Abstract

Compared to rare-earth doped glasses, bismuth-doped glasses hold promise for super-broadband near-infrared (NIR) photoemission and potential applications in optical amplification. However, optically active bismuth centers are extremely sensitive to the properties of the surrounding matrix, and also to processing conditions. This is strongly complicating the exploitation of this class of materials, because functional devices require a very delicate adjustment of the redox state of the bismuth species, and its distribution throughout the bulk of the material. It also largely limits some of the conventional processing routes for glass fiber, which start from gas phase deposition and may require very high processing temperature. Here, we investigate the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from melt-derived germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, however, alkali addition also leads to increasing mean-field basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity.

© 2015 Optical Society of America

1. Introduction

Bismuth-doped glasses have been receiving much attention in the last decade due to their broadband near-infrared (NIR) emission and potential application as the next-generation ultra-broadband optical amplifier [1–21]. There are still very high expectations to this emerging material because of the NIR emission bandwidth which can reach more than 500 nm, spanning the 1000~1600 nm region. This specific spectral feature is not very likely to be met with traditional rare earth ion-doped fiber amplifiers. Significant progress has consequently been made in the field of Bi-doped glasses, and diverse materials with strong NIR emission were discovered and sometimes exploited in fiber laser devices [22–26]. However, the preparation method of actual bismuth-doped optical fibers is presently restricted to gas-phase deposition of a silica-based precursor materials, e.g., through modified chemical vapor deposition (MCVD). This technique puts a strong limit onto the versatility and variability of useable matrix glass compositions. Hence, the broad range of interesting bismuth-doped glass candidates cannot be exploited in this way. Another even more serious problem is that the silica-based fiber has to be drawn at temperatures which typically exceed 1800 °C. Such high temperature treatment unavoidably leads to the depletion of bismuth active centers due to bismuth volatility, which results in a lower residual dopant concentration and in a concentration gradient across the fiber diameter. Alternative, more simple optical fiber preparation methods exist, such as the rod-in-tube method, but these have as-to-yet not been harnessed in the context of bismuth-doped glass fiber, assumedly because the NIR emission characteristics of bismuth-doped glasses are extremely sensitive to composition and conditions of processing [8, 10, 27–34]. In particular, for laser-quality, extremely homogeneous glass composition must be achieved, both in terms of refractive index homogeneity and in terms of homogeneous bismuth distribution and redox state.

In glass fabrication, a straightforward way to improve sample homogeneity is to prolong the glass melting time. However, such prolongation of the melting time inevitably affects the redox state and distribution of the bismuth species [35] and may hence reverse the delicate tailoring of the NIR-active emission species which is necessary for broadband emission. In addition, it also causes enhanced bismuth volatilization. In this regard, here, we study the influence of the glass melting time on the bismuth-related NIR emission properties and on sample homogeneity. As it is highly desirable to conduct sample homogenization at lower temperature and/or lower time, we further study the influence of alkali fluxing agents to lower the melting temperature in bismuth-doped germanate glasses.

2. Experimental procedure

Previous work has shown that NIR emission from bismuth doped germanate glasses can be notably enhanced through the addition of Al2O3, Ga2O3 or Ta2O5, where the largest emission bandwidth is reached in the presence of Ta2O5 [2, 36, 37]. Here, we therefore consider two series of glasses with molar compositions of (85-x)GeO2-10Ta2O5-5Li2O-xBi2O3 (x = 0.1, 0.5, 1, 2, 3, 5) and (93.5-y)GeO2-6Ta2O5-0.5Bi2O3-yM (M = Li2O, Na2O, K2O; y = 0, 5, 10, 15, 20). Those were initially prepared by conventional melting and quenching from a batch of raw materials. In the following, the former samples are referred to as GTLxB (in which x represents the Bi2O3 concentration) and GTByM (in which y represents the alkali concentration and M the alkali species L, N, or K which stand for Li2O, Na2O, or K2O). Analytical grade reagents Bi2O3, Li2CO3, Na2CO3, K2CO3, GeO2 and Ta2O5 were used as raw materials, from which nominal batches of 20 g were prepared, mixed in an agate mortar and melted in corundum crucibles at 1540°C in air. The GTByM samples were melted for 20 min, the GTLxB samples were fined for varying times between 20 and 240 min. After fining, the melt was poured onto a stainless steel plate at room temperature. The thus-obtained glass samples were then cut and polished for optical measurements.

