Abstract

There is wide interest in understanding and leveraging the nonlinear plasmon-induced potentials of nanostructured materials. We investigate the electrical response produced by spin-polarized light across a large-area bottom-up assembled 2D plasmonic crystal. Numerical approximations of the Lorentz forces provide quantitative agreement with our experimentally-measured DC voltages. We show that the underlying mechanism of the spin-polarized voltages is a gradient force that arises from asymmetric, time-averaged hotspots, whose locations shift with the chirality of light. Finally, we formalize the role of spin-orbit interactions in the shifted intensity patterns and significantly advance our understanding of the physical phenomena, often related to the spin Hall effect of light.

© 2016 Optical Society of America

1. Introduction

Many emerging areas of nonlinear plasmonics research underscore the significance of the time-averaged Lorentz and pressure forces exerted by photons [1], often referred to as photon drag [1–3]. Via Lorentz forces, the material properties of plasmonic surfaces are optically modulated at dimensions smaller than the wavelength of light [4]. Lorentz forces also manifest mechanically: intensity-dependent plasmonic behavior has been shown to interfere with the optical trapping of nanoparticles [5], particularly in the presence of chiral hybrid plasmon modes [6,7]. Moreover, within a similar plasmoelectric model, the transference of light momenta to “hot” surface electrons and plasmon-induced potentials induce charge separation, the topic of which draws heightened interest for light harvesting and photocatalytic applications [8–10]. Ultimately, the presence of the Lorentz forces leads to shifts in material properties, chemical potentials, and appreciable net optomechanical forces on nano-structured surfaces and particles.

The subject of DC photo-induced voltages in plasmonic systems or plasmon-induced potentials has gained significant attention in recent years [8,11–18]; the nonlinear plasmonic effects associated with extreme electric-field confinement and localization [19,20] are necessary in order to produce significant photo-induced voltages [11,21,22]. A unique category of the plasmon-induced potentials occurs in a direction normal to the plane of incidence, i.e. a transverse photo-induced voltage (TPIV), and represents the manifestation of circularly-polarized light (CPL) or optical spin angular momentum (SAM) [13,14,18,23]. This conversion of SAM into the linear momenta of charges has only recently been explored.

Here we show that the TPIV is generated via spin-orbit interactions (SOI) and Lorentz forces; a break in azimuthal symmetry imparts orbital angular momentum (OAM) to the scattered CPL, which leads to a TPIV. Since the TPIV polarity changes with incident spin or CPL handedness, the effect is widely associated with a photonic spin Hall effect [6,13,14,23–26], where the OAM associated with the azimuthal asymmetry carries the analogous role to the magnetic field.

We demonstrate TPIVs in a bottom-up-fabricated 2D plasmonic crystal composed of truncated spherical voids arranged in a 2D FCC lattice, also known as nanovoids [27]. These measurements agree quantitatively with numerical simulations. Our understanding provides axiomatic design parameters for predicting the TPIV. We find the TPIV increases as the surface plasmon polariton (SPP) resonance approaches an electronic interband transition in gold and maximal TPIVs are produced at a wavelength that is red-shifted from the absorption peak, in agreement with numerical simulations.

We also identify that the TPIV or spin-polarized voltages arise from gradient forces of asymmetric localized fields or “hotspots” whose transverse location depends on incident CPL handedness. The asymmetric hotspots represent a distinct class of SOI [28], where the obliquely-angled SAM couples to its extrinsic OAM of the obliquely-illuminated surface [29,30]. The presence of SOI in the production of TPIVs is postulated in the seminal research of Hatano [13]; we explicitly formalize the role of SOI and the underlying physical phenomena leading to the TPIV in this report. This investigation demonstrates a priori knowledge of the TPIV and points to potential large-area applications to be achieved via further control of SOI in nanostructures.

