Abstract

We present a process calibration method for designing silicon-on-insulator (SOI) contra-directional grating couplers (contra-DCs). Our method involves determining the coupling coefficients of fabricated contra-DCs by using their full-width-at-half-maximum (FWHM) bandwidths. As compared to the null method that uses the bandwidth measured at the first nulls, our FWHM method obtains more consistent results since the FWHM bandwidth is more easily determined. We also extract the coupling coefficients using curve-fitting which provide values that are in general agreement with the values obtained using our method. However, as compared to the curve-fitting method, our method does not require knowledge of the insertion loss and is easier to implement. Our method can be used to predict the FWHM bandwidths, the maximum power coupling factors, the minimum power transmission factors, and the through port group delays and dispersions of subsequent, fabricated devices, which is useful in designing filters.

© 2015 Optical Society of America

1. Introduction

In communication applications that involve multiplexing and/or demultiplexing optical signals, maximizing the number of usable channels is essential for creating high data-rate interconnects [13]. Silicon contra-directional grating couplers (contra-DCs) are particularly useful in optical filtering applications because they do not have periodic spectral responses like ring resonator-based filters [410]. Silicon contra-DCs have been experimentally demonstrated in numerous publications [419]. Although previous demonstrations of silicon contra-DCs have shown good results, it remains challenging to design a filter’s bandwidth and have the “as-fabricated” device’s bandwidth, maximum power coupling factor, and minimum power transmission factor correspond to the design values, in the presence of lithography smoothing [20, 21]. Using a calibration procedure for the design process, a filter designer would be able to design a contra-DC such that the “as-designed” spectra closely matches the as-fabricated spectra. In this paper, we present a process calibration method which can be used to determine the absolute value of the coupling coefficient, |κ|, of a fabricated contra-DC by measuring its full-width-at-half-maximum (FWHM) bandwidth, Δλbw. Once |κ| is known, the through port and drop port spectra can be simulated. We demonstrate the effectiveness of our FWHM method (similar to [22, 23]) by extracting the |κ|s of contra-DCs that were fabricated using electron beam lithography [24] on three fabrication runs. Our FWHM method for extracting |κ| provides more consistent results as compared to using the null bandwidth (see [20, 21, 2527]) due to the fact that Δλbw can be more easily determined. Also, as compared to using the null method, the |κ|s extracted using our FWHM method are in general agreement with the values extracted by curve-fitting the drop port spectra. We then show that, using our FWHM method to extract |κ|, the simulated spectra agree well with the experimental spectra. Also, the simulated through port group delay and dispersion responses of a particular device are calculated using the extracted |κ|, which agree well with the Hilbert transform-determined and the measured group delay and dispersion responses.

2. Contra-DC theory and process calibration method

First, we will discuss the theoretical aspects of contra-DCs and the contra-DC design we used in this paper. The contra-DC design [Figs. 1(a) and 1(b)] has two strip waveguides, waveguide “a” and waveguide “b,” which have different average waveguide widths, wa and wb, respectively [9]. The waveguides have the same height and are separated from each other by an average gap distance, g [9]. Each waveguide has periodic grating corrugations, with a grating period, Λ, defined in Fig. 1(b), on the sidewalls located within the gap region [9]. The corrugation widths are labelled ca and cb for waveguide “a” and waveguide “b,” respectively [9]. The corrugations allow the coupler to act as a Bragg reflector with the strength of the inter-waveguide coupling determined by the inter-waveguide coupling coefficient, κ [7,9,16]. We have also included anti-reflection gratings on the external sidewalls of the waveguides to suppress the intra-waveguide Bragg reflections [7, 9, 16, 28].

 figure: Fig. 1

Fig. 1 (a) Diagram of a contra-DC. (b) A close-up view of a portion of a contra-DC (figure was adapted from [9]).

Download Full Size | PPT Slide | PDF

The power transferred from the input port to the drop port of a contra-DC is given by the power coupling factor, |κc|2, and the amount of power transferred to the through port is given by the power transmission factor, |tc|2, which can be calculated using the following equations,