Optical absorption spectra of the samples were obtained on a PerkinElmer Lambda-900 UV/Vis/NIR spectrophotometer. NIR luminescence spectra were taken on a Jobin-Yvon Triax 320 spectrometer equipped with a PbSe photodetector, except for the analyses of the position of emission band maxima which were done on a zolix Omni λ3007 spectrometer equipped with an AsGaIn photodetector and a SR830 Stanford Research lock-in amplifier. An 808 nm GaAlAs semiconductor laser diode (LD) was used as the excitation source. Chemical analyses on line-scans were performed with through wavelength-dispersive X-ray fluorescence spectroscopy (WDX) on an electron probe microanalyzer (EPMA-1600, Shimadzu). Raman spectra were measured on a Renishaw inVia, using the 532 nm line of a frequency doubled Nd:YAG at an output power of ~25 mW for excitation. All measurements were performed at room temperature.

3. Results and discussion

Figure 1 shows absorption spectra of GTL1B samples as a function of melting time. Two main absorption bands can be observed, centered at about 510 nm and 710 nm, with two weaker absorption bands at about 800 nm and 1000 nm. Compared to the sample melted for only 20 min, the samples melted for longer times typically exhibit lower total absorption. As the melting time increases, the absorption edges blue-shift. Insets (a) and (b) in Fig. 1 show the intensity-normalized absorption bands at 510 nm and 710 nm, respectively. Here, it is obvious that the 510 nm absorption band slightly shifts towards longer wavelength, while the position of the 710 nm absorption band remains unaffected. The photographs in Fig. 1 show exemplary samples, melted for 20, 100, 160, 240 min, respectively. As is clearly seen, prolonging the melting time does improve the apparent glass homogeneity. For example, the sample melted for only 20 min contains residual bubbles, which disappear when the melting time increases to beyond 100 min. More importantly, one can also see pronounced stria and streaks in coloration, which represent variations in the redox ratio and distribution of bismuth species. With further increasing the melting time, also these streaks gradually disappear, until for melting at 240 min, a visually homogeneous, pink glass is obtained.

 figure: Fig. 1

Fig. 1 Absorption spectra of samples GTL1B melted for different times (labels). Inset (a) and (b) are intensity-normalized absorption spectra from 465 to 565 nm and from 650 to 750 nm, respectively. The right photographs are samples GTL1B melted for 20, 100, 160, 240 min, respectively.

Download Full Size | PPT Slide | PDF

Figure 2(a) shows emission spectra of GTL1B samples, again as a function of melting time, upon 808 nm excitation. For more clearly observing emission peak moving of different samples, normalized spectra for 20 and 240 min melting are shown in Fig. 2(b), which is obtained through dividing raw emission intensity values by the emission intensity peak value. All samples exhibit the typical broadband emission which covers the spectral range of 1000 to 1600 nm, with a maximum at about 1250 nm. With prolonged melting time, the emission intensity initially increases (up until melting for 140 min) and then decreases. In Fig. 2(b), blueshift of the emission band maximum is visible (i.e., from 1262 to 1250 nm) with increasing melting time. We expect two underlying effects for these initial observations: on the one hand, the increased melting time improves sample homogeneity through convective and diffusive mixing. On the other hand, volatilization leads to a gradual decrease of the overall bismuth concentration, leading to a reduction of the NIR emission intensity. We assume that the latter effect dominates the spectral observations. Indeed, it has been shown that bismuth related NIR emission in germanate glasses exhibits a maximum as a function of bismuth concentration at around 0.5 mol% [30]. Since in GTL1B, the bismuth concentration is larger than this value, the emission intensity is expected to grow to this maximum during volatilization until the optimal concentration is reached. Clearly, volatilization must hence be controlled for tailoring the NIR emission properties of such glasses. To this end, one can reduce either the melting time or lower the melting temperature of the bismuth-doped glass. As for the latter option, we therefore introduced alkali fluxing agents as the most straightforward way to reduce melt viscosity and to hence lower the temperature of melting and fining.

 figure: Fig. 2

Fig. 2 (a) Emission spectra of samples GTL1B melted for different times (labels) upon the excitation of the 808nm LD; (b) Emission spectra of samples melted for 20 and 240 min, respectively, the intensities of which are normalized to reveal the peak shift along melting time.