2. Methods

2.1 Experimental procedure

A schematic of the sample optical setup is shown in Fig. 1(a). The nanovoid sample is illuminated with a tunable optical parametric oscillator that is pumped with a frequency-tripled Q-switched Nd:YAG laser. The pulses are 4.5 ns in duration and have a repetition rate of 10 Hz. The peak laser intensities used to illuminate the sample varied nearly linearly from 1.93 MW/cm2 at 520-nm to 0.84 MW/cm2 at 560-nm. The DC voltages are detected and measured in a direction perpendicular to the plane of incidence with an oscilloscope. A Faraday cage shields the sample and any exposed wires from ambient electromagnetic signals.

 figure: Fig. 1

Fig. 1 (a) Schematic of the sample setup, where the angle of incidence, θAOI, in X-Z plane. The sample area is 3 mm in the x-direction, and 14 mm the y-direction, transverse to the plane of incidence. The voltage is measured along the y–axis of the sample. (b) Schematic drawing of the nanovoid surface. (c) SEM and (d) AFM images of the nanovoids. The nanovoids have a median depth of 90 nm, a corresponding rim diameter of 430 nm, and a lattice constant of 600 nm

Download Full Size | PPT Slide | PDF

The sample, a self-assembled nanovoid plasmonic crystal, is a textured gold film with truncated spherical voids in a 2D FCC lattice [31]. The surface is fabricated as follows: an initial gold film is deposited via physical vapor deposition on a glass substrate with a nominal3-nm titanium wetting layer. A monolayer of close-packed 600-nm diameter polystyrene (PS) spheres is self-assembled on the gold film via the process of convective assembly [32]. The film is then placed in a gold-plating bath where gold is electro-deposited between the PS spheres. Finally, the PS spheres are dissolved from the substrate with tetrahydrofuran [Fig. 1(b)]. The height of the gold that is deposited around each sphere, i.e. the depth of the nanovoid, is controlled by the total electrical current that passes through the electrodeposition bath. The depth of the nanovoids are moderately homogeneous and range from 75 nm to 105 nm across the sample. This variation in the deposition thickness is the primary source of sample inhomogeneity; the median nanovoid depth of 90 nm is integrated into the numerical calculations of the TPIV [Sec. 2.2].

In order to measure the largest voltage with minimal damage to the samples, we illuminate the samples with an elliptical beam. The generated TPIV is independent of the width of the beam in the x-direction (the x-direction width is proportional to the generated photo-induced current) and the TPIV is proportional to the length of the beam in the y-direction. In our setup, the incident Gaussian beam is collimated to an elliptical profile with a FWHM at the sample location of 4 mm and 14 mm in the x and y-directions, respectively. The active sample area is electrically isolated from the remaining area and has a cross-section of 3 mm in the x-direction and a width of 15 mm between the two electrodes in the y-direction.

2.2 Numerical model

The voltages on our nanovoid structure are numerically-computed with COMSOL Multiphysics finite-element analysis software with the post processing analytic tools. We compute the photo-induced voltages on the plasmonic crystal surface with the dipole approximation [15] as a perturbative, nonlinear Lorentz force. The model describes the motion of the conduction electrons through near-field interactions with the incident electromagnetic field [2]. Its time-averaged relation to the complex amplitude of the electric field E is [11,13,15]:

F=αR4|E|2+αI2Im{Ej*Ej},
where αR and αI are the frequency-dependent real and imaginary parts of the material polarizability, α, which depends on the damping constant γ [13] that is determined from the electronic relaxation time of [33]. Equation (1) is a reasonable approximation, since intensity-dependent changes in the refractive index associated with the surface plasmon behavior are small and do not appreciably affect the fundamental behavior of E [34].

In Eq. (1), the first term is referred to as the gradient force (GF) while the second term is known as the scattering force (SF) [15]. The SF strongly depends on polarization whereas the GF scales with|E|2and is generally considered to be polarization-independent. Nevertheless, the GF is sensitive to the incident polarization in the presence of SOI [35] and predominantly contributes to the production of the TPIV.

We calculate the voltages produced across the plasmonic crystal sample with numerical simulations of an individual nanovoid unit cell. The refractive index for glass is 1.5 and the optical constants of gold are obtained from Johnson and Christy [33]. Adjacent nanovoids or unit cells in the y-direction are treated as an assemblage of batteries in series [12,15]: the cumulative TPIV is a product of the average voltage across a single unit cell with the number of unit cells in the transverse y-direction of the illuminated area:

TPIV=1e*1VolFy(r) dr* L,
where e is the charge of an electron, Vol is the volume of gold in the unit cell, and L is the length of the incident beam in the y-direction. The combination of Eq. (1) and Eq. (2) provides a numerical approximation of the TPIV associated with CPL incident on the nanovoid film.