|κc|2=|A2(0)A1(0)|2=|κ|2sinh2(sL)s2cosh2(sL)+(Δβ2)2sinh2(sL)
|tc|2=|A1(L)A1(0)|2=s2s2cosh2(sL)+(Δβ2)2sinh2(sL)
where s2=|κ|2(Δβ2)2, Δβ=βa+βbm2πΛ, βa and βb are the propagation constants of waveguide “a” and waveguide “b” without corrugations with widths equal to wa and wb, respectively, L is the length of the coupler, and m is the grating order which equals 1 since we are using first-order gratings [29]. Equation (1) is the same as Eq. (13.5–19) in [29] and Eq. (1) in [4] and Eq. (2) can be determined from Eq. (13.5–16) in [29]. In this paper, βa and βb are calculated by numerically determining the wavelength dependent effective indices of the waveguides using MODE Solutions by Lumerical Solutions, Inc., and curve-fitting them to third-order polynomials [9]. The material model that was used for silicon included dispersion and was loss-less [2, 9, 21, 30] and the refractive index for silicon dioxide was fixed at 1.4435 [2, 9, 30]. The inter-waveguide coupling coefficient, κ, is defined as the strength of the coupling of light from waveguide “a” to waveguide “b” within the contra-DC and can be calculated using the following equation [4, 11, 13, 15, 16, 28, 29],
κ=ω4ξa*(x,y)εm(x,y)ξb(x,y)dxdy
where ω is the angular frequency, ξa(x, y) is the transverse mode of waveguide “a,” ξb(x, y) is the transverse mode of waveguide “b,” and εm(x, y) is the mth component of the Fourier series expansion of the dielectric perturbation. Using this equation, two different methods have been used to calculate |κ| [16, 28]. The first method involves treating each waveguide as isolated [4, 16, 28, 29, 31, 32]. In this method, ξa(x, y) and ξb(x, y), correspond to the modes of the isolated unperturbed waveguides [4,16,28,29,31,32]. The second method involves calculating the first and second-order transverse modes of the coupler (i.e., supermode theory) [10, 13, 15, 16, 28, 32]. [20] and [21] have demonstrated that there is a large difference between the modeled results and experimental results for SOI Bragg gratings (see Fig. 2.35 in [20] and Fig. 4.43 in [21]). [4] showed good agreement between experimental results and simulated results for contra-DCs by using Eq. (3). However, cross-sectional SEM images were needed for calibration. Recently, [27] demonstrated a method to model Bragg gratings using 3-D finite-difference time-domain (FDTD) simulations and Bloch boundary conditions which showed good agreement between theoretical and experimental results. However, the above-mentioned methods require knowledge of the effects of the lithography on the shape of the grating. One method to significantly reduce the difference between the modeled results and the experimental results is to take into account how the fabrication process affects the design of the device (e.g., lithography smoothing) by using lithography simulation software, such as Mentor Graphics Calibre, and then simulating the structure using 3-D FDTD simulation software, such as FDTD Solutions by Lumerical Solutions, Inc., [20, 21]. However, this process is more complex since knowledge of fabrication process parameters are needed. In this paper, we will demonstrate an experimental method to determine |κ| by using Δλbw. With our experimental method, we can extract |κ| without having to measure the effects of lithography directly.

There are three steps to extract |κ|. The first step is to determine Δλbw, which can be measured directly from the drop port spectrum. The second step is to determine the average propagation constant mismatch, δβavg. To obtain δβavg, we use the propagation constant differences, δβH and δβL, where δβH is measured from the frequency that corresponds to the center of the main lobe to the high-frequency half-maximum point and δβL is measured from the frequency that corresponds to the center of the main lobe to the low-frequency half-maximum point (for a complete mathematical description see Appendix A). The magnitude of δβH and the magnitude of δβL are given in Eqs. (4) and (5), respectively, and defined graphically in Fig. 2(a),

|δβH|=(2πΔfHc)(ng,a(f0)+ng,b(f0))=(2πΔλLλLλ0)(ng,a(λ0)+ng,b(λ0))
|δβL|=(2πΔfLc)(ng,a(f0)+ng,b(f0))=(2πΔλHλHλ0)(ng,a(λ0)+ng,b(λ0))
where ΔfH = fHf0, ΔfL = f0fL, ΔλL = λ0λL, ΔλH = λHλ0, f0 and λ0 are the frequency and wavelength corresponding to the center frequency and center wavelength (middle point between the FWHM points), respectively, fH and λL correspond to the higher frequency FWHM point and the lower wavelength FWHM point, respectively, fL and λH correspond to the lower frequency FWHM point and the higher wavelength FWHM point, respectively, ng,a and ng,b are the group indices of waveguide “a” and waveguide “b,” respectively, and c is the speed of light in a vacuum. Equations (4) and (5) are similar to Eq. (13.5–22) in [29] but here we include the effects of dispersion and use the group indices, since dispersion affects the spectral response of contra-DCs (see [33]). To determine δβavg, we take the average of Eqs. (4) and (5),
δβavg=|δβH|+|δβL|2=πΔλbwλLλH(ng,a(λ0)+ng,b(λ0))
where Δλbw = λHλL. Here, for convenience, the wavelength dependent group indices are numerically determined using MODE Solutions by Lumerical Solutions, Inc., and curve-fitted to third-order polynomials. Equation (6) is similar to Eq. (31) in [22] but here we include the effects of dispersion and use the group indices. Figure 2(b) shows the experimental drop port spectrum of one of our fabricated contra-DCs, with a gap distance of 140 nm, as a function of Δβ. The FWHM becomes 2δβavg when the spectrum is plotted as a function of Δβ. By plotting our spectral response as a function of Δβ, we are able to directly measure δβavg from the spectral response without having to use Eq. (6). One may use either of these methods to determine δβavg but we will focus on the method that utilizes Eq. (6).

 figure: Fig. 2

Fig. 2 (a) Diagram depicting some of the relevant contra-DC parameters as functions of Δβ. (b) Experimental drop port spectrum of one of our devices as a function of Δβ.