Download Full Size | PPT Slide | PDF

Figure 3(a) shows absorption spectra of samples GTByL. In Fig. 3(b) the corresponding absorption spectra are shown for samples GTB0L and GTB10M (M = L, N, K). Two main absorption bands are observed with maxima at about 500 nm and 710 nm. Another two weaker absorption bands occur at about 800 nm and 1000 nm, similar to the characteristic bismuth-related absorption bands which have previously been observed in various germanate glasses [36–38]. We can see from Fig. 3(a) that with increasing Li2O concentration, the absorption bands gradually disappear. Likewise, the same trend can be observed when increasing the Na2O or K2O concentration (not shown). As seen in Fig. 3(b), increasing the alkali cation radius also reduces the bismuth-related absorption intensity. This is highlighted in Fig. 4, which shows photographs of samples GTByM. Obviously, the sample color changes from reddish to yellowish brown upon adding alkali oxides to the glass. Furthermore, as the alkali oxide concentration increases, the glass samples become more and more inhomogeneous in terms of lateral color variations. This effect appears more pronounced for larger the ionic radius of the respective alkali species.

 figure: Fig. 3

Fig. 3 Absorption spectra of samples (a) GTByL (y = 0, 5, 10, 15, 20) and (b) GTB10M (M = L, N, K).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Photographs of samples GTByM (M = L, y = 0, 5, 10, 15; M = N, y = 5, 10, 15; M = K, y = 5, 10.). The alkali oxide concentration in each sample increases from left to right, the alkali ionic radius increases from top to bottom. The lower right corner photograph shows the reference sample without alkali doping.

Download Full Size | PPT Slide | PDF

Figure 5 shows WDS linear scanning spectra of sample GTB10K, crossing an inhomogeneous color transition zone from yellowish brown to black. Obviously, there are pronounced micrometric heterogeneities in the black zone, assumedly triggered by the presence of potassium, with some distinct regions which are richer in potassium and apparently depleted in germanium. However, no such variations are found which would correlate with the apparent variations in color. This indicates that the differences in bismuth coloration are not dominated by compositional variations, at least within the accuracy of the employed WDX equipment.

 figure: Fig. 5

Fig. 5 WDS line-scanning spectra of sample GTB10K. The top show an optical photograph (left) and a back scattered-electron (BSE) image (right) of the same sample. The blue dotted line in the BSE image marks the scanning zone. The scans were taken along a visual color transition from yellowish brown to black, as indicated by the red separation line and the arrows in the top image.

Download Full Size | PPT Slide | PDF

Figure 6(a) shows the Raman spectra of sample GTK at different, random spots. Figure 6(b) shows corresponding Raman spectra of sample GTB10K, again at different spots, but across the region which is indicated between the green lines in the inset photograph of the sample, from left to right and crossing the yellowish-brown to black regions. In the Fig. 6(a), the dominant band at 492 cm−1 is assigned to the symmetric stretching vibration of Ge-O-Ge bridges in three-membered rings of [GeO4] tetrahedra [39]. The band at 918 cm−1 can be assigned to the asymmetric stretching vibration of the Ge(4)-O-Ge(4) bond (number in parentheses indicates the coordination number of germanium atom) which bridges two neighbored [GeO4] tetrahedra [40]. The band at 810 cm−1 represents symmetric stretching vibrations of Ge-O- bonds, and the broad feature at about 310 cm−1, together with the shoulder at 600 cm−1, is finally attributed to the vibrational modes of interconnected [GeO6] octahedra [39]. Raman spectra of sample GTK at different spots are identical within the present experimental resolution. By contrast, in the Fig. 6(b), Raman spectra of sample GTB10K at different spots exhibit pronounced differences. In the yellowish-brown region, Raman spectra are very similar to those of the bismuth-free sample of GTK. However, Raman spectra in the black region are pronouncedly different. In particular, two new Raman bands appear at about 67 and 92 cm−1 which can be assigned to the Eg and to the A1g first-order Raman modes of metallic bismuth [41–44]. Compared to the dominant band at 492 cm−1, the 423 cm−1 shoulder increases in relative intensity. As already noted, this shoulder is due to the symmetric stretching vibration of Ge-O-Ge bridges in six-membered rings of [GeO4] tetrahedra [39, 45, 46]. As a result, from the Raman spectra, the key difference between the yellowish brown area and the black area is that the latter contains bismuth metal, more six-membered rings at the expense of three-membered rings and less [GeO6] octahedra.

 figure: Fig. 6

Fig. 6 (a) Raman spectra of sample GTK at different random spots. The inset is the sample GTK photograph; (b) Raman spectra of sample GTB10K at different spots which distribute between the two dashed green lines, as shown in the inset, from right to left (Y1, Y2, Y3, Y4, B1, B2, B3, B4). Spots Y1, Y2, Y3, Y4 belong to the yellowish brown area and the others to the black area. The inset in Fig. 6(b) is the sample GTB10K photograph. The blue and green balls in the polyhedra beside the Raman peaks stand for germanium and oxygen, respectively.