3. Results and discussion

Figure 2(a) shows experimentally-measured reflectivity data for CPL at wavelengths of 450 nm to 650 nm where the numerically-calculated dispersion curves for the SPP mode are overlaid. In this report, we focus our investigation on the SPP mode that occurs between 500 nm and 600 nm for CPL, indicated by the reflectance dip in Fig. 2(a). The spectral properties of this SPP mode are independent of the incident CPL polarization handedness. The theoretical TM and TE dispersion curves for the nanovoid samples have been investigated thoroughly in [36].

 figure: Fig. 2

Fig. 2 a) Experimentally-measured reflection spectra of CPL from nanovoid sample. The dashed line and shaded area show the SPP dispersion from numerical simulations corresponding to a nanovoid depth of 90 ± 15 nm. The boxed area represents the spectral and angular region where the TPIV is measured. (b) Contour plots of the numerically calculated (i & iii) experimentally measured (ii & iv) TPIV for RCP (i & ii) and LCP (iii & iv). The dashed line in each plot represents the spectral location of the peak TPIV in the numerical calculations.

Download Full Size | PPT Slide | PDF

The depth of the individual nanovoid affects the spectral response of the SPP mode: as the nanovoid depth increases (decreases), the SPP mode blue-shifts (red-shifts) as shown in the shaded region [Fig. 2(a)]. Variations in the nanovoid depth across individual samples are evident in AFM and SEM images and lead to a broadened SPP mode at higher θAOI and manifests, partially, as a less-pronounced absorption mode at higher θAOI. We attribute the overall red-shift of the SPP mode to incomplete removal of the PS spheres. Simulations indicate that a 15-nm layer of PS inside the nanovoid corresponds with a 10-nm red shift of the plasmon mode, which is not considered further in this study.

All voltage measurements and calculations in this investigation are normalized to an intensity of 1 MW/cm2 and a length L = 7 mm in the y-direction. Our numerical calculations are in quantitative agreement with experimentally measured voltages. At oblique θAOI, right-circular polarizations (RCP) and left-circular polarizations (LCP) produce voltages of opposite signs. In contrast, TM and TE (not shown) linearly-polarized light both produce substantially-reduced TPIVs [Fig. 3(a)]. At normal θAOI, the measured TPIV for all light polarizations is below the noise floor of the experiment. Furthermore, no TPIV is detected on a control sample made of a smooth gold film.

 figure: Fig. 3

Fig. 3 (a) Experimental (data points) and numerically calculated (solid lines) TPIV. (b) The GF (solid line) and SF (dashed line) contributions to the TPIV for both LCP (blue) and RCP (red). All data is taken at a θAOI of 30°.

Download Full Size | PPT Slide | PDF

The experimental TPIV spectral response is broader than that calculated numerically [Fig. 2(b)]and is attributed to the spectrally-enlarged SPP mode associated with sample variations of the nanovoid depth, as described above. The shot-to-shot peak-power variations from the laser source are more pronounced at longer wavelengths and result in larger signal-to-noise ratios at longer wavelengths. We believe that the higher noise levels are the primary reason for any non-mirror symmetry observed between RCP and LCP TPIVs at wavelengths above 550nm [Figs. 2(b)-(ii) & (iv)].

A curious feature of the CPL TPIV is an enhancement of the TPIVs at increasing θAOI to 33°, where the TPIV starts to saturate [Fig. 2(b)]. The saturation of the TPIV occurs even though the influence of the SPP mode on the reflectivity appears to decrease [Fig. 2(a)]. The spectral proximity of the SPP mode and an interband d-to-sp electronic transition provides a good explanation for the experimental trends: in the vicinity of the interband transition, the SPP mode will experience an increased number of scattering events and lead to a higher rate of both radiative and non-radiative decay for the SPP mode [37]. The TPIV increases with a higher degree of momentum transfer via SPP-electron scattering, which increases as the SPP mode blue-shifts towards the interband electronic transition. Correspondingly, the observed relative absorption by the SPP mode decreases [Fig. 2(a)] due to higher radiative out-coupling, i.e., radiative decay [37]. Our observations support the conjecture that the magnitude of the TPIV is related to the spectral separation of the SPP mode and the interband transition [15]. Scattering via sharp absorption and intensity gradients underline the SOI and are intrinsic to the production of the TPIV, which is explained further in Sec. 4.