Download Full Size | PPT Slide | PDF

The third step is to extract |κ| by using Eq. (1) and Eq. (6). We replace Δβ in Eq. (1) with Eq. (6) as shown in the left-hand side of Eq. (7) where s2 = |κ|2 − (δβavg/2)2. Since Eq. (1) reduces to tanh2(|κ|L) for Δβ = 0 [29], we can find the FWHM intensity by dividing tanh2(|κ|L) by 2 and finding the value of |κ| that will satisfy Eq. (7) for our value of δβavg. [22, 23] use a similar method to extract the bandwidths of contra-DCs.

|κ|2sinh2(sL)s2cosh2(sL)+(δβavg2)2sinh2(sL)=12tanh2(|κ|L)
It should be noted that there can be multiple solutions to Eq. (7) when the sidebands are greater than or equal to the half maximum intensity. The correct solution is the value of |κ| that is largest.

An alternative method, using the nulls to determine |κ|, is to measure the bandwidth at the first nulls to the left and to the right of the main lobe and to use Eq. (8) (similar to [20,21,25,34] and is a re-arrangement of the equation found in [26, 29]),

|κ|=[δβavg24π2L2]12,
where δβavg is calculated using Eq. (6) but using the first null points instead of the FWHM points. [21, 27] have also used the null bandwidth to extract |κ| but for SOI Bragg gratings. Also, another method to extract |κ| is to curve-fit the drop port spectrum of the contra-DC using a nonlinear least-squares method. As we will show in the next section, the extracted |κ|s from the curve-fit method and from the FWHM method are in general agreement with each other as compared to the values determined using the null method. However, the curve-fit method relies on an accurate normalization of the measured drop port spectrum (an issue which others have previously mentioned [35]) whereas the FWHM method does not require that the measured data be normalized. Both the FWHM method and the curve-fit method provide more consistent results than the null method does. Also, provided that δβavg can be accurately obtained, our FWHM method should be applicable to devices fabricated in other material platforms because the method is not platform dependent.

3. Experimental results

Electron beam lithography was used to fabricate the SOI contra-DCs [24] and a silicon dioxide cladding layer was deposited on top of the devices. The silicon strip waveguide heights were all chosen to be 220 nm. The width of waveguide “a” was 450 nm and the width of waveguide “b” was 550 nm. The corrugation widths for waveguide “a” and “b” were 30 nm and 40 nm, respectively. These dimensions were taken from [9]. The grating period was chosen to be 312 nm and the number of periods was chosen to be 500. Therefore, the total length of each contra-DC was 156 μm. The gap distances were varied between 120 nm and 400 nm in 20 nm increments for a total of 15 devices. Fiber grating couplers were used for coupling light into and out of the devices [36, 37]. The contra-DCs were fabricated on three separate fabrication runs, “run 1,” “run 2,” and “run 3” at different times. Fully-etched fiber grating couplers [37] were used in “run 1” and “run 3” and shallow-etched fiber grating couplers [36] were used in “run 2.” The experimental drop port spectra of four of the devices from “run 1,” “run 2,” and “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm are shown in Figs. 3(a), 3(c), and 3(e), respectively. The experimental through port spectra of four of the devices from “run 1,” “run 2,” and “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm are shown in Figs. 3(b), 3(d), and 3(f), respectively. The fiber grating coupler response was removed from both the through port and drop port spectral responses by normalizing the spectra to the fiber grating response envelope in the through port spectral response.

 figure: Fig. 3

Fig. 3 Experimental drop port spectra for the devices from (a) “run 1,” (c) “run 2,” and (e) “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm. Experimental through port spectra for the devices from (b) “run 1,” (d) “run 2,” and (f) “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm.