Download Full Size | PPT Slide | PDF

The evolution of glass structure with alkali addition can now be deducted from the Raman data shown in Fig. 7. Figure 7(a) represents 200-900 cm−1 Raman spectra for GTByL samples with increasing Li2O concentration. As is clearly seen, the peak at 423 cm−1 is progressively overlain by the 492 cm−1 vibration when the content of Li+ cations increases. The same behavior can also be observed for increasing Na2O or K2O concentration. A similar trend is also observed when modifying the alkali cation radius at fixed composition as shown in Fig. 7(b): the larger the cation radius, the more intense the 492 cm−1 peak. All together, this indicates that with increasing alkali content, six-membered rings of [GeO4] are broken-up into smaller and, eventually, three-membered rings. Similarly, the incorporation of larger modifying (alkali) cations with higher coordination number also facilitates this reaction. Interestingly the visual inhomogeneity of the samples correlates-well with those structural variations. In the following, it will be shown that this finally holds also for the NIR emission characteristics.

 figure: Fig. 7

Fig. 7 (a) Raman spectra of samples GTByL (y = 0, 5, 10, 15, 20); (b) Raman spectra of samples GTB0L and GTB5M (M = L, N, K). The blue and green balls in the polyhedra beside the Raman peaks stand for germanium and oxygen, respectively.

Download Full Size | PPT Slide | PDF

Figure 8(a) shows emission spectra of samples GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10) upon 808 nm excitation. All samples exhibit broadband NIR emission covering the spectral region of 1000 to 1600 nm, with band maxima at about 1250 nm. Figure 8(b) shows the dependence of the emission intensity at the band maximum upon alkali oxide concentration. The emission intensity decreases with increasing alkali concentration. For a given alkali concentration, the emission intensity further decreases as the alkali cation radius increases. In order to rationalize this observation, we employ the concept of optical basicity which has been shown to be a semi-empiric but relevant tool for describing the redox distribution and, hence, bismuth-related NIR emission intensity. It was shown that the bismuth-related NIR emission decreases with increasing glass optical basicity [10, 47–49]. The values of Duffy’s optical basicities of the samples with different compositions were therefore evaluated and correlated to the observed emission properties.

 figure: Fig. 8

Fig. 8 (a) Emission spectra of sample GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.) upon 808 nm LD excitation; (b) Dependence of emission intensity on alkali oxide concentration.

Download Full Size | PPT Slide | PDF

Figure 9(a) shows the dependence of the formal optical basicity on alkali concentration. As the alkali concentration increases, the optical basicity monotonously increases, as well. The intensity of the bismuth-related NIR emission consequently decreases with increasing optical basicity as shown in Fig. 9(b), yet in a non-monotonous way. For different glass compositions with different alkali species, on the other hand, the bismuth-related NIR emission intensity does not continuously decrease with increasing glass basicity, but may also increase somewhat between changing alkali species. This behavior apparently contradicts previously published results [10, 47–49], but can readily be understood when considering the limitations of the concept of optical basicity. The calculation of optical basicity relies on summing-up the partial molar contributions of each component. These contributions are typically obtained through weighting changes in the absorption spectrum of the probing ion Pb2+ (caused by the acidity of the chemical environment in the considered matrix material) relative to the Ca2+ ion (which is set as the reference with a partial molar basicity of 1.0). This approach represents a mean-field approximation which does not take into account local variations in the ligand acidity. Hence, it often breaks down in the description of changes in localized phenomena, such as may be caused by selective species precipitation as a function of local ionic field strength. In the following, we therefore refer to the optical basicity as mean-field basicity.

 figure: Fig. 9

Fig. 9 (a) Dependence of optical basicity on alkali oxide concentration in samples GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.); (b) Emission intensity upon 808 nm excitation as a function of each sample’s optical basicity.