We calculate that the GF is nearly two orders of magnitude larger than the SF and dominates in the contribution of the Lorentz force [Fig. 3(b)]. The large net GF is attributed to the asymmetric hotspot that arises on each nanovoid when illuminated with CPL [Fig. 4]. The hotspot shifts in location when illuminated with the opposite-handed CPL and its asymmetric position flips with the polarity of the TPIV.We illustrate the electric-field amplitude on the surface of the nanovoid structure in Fig. 4. The inset plots of Fig. 4 show the magnitude and direction of the time-averaged forces experienced by the electrons in the plane of the plasmonic surface. The magnitude of the Lorentz force is greatest at the nanovoid rim where there is strong field localization due to edge effects [19]. Sharp discontinuities iny|E|2at the nanovoid edge are essential to the production of a net, non-zero gradient force in the periodic structure [15,38]; without discontinuities, the net accumulated force and voltage would be zero. These field discontinuities are produced by surface charges; the TPIV, generated via the GF, is accompanied by the presence of plasmons at the nanovoid edges.

 figure: Fig. 4

Fig. 4 (a & b) Contour plot of the E-field normal to the surface of a unit cell with lattice constant of 600 nm when illuminated with (a) LCP and (b) RCP near the plasmon resonance (538 nm) for an θAOI of 30°. The inset plots are the corresponding contour plots of the light-induced forces produced on the surface of a nanovoid unit cell. The arrows indicate the direction and logarithmic-scaled magnitude of the local net force produced at the base of the arrow on a positive test charge. (c & d) The normalized z-component of field intensity along the rim of a circular aperture according to Eq. (3) (red) and numerically calculated (black) for (c) LCP and (d) RCP. The azimuthal angle represents the angular position around the rim of each structure starting from the x-axis, which is in the plane of illumination.

Download Full Size | PPT Slide | PDF

4. Analysis

We explicitly outline the role of SOI in the creation of the polarization-dependent, chiral hot spots that lead to the TPIV via the GF. In general, the signature of a SOI is a change in energy flow or momentum exchange that shifts with orthogonal circular-polarization handedness [39–43]. In prior analyses, the shift has been quantified by the longitudinal component of the electric field that influences the light propagation dynamics [39,41]. Here, we demonstrate SOI in the interference pattern produced by scattered and incident electric fields on the nanostructure. We show that absorption from a non-radially-symmetric, sub-wavelength-structured surface alone leads to the SOI. Our simple approach evaluates the longitudinal-field components that arise via absorption and accurately predicts the numerically-calculated locations of the hotspots, which change with polarization handedness.

We consider a plane wave traveling in theξ–direction and an obstacle that imprints a profile of A(ρ,ϕ,ξ) eimlϕ onto the transverse field components. The total electric field around the vicinity of the obstacle is E±=Aσ^±eimlϕ+ Δ±e^ξ where σ^± is the unit vector associated with ± -handed CPL, ml is the topological charge associated with the intrinsic OAM imparted by the obstacle, e^ξ is the unit vector in the ξ-direction, and from [41], the longitudinal-field Δ± is

Δ±=ξeik(ξξ)[ρA±(iϕmlρA)]dξei(ml±1)ϕ
where k is the wavenumber, andA=A(ρ,ϕ,ξ). The signature of the SOI resides in this longitudinal component of the electric field, which carries contributions from both SAM ±ρA and OAM (iϕmlρA), i.e., the radial and azimuthal changes in the transverse profile A [41]. Since Δ±generally scales inversely with k, SOI become significant when the obstacle varies on the length scale comparable to the wavelength of light [41]. Conventionally, SOI refers to the coupling between the SAM and intrinsic OAM of an azimuthally-symmetric profile (Aϕ=0) [41,43–45]. This SOI corresponds to a change in the magnitude |Δ± |that depends on the signs of the CPL handedness and topological charge ml, respectively.

The TPIV associated with the movement of the hotspots on an achiral structure represents a new case of SOI that can be significant even whenml=0. Here, the system geometry exhibits azimuthal asymmetry associated with extrinsic OAM or nonzero azimuthal gradientsRe[(ϕρA)] with spatial reference to the center of A. Extrinsic OAM couples to radial phase variations Im[ρA]. Here, the real azimuthal gradient corresponds to the elongated perspective of a circular absorbing aperture and imaginary terms of the radial gradient correspond to the phase differences at the aperture edges when light illuminates at non-normal θAOI.