Download Full Size | PPT Slide | PDF

The relationship between the bandwidths of contra-DCs and their gap distances has been theoretically [4,11] and experimentally [4,5] demonstrated, and shows that, as the gap distance increases, the bandwidth decreases. Also, the relationship between |κ| and the gap distance has been theoretically demonstrated, and shows that, as the gap distance increases, |κ| exponentially decreases [10]. Here, we also experimentally demonstrate the relationship between Δλbw and the gap distance, which is in agreement with previously published results. Also, we experimentally demonstrate the relationship between |κ| and the gap distance, which is in agreement with the theoretical results in [10]. Figures 4(a) and 4(b) show Δλbw and the extracted |κ| (extracted using our FWHM method) versus gap distance, respectively, for the contra-DCs fabricated on “run 1,” “run 2,” and “run 3.” As the gap distance increases, Δλbw and |κ| tend to decrease and Δλbw reaches a minimum and for one of our devices, the device from “run 3” with a gap distance of 400 nm, we are not able to obtain a value for |κ| since it goes to zero. We also fabricated contra-DCs on “run 1” with a fixed gap distance of 280 nm and varied the corrugation widths of waveguide “a” and waveguide “b.” Figures 4(c) and 4(d) show Δλbw and the extracted |κ| versus corrugation width, respectively, for corrugation widths of 30 nm to 150 nm in 20 nm increments for waveguide “a” and corrugation widths of 40 nm to 160 nm in 20 nm increments for waveguide “b.” As the corrugation width increases, Δλbw [4, 6, 11] and |κ| [10] increase.

 figure: Fig. 4

Fig. 4 (a) Experimental bandwidth at FWHM versus gap distance and (b) extracted coupling coefficient versus gap distance using the FWHM method. (c) Experimental bandwidth at FWHM versus corrugation width and (d) extracted coupling coefficient versus corrugation width for devices from “run 1” with a fixed gap distance of 280 nm using the FWHM method.

Download Full Size | PPT Slide | PDF

Next, we provide a comparison between the |κ|s extracted using the FWHM method [using Eqs. (6) and (7)], the null method [using Eqs. (6) and (8)], and the curve-fit method (using MATLAB’s lsqcurvefit function [38]) from the devices made in three fabrication runs. Figures 5(a), 5(b), and 5(c) show the extracted |κ|s using the three methods for “run 1,” “run 2,” and “run 3,” respectively. Upon inspection of Figs. 5(a)–5(c), it is clear that the |κ|s that were determined using the FWHM method and the curve-fit method exhibit nearly exponential trends, as expected. The |κ|s extracted using the FWHM method and the curve-fit method are relatively close to each other as compared to the |κ|s determined using the null method. The discrepancies seen in Figs. 5(a)–5(c) using the null method are due to the difficulty in determining the locations of the nulls [e.g., see Fig. 5(d)]. Also, we were unable to determine the |κ|s for five of the devices using the null method since there are no valid solutions to Eq. (8). For one of the devices using the FWHM method we could only extract a zero solution for |κ|. With the curve-fit method, we were able to extract a non-zero value for |κ| for each of the devices.

 figure: Fig. 5

Fig. 5 Comparison between the FWHM method, the null method, and the curve-fit method to determine |κ| for (a) “run 1,” (b) “run 2,” and (c) “run 3.” (d) Drop port spectrum of a contra-DC with a gap distance of 300 nm from “run 2,” which is chosen to illustrate that there can be multiple possible choices for the location of the first null to the left of the main lobe (the red dots indicate possible choices for the null location).

Download Full Size | PPT Slide | PDF

Next, we demonstrate, for a given contra-DC with a fixed coupling length, that Δλbw reaches a minimum value as |κ| approaches zero ([34] also demonstrated this trend in Bragg gratings). To determine the theoretical minimum bandwidth, Δλbw−min, the following equation can be used (see Appendix B for the derivation),

Δλbwmin2.783115λ02πL[ng,a(λ0)+ng,b(λ0)]
which is similar to the minimum bandwidth equation in [39] except that their equation is for a distributed Bragg reflector and does not account for dispersion. Figure 6 shows how Δλbw−min changes as the coupling length increases (the group indices were evaluated at 1535.33 nm). Δλbw−min can be reduced by increasing the coupling length [39]. The device from “run 3” with a gap distance of 400 nm has a measured bandwidth below Δλbw−min (due to the experimental results having ripples likely caused by the grating couplers), which could be the reason that there is no |κ| solution other than zero for this device using the FWHM method.

 figure: Fig. 6

Fig. 6 Theoretical predicted minimum bandwidth at FWHM versus coupling length including experimental data points from the devices with gap distances of 400 nm from the three fabrication runs.