Download Full Size | PPT Slide | PDF

Alkali ions do not only affect the intensity of bismuth-related NIR emission, but also the position of the band maximum, although rather weakly. Figures 10(a) and 10(b) show the evolution of the wavelength of maximum emission of samples GTByM as a function of alkali concentration and of the mean-field optical basicity, respectively. The observed trends are in very good agreement with the observations on emission intensity. This clearly confirms that besides mean-field basicity (which acts on redox distribution), local variations in field strength (which act on band position) is a secondary key factor in determining the emission features of these glasses.

 figure: Fig. 10

Fig. 10 (a) Dependence of emission wavelength on alkali oxide concentration in samples GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.); (b) Dependence of emission wavelength on 808 nm excitation on optical basicity.

Download Full Size | PPT Slide | PDF

The above results show that adding Li2O, compared to adding Na2O or K2O, is a good compromise between the efficiency of reducing the melting temperature and the avoidance of inherent modifications of the glass. Using Li2O as a fluxing agent enables improved glass homogeneity and is, hence, beneficial for ingredient uniformity and NIR emission intensity. Metallic inclusions of bismuth can be avoided in GTL5B, even for a nominal Bi2O3 concentration of above 5 mol.%, as shown in Fig. 11 on low-frequency Raman scattering data of GTLxB, where the characteristic bands of metallic Bi are absent at 67 and 92 cm−1.

 figure: Fig. 11

Fig. 11 Raman spectra of samples GTLxB (x = 0.1, 0.5, 1, 2, 3, 5) and GTB10K.

Download Full Size | PPT Slide | PDF

4. Conclusions

In summary, we investigated the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from GTLxB and GTByM germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, alkali addition also leads to increasing mean-field optical basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity.

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51322208, 51132004), Guangdong Natural Science Foundation for Distinguished Young Scholars (Grant No. S20120011380), the Department of Education of Guangdong Province (Grant No. 2013gjhz0001), Fok Ying Tong Education Foundation (Grant No. 132004), and Fundamental Research Funds for the Central Universities (Grant No. 2015ZP0004), and also by the German Science Foundation through grant no. WO 1220/2-2.

References and links

1. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]  

2. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef]   [PubMed]  

3. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25, 1380–1386 (2008).

4. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009). [CrossRef]  

5. K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012). [CrossRef]  

6. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007). [CrossRef]  

7. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011). [CrossRef]   [PubMed]  

8. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010). [CrossRef]  

9. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005). [CrossRef]   [PubMed]  

10. J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008). [CrossRef]   [PubMed]  

11. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express 20(7), 7212–7220 (2012). [CrossRef]   [PubMed]  

12. H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006). [CrossRef]  

13. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007). [CrossRef]  

14. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012). [CrossRef]   [PubMed]  

15. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012). [CrossRef]   [PubMed]  

16. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef]   [PubMed]  

17. N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012). [CrossRef]  

18. X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012). [CrossRef]   [PubMed]  

19. X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013). [CrossRef]  

20. Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013). [CrossRef]  

21. A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011). [CrossRef]  

22. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005). [CrossRef]  

23. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008). [CrossRef]  

24. A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012). [CrossRef]   [PubMed]  

25. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009). [CrossRef]  

26. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014). [CrossRef]  

27. N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012). [CrossRef]  

28. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011). [CrossRef]  

29. B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013). [CrossRef]  

30. Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014). [CrossRef]  

31. Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014). [CrossRef]  

32. B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011). [CrossRef]   [PubMed]  

33. X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012). [CrossRef]  

34. J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012). [CrossRef]   [PubMed]  

35. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009). [CrossRef]   [PubMed]  

36. M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005). [CrossRef]  

37. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef]   [PubMed]  

38. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater. 32, 368–373 (2009). [CrossRef]  

39. E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996). [CrossRef]  

40. L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007). [CrossRef]  

41. L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003). [CrossRef]  

42. L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005). [CrossRef]  

43. K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009). [CrossRef]  

44. S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002). [CrossRef]  

45. F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

46. P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990). [CrossRef]  

47. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008). [CrossRef]  

48. Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012). [CrossRef]  