We analyze the fields that are produced from obliquely-incident scattering of a round aperture in a perfectly-absorbing plane and emphasize the effect of the sharp circular edges of the nanovoids. The electric fields that are perpendicular to the aperture surface contain contributions of both transverse and longitudinal electric fields:

 Ep=cos( θAOI)Δ±+sin( θAOI) A,
where A is a Heaviside function:
A = H(ρ a(1+cos2(ϕ)tan2( θAOI))),
and where a is the radius of the aperture in the oblique plane defined byρcos(ϕ)=ξtan(θAOI).

The interference patterns produced by the incident and scattered fields with Eqs. (3-5) accurately predict the locations of the numerically-calculated time-averaged hotspots. In Fig. 4(c, d), we plot |Ep|2[Eq. (4)] around the rim of the metallic circular aperture at an θAOI of 30° with an aperture-radius/wavelength ratio of 215/538 (red). The numerically-calculated intensity around the nanovoid for the same θAOI is also shown (black), where non-symmetric numerical meshing yields slight deviations from perfect mirror symmetry between LCP and RCP. The |Ep|2 intensity patterns associated with opposite CPL handedness exhibit mirror symmetry along the plane of incidence.

The SOI from a single, perfectly-absorbing circular aperture predicts the essential features of the TPIV in the nanovoid plasmonic crystal. The simple relations that we introduce, Eq. (3) and Eq. (4), only assume that the profile A(ρ,ϕ,ξ) is produced by a perfect absorber, i.e., we neglect the contribution of reradiated fields and the interactions between nanovoids. In spite of approximations, the simple approach estimates the electric fields perpendicular to the surface and predicts the azimuthal location of the hotspots that shift with SOI. This simple analytical model may be generalized to understand the polarization-dependent hotspots and charge densities that occur in other subwavelength geometries.

5. Conclusion

In summary, we demonstrate predictive control of the conversion of visible-light SAM to DC electrical voltages with a large-area bottom-up-fabricated nanovoid plasmonic crystal. The transfer of SAM is expressed through the GF where asymmetric hotspots change in location with polarization handedness. The polarization-dependent hotspots on an achiral nanostructure represent a second class of electromagnetic SOI, where the radial changes in phase are coupled to the azimuthal changes in intensity.

Our bottom-up assembled nanovoid structures are not metasurfaces since the fabricated features are not significantly smaller than the illuminating wavelength; nonetheless, the sharp absorption at the edges of the nanovoids yield sub-wavelength-sized hotspots. Subsequently, our large-area nanovoid surface behaves like a metasurface whose properties are modulated at subwavelength dimensions by the polarization of light. The polarization-dependent hotspots associated with the TPIV may provide nanoscale spatial control of localized fields via the illuminating polarization of light and be of value in selective molecular sensing devices [46–48]. Understanding of the photo-induced voltages may provide nanoscale spatial control of plasmon-mediated chemical reactions [49,50] and our principal observations of plasmonic photovoltaic behavior are relevant to light-harvesting applications [9,17,49,51].

Further advances of our understanding of photo-induced voltages in plasmonic crystals may lead to the design of novel detectors that achieve significant advantages over common semiconductor technology, for several reasons. Firstly, the response time of the plasmon-induced voltages are extremely fast—dependent on the decay time of the SPP, which is on the order of tens of femtoseconds [21]. Secondly, the plasmonic spectral absorption and dispersion of a material can be designed and tailored. The measurable differences in light SAM that are demonstrated here provide a path towards the realization of effective spin-polarized detectors [13,18,23,52].

Acknowledgments

We gratefully acknowledge Ronald Koder for the use of his facilities and equipment and to Yun Yu and Michael Mirkin for the AFM images of our samples. This work was financially supported by the National Science Foundation (NSF) (DMR-1410249, DMR-1151783).