Download Full Size | PPT Slide | PDF

Next, we show an example of using the extracted |κ| (using the FWHM method) to closely match the simulated spectra to the experimental spectra of one of our contra-DCs. We have chosen one of our devices that showed a highly symmetric spectral response to the left and right of the center of the main lobe for the comparison between the simulated results (using the extracted |κ| determined from the FWHM method) and the experimental results. The device has a gap distance of 140 nm and is from “run 2.” The simulated spectra were plotted using Eqs. (1) and (2) and we have added 0.0147 to the modeled values of the effective indices for spectral alignment purposes. Figure 7(a) shows that the simulated through port and drop port spectra using the extracted |κ| of 19882 m−1 from “run 2” closely match the experimental spectra. Figure 7(b) shows a comparison between the simulated spectra using the extracted |κ| of 18466 m−1 from “run 1” and the experimental spectra from “run 2.” The results in Fig. 7(b) show that, since there is close agreement between the two fabrication runs, using a previously extracted |κ| can be used to predict the spectral response of future fabricated devices with the same as-designed dimensions. Figures 7(c) and 7(d) show a comparison between the drop port spectra and through port spectra, respectively, from “run 1,” “run 2,” and “run 3” and the simulated spectra (we have aligned the measured spectra from “run 1,” “run 2,” “run 3,” and the simulated spectra to their respective center wavelengths) using the average |κ| of 18856 m−1, calculated using the extracted |κ|s from the three runs (i.e., 18466 m−1, 19882 m−1, and 18219 m−1).

 figure: Fig. 7

Fig. 7 (a) Experimental and simulated (using the extracted |κ| obtained using the FWHM method) drop port and through port spectra for a contra-DC (from “run 2”) with a gap distance equal to 140 nm. (b) Comparison between the experimental spectra from “run 2” and the simulated spectra using the extracted |κ| of 18466 m−1 from “run 1” for contra-DCs with gap distances of 140 nm. Comparison between the experimental (c) drop port spectra and (d) through port spectra from “run 1,” “run 2,” and “run 3” and the simulated spectra using the average extracted |κ| of 18856 m−1 from the three runs for contra-DCs with gap distances of 140 nm.

Download Full Size | PPT Slide | PDF

Our method can also be used to predict the maximum power coupling factors, MAX|κc|2s, and the minimum power transmission factors, MIN|tc|2s, of contra-DCs. In Figs. 8(a) and 8(b) we show a comparison between the experimental and simulated (using the extracted |κ|s determined from the FWHM method) MAX|κc|2s and MIN|tc|2s versus gap distance, respectively, for the devices from “run 1,” “run 2,” and “run 3.” Experimental MIN|tc|2s for the devices from “run 1” with gap distances of 320 nm, 380 nm, and 400 nm and for the devices from “run 3” with gap distances of 380 nm and 400 nm are not shown in Fig. 8(b) since the main notches within their through port spectra were not visible. Simulated MAX|κc|2 and MIN|tc|2 for the device from “run 3” with a gap distance of 400 nm is not shown since we were unable to extract a value for |κ| other than zero. Also, the MAX|κc|2s determined using the curve-fit method are closer to the normalized measured results as compared to the MAX|κc|2s determined using the FWHM method. However, using the |κ|s extracted by the FWHM method result in many of the simulated MIN|tc|2s being closer to the measured results as compared to the MIN|tc|2s determined using the curve-fit method. The likely reason that the FWHM method gives better results for MIN|tc|2, as compared to the values determined using the curve-fit method, is that the curve-fit method relies on an accurate normalization of the drop port spectrum.

 figure: Fig. 8

Fig. 8 Comparison between the experimental and the simulated (using extracted |κ|s determined from the FWHM method) (a) maximum power coupling factor and (b) minimum power transmission factor versus gap distance.

Download Full Size | PPT Slide | PDF

The group delay and the dispersion of a contra-DC is of interest because they give us an indication of the effect the contra-DC will have on a signal. Previously, it has been shown that the phase (and, therefore, the group delay and dispersion) of fiber Bragg gratings [4042] and ring resonators [4346] can be determined using the Hilbert transform method. Specifically, the Hilbert transform method can be used to determine through port phase responses of Bragg gratings because the through port response is minimum phase [4042]. Here, we use the Hilbert transform method [41] to determine the through port phase of a contra-DC from “run 2” with a gap distance of 140 nm (we use the hilbert function from MATLAB [47]). Once the phase response is determined, the group delay [9, 48] and dispersion [9, 48, 49] can be calculated. Figures 9(a) and 9(b) show the group delay and dispersion responses, respectively, using the Hilbert transform method on the experimental through port spectrum from Fig. 7(a) (the results shown were smoothed using moving averages) and are compared to the simulated responses that were determined for the |κ| extracted using the FWHM method and the measured results (the average of 300 measurements) using an Optical Vector Analyzer™ STe by Luna Innovations, Inc., (OVA). For the simulated results, we added an additional phase to account for the transit time of the device. The effective indices for this additional phase were calculated for a waveguide width of 450 nm using MODE Solutions by Lumerical Solutions, Inc. Similarly, we have added a 2.22 ps group delay offset to the Hilbert transform-determined group delay. Also, a constant group delay offset was subtracted from the measured group delay for alignment to the simulated result. The Hilbert transform-determined through port group delay and dispersion results are in close agreement with the simulated results using the extracted |κ| and the measured results using the OVA. Therefore, our FWHM method can also be used to predict the through port group delay response and the dispersion response of contra-DCs.

 figure: Fig. 9

Fig. 9 Comparison between the experimental through port (a) group delay response and (b) dispersion response that were determined using the Hilbert transform method and the simulated results that were determined using the extracted |κ| of 19882 m−1 as well as the measured results using the OVA.

