrossRef]  

10. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

11. X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015). [CrossRef]  

12. X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015). [CrossRef]  

13. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014). [CrossRef]   [PubMed]  

14. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013). [CrossRef]   [PubMed]  

15. J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015). [CrossRef]  

16. Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014). [CrossRef]   [PubMed]  

17. C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013). [CrossRef]   [PubMed]  

18. L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015). [CrossRef]   [PubMed]  

19. F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014). [CrossRef]  

20. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011). [CrossRef]   [PubMed]  

21. G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005). [CrossRef]   [PubMed]  

22. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015). [CrossRef]   [PubMed]  

23. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015). [CrossRef]   [PubMed]  

24. D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “Resonant tandem pumping of Tm-doped fiber lasers,” Proc. of SPIE 9081, 90810I 90811–90815 (2014).

25. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013). [CrossRef]   [PubMed]  

26. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014). [CrossRef]  

27. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, L. Shah, and M. Richardson, “Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system,” CLEO 2010: Standoff Laser Sensing, San Jose, CA, May 16, JThJ5 (2010). [CrossRef]  

28. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014). [CrossRef]   [PubMed]  

29. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010). [CrossRef]   [PubMed]  

30. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002). [CrossRef]   [PubMed]  

31. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014). [CrossRef]   [PubMed]  

References

  • View by:

  1. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  2. N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
    [Crossref] [PubMed]
  3. J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
    [PubMed]
  4. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, ““All-fiber” tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51(29), 7011–7015 (2012).
    [Crossref] [PubMed]
  5. N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
    [Crossref]
  6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  7. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  8. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
    [Crossref] [PubMed]
  9. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
    [Crossref]
  10. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).
  11. X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
    [Crossref]
  12. X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
    [Crossref]
  13. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
    [Crossref] [PubMed]
  14. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  15. J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
    [Crossref]
  16. Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
    [Crossref] [PubMed]
  17. C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
    [Crossref] [PubMed]
  18. L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
    [Crossref] [PubMed]
  19. F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
    [Crossref]
  20. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [Crossref] [PubMed]
  21. G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  22. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
    [Crossref] [PubMed]
  23. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
    [Crossref] [PubMed]
  24. D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “Resonant tandem pumping of Tm-doped fiber lasers,” Proc. of SPIE 9081, 90810I 90811–90815 (2014).
  25. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  26. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
    [Crossref]
  27. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, L. Shah, and M. Richardson, “Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system,” CLEO 2010: Standoff Laser Sensing, San Jose, CA, May 16, JThJ5 (2010).
    [Crossref]
  28. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  29. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  30. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  31. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]

2016 (1)

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

2015 (6)

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

2014 (8)

Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
[Crossref] [PubMed]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, ““All-fiber” tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51(29), 7011–7015 (2012).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

2011 (1)

2010 (3)

2005 (2)

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

2002 (1)

Alam, S. U.

Barnes, N. P.

Bennetts, S.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Berendt, M.

Bremer, K.

Broeng, J.

Carmody, N.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Carter, A.

Chen, K. P.

Chen, T.

Clarkson, W. A.

Davidson, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Davies, P.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Dvoyrin, V. V.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Fang, Q.

Fermann, M.

Fried, N. M.

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

Gaida, C.

Gebhardt, M.

Grattan, K. T. V.

Han, B. M.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Hanna, D. C.

Haub, J.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Haxsen, F.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Heberle, A. P.

Heidt, A. M.

Hemming, A.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Hou, J.

Hou, Y.

Huang, C.

Hughes, M.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Imeshev, G.

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Jin, X.

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Kadwani, P.

Kelly, B.

Kracht, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Leick, L.

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Lewis, E.

Li, J.

Li, L.

Li, Z.

Liu, H. T.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Liu, J.

Liu, K.

Liu, Y.

Liu, Z.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

Luo, H.

Luo, Y.

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

McComb, T. S.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Murray, K. E.

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

Neumann, J.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Nilsson, J.

Norwood, R. A.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Pal, A.

Peyghambarian, N.

Phelan, R.

Richardson, D. J.

Richardson, M.

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Sahu, J. K.

Sen, R.

Shah, L.

Shi, H.

Shi, W.

Simakov, N.

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Sims, R. A.

Sorokin, E.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Sorokina, I. T.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Sudesh, V.

Sun, T.

Sun, X. W.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Sun, Z.

Tan, F.

Tang, Y.

Tang, Y. L.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Teh, P. S.

Tolstik, N.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

Turner, P. W.

Wandt, D.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Wang, P.

Wang, Q.

Wang, S.

Wang, X.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

Wang, Y.

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Wei, H. B.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Wienke, A.

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Willis, C. C. C.

Wu, W.

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

Xia, S. J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Xiao, H.

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Xu, J.

Xu, J. Q.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Xue, G.

Yan, Z.

Yang, J.

Yang, J. L.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Yang, L.

Yang, W.

Yao, S.

Yin, K.

Zhang, B.

Zhang, F.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Zhang, G.

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

Zhang, L.

Zhao, F. J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Zhou, K.

Zhou, P.

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Zhu, X.

Zhuo, J.

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

Appl. Opt. (3)

Asian J. Androl. (1)

J. Zhuo, H. B. Wei, F. Zhang, H. T. Liu, F. J. Zhao, B. M. Han, X. W. Sun, S. J. Xia, and S. J. Xia, “Two-micrometer thulium laser resection of the prostate-tangerine technique in benign prostatic hyperplasia patients with previously negative transrectal prostate biopsy,” Asian J. Androl. 18, 1–4 (2016).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–12 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Wang, X. Jin, W. Wu, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “310-W single frequency Tm-doped all-fiber MOPA,” IEEE Photonics Technol. Lett. 27(6), 677–680 (2015).
[Crossref]

J. L. Yang, Y. Wang, G. Zhang, Y. L. Tang, and J. Q. Xu, “High-Power Highly Linear-Polarized Nanosecond All-Fiber MOPA at 2040 nm,” IEEE Photonics Technol. Lett. 27(9), 986–989 (2015).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “New technologies in endourology - High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19, 25–31 (2005).
[Crossref] [PubMed]

J. Opt. (1)

X. Jin, X. Wang, J. Xu, X. Wang, and P. Zhou, “High-power thulium-doped all-fibre amplified spontaneous emission sources,” J. Opt. 17(4), 045702 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[Crossref]

Opt. Express (9)

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23(3), 2991–2998 (2015).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

F. Haxsen, A. Wienke, D. Wandt, J. Neumann, and D. Kracht, “Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 650–656 (2014).
[Crossref]

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (2)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, K8231–K8236 (2012).
[Crossref]

Other (2)

D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “Resonant tandem pumping of Tm-doped fiber lasers,” Proc. of SPIE 9081, 90810I 90811–90815 (2014).

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, L. Shah, and M. Richardson, “Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system,” CLEO 2010: Standoff Laser Sensing, San Jose, CA, May 16, JThJ5 (2010).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Layout of the high-power, wavelength-tunable, all-fiber integrated TDFL.
Fig. 2
Fig. 2 (a) The output power of the seed oscillator. (b) The seed spectra.
Fig. 3
Fig. 3 (a) Output spectrum at 1940 nm. Insets of (a) plot the spectra at 1910 and 2050 nm. (b) Evolutions of the TDFL’s output power at 1910, 1940 and 2050 nm.
Fig. 4
Fig. 4 (a) Output maximum power of the TDFL. (b) Long-term power stability test. Inset of (a) shows the measured beam profile when the output power is 30 W at 1940 nm. Inset of (b) plots the histogram of the power measurements.

Metrics