References and links

1. S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988). [CrossRef]   [PubMed]  

2. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973). [CrossRef]  

3. J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000). [CrossRef]  

4. A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014). [CrossRef]  

5. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013). [CrossRef]   [PubMed]  

6. M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014). [CrossRef]  

7. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011). [CrossRef]   [PubMed]  

8. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014). [CrossRef]   [PubMed]  

9. S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014). [CrossRef]   [PubMed]  

10. W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013). [CrossRef]  

11. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009). [CrossRef]   [PubMed]  

12. N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013). [CrossRef]  

13. T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009). [CrossRef]   [PubMed]  

14. M. Akbari, M. Onoda, and T. Ishihara, “Photo-induced voltage in nano-porous gold thin film,” Opt. Express 23(2), 823–832 (2015). [CrossRef]   [PubMed]  

15. H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20(2), 1561–1574 (2012). [CrossRef]   [PubMed]  

16. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011). [CrossRef]   [PubMed]  

17. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011). [CrossRef]   [PubMed]  

18. Q. Bai, “Manipulating photoinduced voltage in metasurface with circularly polarized light,” Opt. Express 23(4), 5348–5356 (2015). [CrossRef]   [PubMed]  

19. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005). [CrossRef]   [PubMed]  

20. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]  

21. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005). [CrossRef]  

22. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011). [CrossRef]  

23. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010). [CrossRef]   [PubMed]  

24. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004). [CrossRef]   [PubMed]  

25. A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860 (2015). [CrossRef]  

26. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013). [CrossRef]   [PubMed]  

27. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005). [CrossRef]   [PubMed]  

28. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015). [CrossRef]  

29. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef]   [PubMed]  

30. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015). [CrossRef]  

31. P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004). [CrossRef]   [PubMed]  

32. M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005). [CrossRef]  

33. P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

34. M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014). [CrossRef]   [PubMed]  

35. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006). [CrossRef]   [PubMed]  

36. T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006). [CrossRef]  

37. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).

38. H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37(14), 2793–2795 (2012). [CrossRef]   [PubMed]  

39. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011). [CrossRef]   [PubMed]  

40. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992). [CrossRef]   [PubMed]  

41. L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010). [CrossRef]   [PubMed]  

42. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009). [CrossRef]   [PubMed]  

43. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012). [CrossRef]  

44. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008). [CrossRef]   [PubMed]  

45. A. Leksanyan and E. Brasselet, “Spin – orbit photonic interaction engineering of Bessel beams,” Optica 3, 167 (2016).

46. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010). [CrossRef]  

47. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005). [CrossRef]  

48. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006). [CrossRef]   [PubMed]  

49. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011). [CrossRef]   [PubMed]  

50. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012). [CrossRef]   [PubMed]  

51. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015). [CrossRef]   [PubMed]  

52. J. P. Balthasar Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
    [Crossref] [PubMed]
  2. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
    [Crossref]
  3. J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
    [Crossref]
  4. A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
    [Crossref]
  5. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
    [Crossref] [PubMed]
  6. M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
    [Crossref]
  7. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
    [Crossref] [PubMed]
  8. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
    [Crossref] [PubMed]
  9. S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
    [Crossref] [PubMed]
  10. W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
    [Crossref]
  11. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
    [Crossref] [PubMed]
  12. N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
    [Crossref]
  13. T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
    [Crossref] [PubMed]
  14. M. Akbari, M. Onoda, and T. Ishihara, “Photo-induced voltage in nano-porous gold thin film,” Opt. Express 23(2), 823–832 (2015).
    [Crossref] [PubMed]
  15. H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20(2), 1561–1574 (2012).
    [Crossref] [PubMed]
  16. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  17. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  18. Q. Bai, “Manipulating photoinduced voltage in metasurface with circularly polarized light,” Opt. Express 23(4), 5348–5356 (2015).
    [Crossref] [PubMed]
  19. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
    [Crossref] [PubMed]
  20. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  21. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
    [Crossref]
  22. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
    [Crossref]
  23. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
    [Crossref] [PubMed]
  24. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  25. A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860 (2015).
    [Crossref]
  26. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  27. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
    [Crossref] [PubMed]
  28. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
    [Crossref]
  29. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  30. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  31. P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
    [Crossref] [PubMed]
  32. M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
    [Crossref]
  33. P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
    [Crossref] [PubMed]
  35. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  36. T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
    [Crossref]
  37. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).
  38. H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37(14), 2793–2795 (2012).
    [Crossref] [PubMed]
  39. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
    [Crossref] [PubMed]
  40. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
    [Crossref] [PubMed]
  41. L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
    [Crossref] [PubMed]
  42. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [Crossref] [PubMed]
  43. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
    [Crossref]
  44. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  45. A. Leksanyan and E. Brasselet, “Spin – orbit photonic interaction engineering of Bessel beams,” Optica 3, 167 (2016).
  46. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
    [Crossref]
  47. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
    [Crossref]
  48. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [Crossref] [PubMed]
  49. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref] [PubMed]
  50. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
    [Crossref] [PubMed]
  51. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  52. J. P. Balthasar Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
    [Crossref]