49. G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
    [Crossref]
  2. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [Crossref] [PubMed]
  3. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25, 1380–1386 (2008).
  4. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
    [Crossref]
  5. K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
    [Crossref]
  6. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
    [Crossref]
  7. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
    [Crossref] [PubMed]
  8. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
    [Crossref]
  9. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
    [Crossref] [PubMed]
  10. J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
    [Crossref] [PubMed]
  11. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express 20(7), 7212–7220 (2012).
    [Crossref] [PubMed]
  12. H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006).
    [Crossref]
  13. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
    [Crossref]
  14. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
    [Crossref] [PubMed]
  15. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
    [Crossref] [PubMed]
  16. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [Crossref] [PubMed]
  17. N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
    [Crossref]
  18. X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
    [Crossref] [PubMed]
  19. X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
    [Crossref]
  20. Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
    [Crossref]
  21. A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
    [Crossref]
  22. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
    [Crossref]
  23. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
    [Crossref]
  24. A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
    [Crossref] [PubMed]
  25. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [Crossref]
  26. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
    [Crossref]
  27. N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
    [Crossref]
  28. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
    [Crossref]
  29. B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
    [Crossref]
  30. Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
    [Crossref]
  31. Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
    [Crossref]
  32. B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
    [Crossref] [PubMed]
  33. X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
    [Crossref]
  34. J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
    [Crossref] [PubMed]
  35. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
    [Crossref] [PubMed]
  36. M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
    [Crossref]
  37. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [Crossref] [PubMed]
  38. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater. 32, 368–373 (2009).
    [Crossref]
  39. E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
    [Crossref]
  40. L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
    [Crossref]
  41. L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
    [Crossref]
  42. L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
    [Crossref]
  43. K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
    [Crossref]
  44. S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
    [Crossref]
  45. F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).
  46. P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
    [Crossref]
  47. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
    [Crossref]
  48. Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
    [Crossref]
  49. G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
    [Crossref]

2014 (3)

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

2013 (3)

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
[Crossref]

2012 (11)

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express 20(7), 7212–7220 (2012).
[Crossref] [PubMed]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
[Crossref] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

2011 (4)

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[Crossref]

2010 (1)

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[Crossref]

2009 (7)

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[Crossref]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[Crossref] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater. 32, 368–373 (2009).
[Crossref]

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

2008 (4)

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25, 1380–1386 (2008).

2007 (3)

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

2006 (1)

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006).
[Crossref]

2005 (5)

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref] [PubMed]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

2004 (1)

2003 (1)

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

2002 (1)

S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
[Crossref]

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]

1996 (1)

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

1990 (1)

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

1983 (1)

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Akada, T.

Almeida, R. M.

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

Baia, L.

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

Bao, R.

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

Bufetov, I. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Cahay, R.

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Cao, R.

Chen, D.

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
[Crossref]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Chen, P.

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

Chi, G.

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

Chryssikos, G. D.

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

Dai, N.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Denker, B.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

Deubener, J.

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

Dianov, E.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Dianov, E. M.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Dong, G.

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
[Crossref] [PubMed]

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

Dvoyrin, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Fan, X.

Fattakhova, Z. T.

Firstov, S. V.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]

Galagan, B.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

Galeener, F. L.

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Geissberger, A. E.

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Guan, M.

Guo, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Guryanov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Guryanov, A. N.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

Hao, J.

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

Hau, T. M.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Haula, E. V.

Hewak, D. W.

Hong, Z.

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

Hu, L.

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

Hu, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

Hughes, M.

Hughes, M. A.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[Crossref] [PubMed]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater. 32, 368–373 (2009).
[Crossref]

Jain, H.

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

Jha, A.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[Crossref]

Jiang, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[Crossref]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Jiang, Z.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

Kamitsos, E. I.

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

Kang, F.

Karakassides, M. A.

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

Kazin, P. E.

Khopin, V. F.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

Kiefer, W.

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

Korchak, V. N.

Li, C.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Li, H.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Li, J.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Li, Y.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Liegeois-Duyckaerts, M.

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Liu, W.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

Liu, Z.

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Loehman, R. E.

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Luan, H.

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Ma, Z.

Mashinsky, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Matsuishi, K.

S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
[Crossref]

Medvedkov, O. I.

Melkumov, M. A.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

Meng, X.

Mermet, A.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

Miura, M.

S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
[Crossref]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]

Nielsen, K. H.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Ogar, G. W.

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Ohishi, Y.

Onari, S.

S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
[Crossref]

Osiko, V.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

Peng, J.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

Peng, M.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
[Crossref] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Popp, J.

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

Qiu, J.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
[Crossref] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Ren, J.

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

Riumkin, K. E.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

Romanov, A. N.

Rulmont, A.

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Santos, L. F.

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

Sheng, Q.