Download Full Size | PPT Slide | PDF

4. Conclusion

In the filter design process, the ability to predict the performance of contra-DCs is invaluable. We have presented a method, the FWHM method, for determining the coupling coefficients of contra-DCs. To demonstrate the usefulness of our method, we fabricated SOI contra-DCs on three separate fabrication runs. Our FWHM method of extracting the coupling coefficient of contra-DCs can be used to predict the spectral response, group delay, and dispersion of subsequently fabricated devices. The FWHM method provides more consistent extracted coupling coefficient values as compared to the values extracted using the null method. Also, the FWHM method provides extracted coupling coefficient values of fabricated devices that are relatively close, as compared to using the null method, to the values extracted by curve-fitting the drop port spectra. However, the curve-fit method relies on the accurate normalization of the drop port spectrum whereas our FWHM method does not require normalization of the data, and our method is generally easier to implement. We have also shown that there is a minimum bandwidth that can be obtained by reducing the coupling coefficient, which needs to be considered when designing a contra-DC-based filter. We have presented an equation for this minimum bandwidth as a function of the length of the coupler. The method presented in this paper can be used to calibrate the design process, enabling designers to accurately predict the as-fabricated filter response.

Appendices

A. Derivation of the average propagation constant mismatch

Here, we will derive the equation for the average propagation constant mismatch, δβavg. The first step in determining δβavg is to calculate the propagation constant difference, δβH, which is defined as the difference between the propagation constant mismatch, Δβ(fH), at the frequency, fH, corresponding to the intensity at FWHM at the higher frequency and the propagation constant mismatch, Δβ(f0), at the center frequency, f0, (see Fig. 10) as shown in Eq. (10).

δβH=Δβ(fH)Δβ(f0)
Next, we substitute into Eq. (10) the propagation constant mismatch equation, Δβ=βa+βbm2πΛ, where βa and βb are the propagation constants of waveguide “a” and waveguide “b” in isolation, respectively, m is the grating order which is equal to 1 for our first-order contra-DCs, and Λ is the grating period [29] as shown in Eq. (11).
δβH=βa(fH)+βb(fH)2πΛβa(f0)βb(f0)+2πΛ
The next steps involve simplifying Eq. (11), substitutions for the propagation constants, and rearrangements of the terms,
δβH=βa(fH)+βb(fH)βa(f0)βb(f0)
=(2πc)(na(fH)fH+nb(fH)fHna(f0)f0nb(f0)f0)
=(2πc)(na(fH)fHna(f0)f0+nb(fH)fHnb(f0)f0)
where na and nb are the effective indices of waveguide “a” and waveguide “b”, respectively, and c is the speed of light in a vacuum. Since the effective indices are frequency dependent due to dispersion, we will express na(fH) as na(f0)+ΔfHdnadf|f0 and nb(fH) as nb(f0)+ΔfHdnbdf|f0 where ΔfH = fHf0 [50]. After simplification by grouping terms, δβH becomes,
δβH=(2πΔfHc)(na(f0)+fHdnadf|f0+nb(f0)+fHdnbdf|f0).
In Eq. (15), the terms, na(f0)+fHdnadf|f0 and nb(f0)+fHdnbdf|f0 correspond approximately to the group indices of waveguide “a” and waveguide “b,” respectively, since ΔfH << f0 [50]. Therefore, the final equation for δβH is,
δβH=(2πΔfHc)(ng,a(f0)+ng,b(f0))
where ng,a and ng,b are the group indices of waveguide “a” and waveguide “b”, respectively.

Next, we show the equation for the propagation constant difference, δβL, [see Eq. (17) where ΔfL = f0fL] which is defined as the difference between the propagation constant mismatch, Δβ(fL), at the frequency, fL, corresponding to the intensity at FWHM at the lower frequency and the propagation constant mismatch, Δβ(f0), at the center frequency, f0 (see Fig. 10). δβL was derived using the same procedure as used to derive δβH.