2016 (2)

2015 (6)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

M. Akbari, M. Onoda, and T. Ishihara, “Photo-induced voltage in nano-porous gold thin film,” Opt. Express 23(2), 823–832 (2015).
[Crossref] [PubMed]

Q. Bai, “Manipulating photoinduced voltage in metasurface with circularly polarized light,” Opt. Express 23(4), 5348–5356 (2015).
[Crossref] [PubMed]

A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, “Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy,” Optica 2(10), 860 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

2014 (5)

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

2013 (4)

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

2012 (4)

H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20(2), 1561–1574 (2012).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37(14), 2793–2795 (2012).
[Crossref] [PubMed]

2011 (6)

N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
[Crossref] [PubMed]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

2010 (3)

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

2009 (3)

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2006 (3)

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[Crossref] [PubMed]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

2005 (6)

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

2004 (2)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

2000 (1)

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

1992 (1)

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

1988 (1)

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Adam, A. J.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Aiello, A.

Akbari, M.

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Atwater, H. A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Bai, Q.

Balthasar Mueller, J. P.

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Bartlett, P.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Baumberg, J.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Baumberg, J. J.

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Bezares, F. J.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Boardman, A. D.

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

Brasselet, E.

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Brinsteiner, C.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Brok, J. M.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Brown, A. M.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Capasso, F.

Charlton, M. D. B.

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Christry, R. W.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cintra, S.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Cole, R.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Coyle, S.

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Cronin, S. B.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Domínguez-Juárez, J. L.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Dooghin, A. V.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Durach, M.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Eroms, J.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Fehrenbacher, M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Fernandez-Corbaton, I.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Ganichev, S. D.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Gippius, N. A.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Glazov, M. M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Goff, J. E.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Hatano, T.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Hermosa, N.

Hou, W.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Ikeda, N.

Im, S. H.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Ishihara, T.

Ivchenko, E. L.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Ji, X.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karch, J.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Kelf, T.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Kildishev, A.

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Kim, M. H.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kubatkin, S.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Kundikova, N. D.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Kurosawa, H.

Kusin, B.

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

Lara-Avila, S.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Lee, J.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Lee, W. R.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Leksanyan, A.

Leosson, K.

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Liberman, V. S.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Liu, J.

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Luryi, S.

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Mahajan, S.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Mahnkopf, S.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Molina-Terriza, G.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Moocarme, M.

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Moskovits, M.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Mubeen, S.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Murakoshi, K.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nabika, H.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagasawa, F.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Netti, C. M.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Noginova, N.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Nugrowati, A. M.

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Ochiai, M.

Olbrich, P.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Onoda, M.

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Park, O. O.

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Pelton, M.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Perney, N. M. B.

Planken, P. C. M.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Polman, A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Rono, V.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Rusina, A.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Russell, A.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Russell, A. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Schaich, W. L.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

Scherer, N. F.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Schmalzbauer, M.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Shalaev, V.

Shaltout, A.

Sheldon, M. T.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Singh, N.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Stockman, M. I.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

Stucky, G. D.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Sugawara, Y.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Sugimoto, Y.

Takase, M.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Tarasenko, S. A.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Tikhodeev, S. G.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

Tsuya, D.

Urbach, H. P.

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

van de Groep, J.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

Vigderman, L.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Vuong, L. T.

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Weiss, D.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Woerdman, J. P.

Wurstbauer, U.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Xu, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Yakimova, R.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

Zel’dovich, B. Y.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zoorob, M. E.

Zoth, C.