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
[Crossref]

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

Sheng, Y.

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Shubin, A. V.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012).
[Crossref] [PubMed]

Simon, S.

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

Smedskjaer, M. M.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Song, Z.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

Stefan, R.

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

Su, L.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Sulimov, V. B.

Suzuki, T.

Sverchkov, S.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

Tan, D.

Tang, H.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Tarte, P.

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Teng, Y.

Trentelman, K.

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

Trusov, L. A.

Tsvetkov, V. B.

Umnikov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Usovich, O. V.

Veber, A. A.

Wang, Q.

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Wang, X.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006).
[Crossref]

Winand, J. M.

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Wondraczek, L.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[Crossref]

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

Xia, H.

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006).
[Crossref]

Xu, B.

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

Xu, J.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Xu, S.

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

Xu, W.

Xu, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Yang, I.

Yang, L.

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

Yang, Y.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Yang, Z.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Yiannopoulos, Y. D.

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

Yin, Z.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Yu, P.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Yu, X.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Yue, Y.

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

Zhan, Y.

Zhang, J.

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

Zhang, N.

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

Zhang, Q.

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

Zhao, Q.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Zhao, Y.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

Zhao, Z.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

Zheng, J.

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

Zheng, L.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Zhigunov, D. M.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[Crossref]

Zhou, D.

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

Zhou, J.

Zhou, Q.

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
[Crossref]

Zhou, S.

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

Zhu, C.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[Crossref]

Appl. Phys. Lett. (1)

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3–GeO2–X (X =Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 041917 (2006).
[Crossref]

Appl. Surf. Sci. (1)

S. Onari, M. Miura, and K. Matsuishi, “Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,” Appl. Surf. Sci. 197, 615–618 (2002).
[Crossref]

Chem. Phys. Lett. (1)

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quant. 20(5), 0903815 (2014).
[Crossref]

J. Alloys Compd. (1)

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloys Compd. 463(1-2), L5–L8 (2008).
[Crossref]

J. Appl. Phys. (1)

B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses,” J. Appl. Phys. 113(8), 083503 (2013).
[Crossref]

J. Mater. Chem. (2)

N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, “Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses,” J. Mater. Chem. 22(7), 3154–3159 (2012).
[Crossref]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[Crossref]

J. Mater. Chem. C (2)

Y. Zhao, M. Peng, A. Mermet, J. Zheng, and J. Qiu, “Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation,” J. Mater. Chem. C 2(37), 7830–7835 (2014).
[Crossref]

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C 1(18), 3067–3071 (2013).
[Crossref]

J. Non-Cryst. Solids (6)

N. Dai, H. Luan, B. Xu, L. Yang, Y. Sheng, Z. Liu, and J. Li, “Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics,” J. Non-Cryst. Solids 358(22), 2970–2973 (2012).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[Crossref]

Z. Jiang, N. Dai, L. Yang, J. Peng, H. Li, J. Li, and W. Liu, “Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb–Bi-codoped silicate glasses for broadband optical amplification,” J. Non-Cryst. Solids 383, 196–199 (2014).
[Crossref]

K. H. Nielsen, M. M. Smedskjaer, M. Peng, Y. Yue, and L. Wondraczek, “Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses,” J. Non-Cryst. Solids 358(23), 3193–3199 (2012).
[Crossref]

L. F. Santos, L. Wondraczek, J. Deubener, and R. M. Almeida, “Vibrational spectroscopy study of niobium germanosilicate glasses,” J. Non-Cryst. Solids 353(18-21), 1875–1881 (2007).
[Crossref]

L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” J. Non-Cryst. Solids 324(1-2), 109–117 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses,” J. Phys. Chem. 100(28), 11755–11765 (1996).
[Crossref]

J. Phys. Chem. A (1)

J. Ren, G. Dong, S. Xu, R. Bao, and J. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” J. Raman Spectrosc. 36(3), 262–266 (2005).
[Crossref]

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[Crossref]

Laser Phys. (1)

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Laser Phys. Lett. (1)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Mater. Lett. (1)

X. Wang, Q. Sheng, L. Hu, and J. Zhang, “Observation of broadband infrared luminescence in a novel Bi-doped P2O5–B2O3–Al2O3 glass,” Mater. Lett. 66(1), 156–158 (2012).
[Crossref]

Opt. Express (8)