δβL=(2πΔfLc)(ng,a(f0)+ng,b(f0))
We are now able to determine δβavg,
δβavg=|δβH|+|δβL|2
δβavg=(2π2c)(ng,a(f0)+ng,b(f0))(ΔfH+ΔfL)
δβavg=(πc)(ng,a(f0)+ng,b(f0))(fH+fL)
δβavg=(πc)(ng,a(f0)+ng,b(f0))(cλLcλH)
δβavg=(πΔλbwλLλH)(ng,a(λ0)+ng,b(λ0))
where the wavelengths λ0, λL, and λH correspond to the frequencies f0, fH, and fL, respectively, and Δλbw = λHλL. Equations (16) and (17) are similar to Eq. (13.5–22) in [29] and Eq. (22) is similar to Eq. (31) in [22] except that we have taken dispersion into account.

 figure: Fig. 10

Fig. 10 Diagram depicting some of the relevant parameters used in our derivation.

Download Full Size | PPT Slide | PDF

B. Derivation of the minimum bandwidth

Here, we present the derivation for the minimum bandwidth of a contra-DC, Δλbw−min as |κ| goes to zero. First, we rearrange the terms in Eq. (7) as shown below,

2|κ|2sinh2(sL)tanh2(|κ|L)=s2cosh2(sL)+(δβavg2)2sinh2(sL).
Next, we take the limit of the left side and the right side of Eq. (23),
limκ02|κ|2sinh2(sL)tanh2(|κ|L)=limκ0[s2cosh2(sL)+(δβavg2)2sinh2(sL)]
cos(δβavgL)1L2=δβavg24
cos(δβavgL)+(δβavgL)241=0.
The numerically determined solution to Eq. (26) is δβavgL = 2.783115 (we neglect the trivial solution which is zero). Therefore, for a contra-DC with a given L, δβavgL needs to be greater than 2.783115. Therefore, substituting δβavgL = 2.783115 into Eq. (22), we get (similar to [39]),
Δλbwmin=2.783115λLλHπL[ng,a(λ0)+ng,b(λ0)]
which is approximately equal to,
Δλbwmin2.783115λ02πL[ng,a(λ0)+ng,b(λ0)].

Acknowledgments

We would like to acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada and the SiEPIC program for their support. We also acknowledge CMC Microsystems, Lumerical Solutions, Inc., and Mentor Graphics for the software products that were used in this project. We would like to thank Richard Bojko for fabrication of the devices, Dr. Wei Shi for technical help and insightful discussions, Miguel Ángel Guillén Torres for insightful discussions, Yun Wang for the design of the fiber grating couplers, Han Yun for layout support, Jonas Flueckiger for technical help with Pyxis by Mentor Graphics, and Fan Zhang for measurements of some of the fabricated devices. Part of this work was conducted at the University of Washington Nanofabrication Facility, a member of the NSF National Nanotechnology Infrastructure Network.

References and links

1. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010). [CrossRef]   [PubMed]  

2. R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012). [CrossRef]   [PubMed]  

3. K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014). [CrossRef]  

4. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011). [CrossRef]   [PubMed]  

5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011). [CrossRef]   [PubMed]  

6. W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

7. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013). [CrossRef]   [PubMed]  

8. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012). [CrossRef]  

9. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013). [CrossRef]  

10. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013). [CrossRef]   [PubMed]  

11. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008). [CrossRef]  

12. W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

13. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013). [CrossRef]   [PubMed]  

14. W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

15. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013). [CrossRef]   [PubMed]  

16. W. Shi, “Silicon photonic filters for wavelength-division multiplexing and sensing applications,” PhD thesis, University of British Columbia (2012).

17. P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

18. H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

19. D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014). [CrossRef]   [PubMed]  

20. X. Wang, “Silicon photonic waveguide Bragg gratings,” PhD thesis, University of British Columbia (2013).

21. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015). [CrossRef]  

22. D. Marcuse, “Bandwidth of forward and backward coupling directional couplers,” J. Lightwave Technol. 5(12), 1773–1777 (1987). [CrossRef]  

23. N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006). [CrossRef]  

24. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011). [CrossRef]  

25. M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998). [CrossRef]  

26. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

27. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014). [CrossRef]   [PubMed]  

28. J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc. J. Optoelectron. 140(5), 275–284, (1993). [CrossRef]  

29. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, Incorporated, 2007).

30. R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013). [CrossRef]   [PubMed]  

31. R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987). [CrossRef]  

32. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” J. Lightwave Technol. 5(2), 268–273 (1987). [CrossRef]  

33. S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006). [CrossRef]  

34. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34 (9), 1357–1359 (2009). [CrossRef]   [PubMed]  

35. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007). [CrossRef]   [PubMed]  

36. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013). [CrossRef]  

37. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014). [CrossRef]   [PubMed]  

38. The MathWorks Inc., “Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense - MATLAB lsqcurvefit,” http://www.mathworks.com/help/optim/ug/lsqcurvefit.html.