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

Zubarev, E. R.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

ACS Nano (2)

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly,” Adv. Funct. Mater. 15(8), 1329–1335 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87(9), 091118 (2005).
[Crossref]

Electrochem. Commun. (1)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Faraday Discuss. (1)

P. N. Bartlett, J. J. Baumberg, S. Coyle, and M. E. Abdelsalam, “Optical properties of nanostructured metal films,” Faraday Discuss. 125, 117–132, discussion 195–219 (2004).
[Crossref] [PubMed]

Handb. Surf. Sci. (1)

A. D. Boardman and A. V. Zayats, “Nonlinear plasmonics,” Handb. Surf. Sci. 4, 329–347 (2014).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Phys. Chem. Lett. (1)

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward plasmon-induced photoexcitation of molecules,” J. Phys. Chem. Lett. 1(16), 2470–2487 (2010).
[Crossref]

Nano Lett. (5)

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

New J. Phys. (1)

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

M. Moocarme, B. Kusin, and L. T. Vuong, “Plasmon-induced Lorentz forces of nanowire chiral hybrid modes,” Opt. Mater. Express 4(11), 645–648 (2014).
[Crossref]

Optica (3)

Phys. Rep. (1)

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

Phys. Rev. A (3)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8(1), 14–21 (1973).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
[Crossref] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86(4), 1–14 (2012).
[Crossref]

Phys. Rev. B (4)

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61(15), 10471–10477 (2000).
[Crossref]

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84(3), 035447 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Luryi and S. Luryi, “Theory of the photon-drag effect in a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 38(1), 87–96 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (10)

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103(10), 103906 (2009).
[Crossref] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103(18), 186801 (2009).
[Crossref] [PubMed]

J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Dynamic Hall effect driven by circularly polarized light in a graphene layer,” Phys. Rev. Lett. 105(22), 227402 (2010).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

L. T. Vuong, A. J. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104(8), 083903 (2010).
[Crossref] [PubMed]

Science (3)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics: Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the sample setup, where the angle of incidence, θAOI, in X-Z plane. The sample area is 3 mm in the x-direction, and 14 mm the y-direction, transverse to the plane of incidence. The voltage is measured along the y–axis of the sample. (b) Schematic drawing of the nanovoid surface. (c) SEM and (d) AFM images of the nanovoids. The nanovoids have a median depth of 90 nm, a corresponding rim diameter of 430 nm, and a lattice constant of 600 nm
Fig. 2
Fig. 2 a) Experimentally-measured reflection spectra of CPL from nanovoid sample. The dashed line and shaded area show the SPP dispersion from numerical simulations corresponding to a nanovoid depth of 90 ± 15 nm. The boxed area represents the spectral and angular region where the TPIV is measured. (b) Contour plots of the numerically calculated (i & iii) experimentally measured (ii & iv) TPIV for RCP (i & ii) and LCP (iii & iv). The dashed line in each plot represents the spectral location of the peak TPIV in the numerical calculations.
Fig. 3
Fig. 3 (a) Experimental (data points) and numerically calculated (solid lines) TPIV. (b) The GF (solid line) and SF (dashed line) contributions to the TPIV for both LCP (blue) and RCP (red). All data is taken at a θAOI of 30°.
Fig. 4
Fig. 4 (a & b) Contour plot of the E-field normal to the surface of a unit cell with lattice constant of 600 nm when illuminated with (a) LCP and (b) RCP near the plasmon resonance (538 nm) for an θAOI of 30°. The inset plots are the corresponding contour plots of the light-induced forces produced on the surface of a nanovoid unit cell. The arrows indicate the direction and logarithmic-scaled magnitude of the local net force produced at the base of the arrow on a positive test charge. (c & d) The normalized z-component of field intensity along the rim of a circular aperture according to Eq. (3) (red) and numerically calculated (black) for (c) LCP and (d) RCP. The azimuthal angle represents the angular position around the rim of each structure starting from the x-axis, which is in the plane of illumination.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= α R 4 | E | 2 + α I 2 Im{ E j * E j },
TPIV= 1 e * 1 Vol F y ( r ) dr* L,
Δ ± = ξ e ik( ξ ξ ) [ ρ A ±( i ϕ m l ρ A ) ]d ξ e i( m l ±1 )ϕ
  E p =cos(   θ AOI ) Δ ± +sin(   θ AOI ) A,
A = H( ρ  a (1+ cos 2 ( ϕ ) tan 2 (   θ AOI )) ),

Metrics