J. Zheng, M. Peng, F. Kang, R. Cao, Z. Ma, G. Dong, J. Qiu, and S. Xu, “Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model,” Opt. Express 20(20), 22569–22578 (2012).
[Crossref] [PubMed]

B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express 19(23), 23436–23443 (2011).
[Crossref] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[Crossref] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011).
[Crossref] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express 20(7), 7212–7220 (2012).
[Crossref] [PubMed]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express 20(14), 15692–15702 (2012).
[Crossref] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near to mid infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. (6)

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[Crossref]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater. 32, 368–373 (2009).
[Crossref]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[Crossref]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[Crossref]

Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. M. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, “The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses,” Opt. Mater. 35(1), 61–64 (2012).
[Crossref]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 556–561 (2009).
[Crossref]

Phy. Disordered. Mater. (1)

F. L. Galeener, A. E. Geissberger, G. W. Ogar, and R. E. Loehman, “Vibrational dynamics in isotopically substituted vitreous GeO2,” Phy. Disordered. Mater. 28, 4768 (1983).

Quantum Electron. (1)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Guryanov, “CW bismuth fiber laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[Crossref]

Solid State Ion. (1)

P. Tarte, A. Rulmont, M. Liegeois-Duyckaerts, R. Cahay, and J. M. Winand, “Vibrational spectroscopy and solid state chemistry,” Solid State Ion. 42(3-4), 177–196 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Absorption spectra of samples GTL1B melted for different times (labels). Inset (a) and (b) are intensity-normalized absorption spectra from 465 to 565 nm and from 650 to 750 nm, respectively. The right photographs are samples GTL1B melted for 20, 100, 160, 240 min, respectively.
Fig. 2
Fig. 2 (a) Emission spectra of samples GTL1B melted for different times (labels) upon the excitation of the 808nm LD; (b) Emission spectra of samples melted for 20 and 240 min, respectively, the intensities of which are normalized to reveal the peak shift along melting time.
Fig. 3
Fig. 3 Absorption spectra of samples (a) GTByL (y = 0, 5, 10, 15, 20) and (b) GTB10M (M = L, N, K).
Fig. 4
Fig. 4 Photographs of samples GTByM (M = L, y = 0, 5, 10, 15; M = N, y = 5, 10, 15; M = K, y = 5, 10.). The alkali oxide concentration in each sample increases from left to right, the alkali ionic radius increases from top to bottom. The lower right corner photograph shows the reference sample without alkali doping.
Fig. 5
Fig. 5 WDS line-scanning spectra of sample GTB10K. The top show an optical photograph (left) and a back scattered-electron (BSE) image (right) of the same sample. The blue dotted line in the BSE image marks the scanning zone. The scans were taken along a visual color transition from yellowish brown to black, as indicated by the red separation line and the arrows in the top image.
Fig. 6
Fig. 6 (a) Raman spectra of sample GTK at different random spots. The inset is the sample GTK photograph; (b) Raman spectra of sample GTB10K at different spots which distribute between the two dashed green lines, as shown in the inset, from right to left (Y1, Y2, Y3, Y4, B1, B2, B3, B4). Spots Y1, Y2, Y3, Y4 belong to the yellowish brown area and the others to the black area. The inset in Fig. 6(b) is the sample GTB10K photograph. The blue and green balls in the polyhedra beside the Raman peaks stand for germanium and oxygen, respectively.
Fig. 7
Fig. 7 (a) Raman spectra of samples GTByL (y = 0, 5, 10, 15, 20); (b) Raman spectra of samples GTB0L and GTB5M (M = L, N, K). The blue and green balls in the polyhedra beside the Raman peaks stand for germanium and oxygen, respectively.
Fig. 8
Fig. 8 (a) Emission spectra of sample GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.) upon 808 nm LD excitation; (b) Dependence of emission intensity on alkali oxide concentration.
Fig. 9
Fig. 9 (a) Dependence of optical basicity on alkali oxide concentration in samples GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.); (b) Emission intensity upon 808 nm excitation as a function of each sample’s optical basicity.
Fig. 10
Fig. 10 (a) Dependence of emission wavelength on alkali oxide concentration in samples GTByM (M = L, y = 0, 5, 10, 15, 20; M = N, y = 5, 10, 15; M = K, y = 5, 10.); (b) Dependence of emission wavelength on 808 nm excitation on optical basicity.
Fig. 11
Fig. 11 Raman spectra of samples GTLxB (x = 0.1, 0.5, 1, 2, 3, 5) and GTB10K.

Metrics