39. J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991). [CrossRef]  

40. L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22 (20), 1571–1573 (1997). [CrossRef]  

41. M.-C. N. Dicaire, J. Upham, I. De Leon, S. A. Schulz, and R. W. Boyd, “Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform,” J. Opt. Soc. Am. B 31(5), 1006–1010 (2014). [CrossRef]  

42. J. Skaar and H. E. Engan, “Phase reconstruction from reflectivity in fiber Bragg gratings,” Opt. Lett. 24(3), 136–138 (1999). [CrossRef]  

43. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28(17), 1567–1569 (2003). [CrossRef]   [PubMed]  

44. A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008). [CrossRef]  

45. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).

46. A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004). [CrossRef]  

47. The MathWorks Inc., “Discrete-time analytic signal using Hilbert transform - MATLAB hilbert,” http://www.mathworks.com/help/signal/ref/hilbert.html.

48. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004). [CrossRef]  

49. P. Pintus, P. Contu, N. Andriolli, A. D’Errico, F. Di Pasquale, and F. Testa, “Analysis and design of microring-based switching elements in a silicon photonic integrated transponder aggregator,” J. Lightwave Technol. 31(24), 3943–3955 (2013). [CrossRef]  

50. R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).

References

  • View by:

  1. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [Crossref] [PubMed]
  2. R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
    [Crossref] [PubMed]
  3. K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
    [Crossref]
  4. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
    [Crossref] [PubMed]
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
    [Crossref] [PubMed]
  6. W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.
  7. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]
  8. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
    [Crossref]
  9. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
    [Crossref]
  10. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
    [Crossref] [PubMed]
  11. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
    [Crossref]
  12. W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.
  13. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref] [PubMed]
  14. W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.
  15. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  16. W. Shi, “Silicon photonic filters for wavelength-division multiplexing and sensing applications,” PhD thesis, University of British Columbia (2012).
  17. P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.
  18. H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.
  19. D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
    [Crossref] [PubMed]
  20. X. Wang, “Silicon photonic waveguide Bragg gratings,” PhD thesis, University of British Columbia (2013).
  21. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
    [Crossref]
  22. D. Marcuse, “Bandwidth of forward and backward coupling directional couplers,” J. Lightwave Technol. 5(12), 1773–1777 (1987).
    [Crossref]
  23. N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006).
    [Crossref]
  24. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
    [Crossref]
  25. M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
    [Crossref]
  26. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  27. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
    [Crossref] [PubMed]
  28. J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc. J. Optoelectron. 140(5), 275–284, (1993).
    [Crossref]
  29. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, Incorporated, 2007).
  30. R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
    [Crossref] [PubMed]
  31. R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987).
    [Crossref]
  32. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” J. Lightwave Technol. 5(2), 268–273 (1987).
    [Crossref]
  33. S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
    [Crossref]
  34. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34 (9), 1357–1359 (2009).
    [Crossref] [PubMed]
  35. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  36. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
    [Crossref]
  37. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  38. The MathWorks Inc., “Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense - MATLAB lsqcurvefit,” http://www.mathworks.com/help/optim/ug/lsqcurvefit.html .
  39. J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
    [Crossref]
  40. L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22 (20), 1571–1573 (1997).
    [Crossref]
  41. M.-C. N. Dicaire, J. Upham, I. De Leon, S. A. Schulz, and R. W. Boyd, “Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform,” J. Opt. Soc. Am. B 31(5), 1006–1010 (2014).
    [Crossref]
  42. J. Skaar and H. E. Engan, “Phase reconstruction from reflectivity in fiber Bragg gratings,” Opt. Lett. 24(3), 136–138 (1999).
    [Crossref]
  43. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28(17), 1567–1569 (2003).
    [Crossref] [PubMed]
  44. A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
    [Crossref]
  45. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).
  46. A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
    [Crossref]
  47. The MathWorks Inc., “Discrete-time analytic signal using Hilbert transform - MATLAB hilbert,” http://www.mathworks.com/help/signal/ref/hilbert.html .
  48. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
    [Crossref]
  49. P. Pintus, P. Contu, N. Andriolli, A. D’Errico, F. Di Pasquale, and F. Testa, “Analysis and design of microring-based switching elements in a silicon photonic integrated transponder aggregator,” J. Lightwave Technol. 31(24), 3943–3955 (2013).
    [Crossref]
  50. R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).

2014 (4)

2013 (8)

P. Pintus, P. Contu, N. Andriolli, A. D’Errico, F. Di Pasquale, and F. Testa, “Analysis and design of microring-based switching elements in a silicon photonic integrated transponder aggregator,” J. Lightwave Technol. 31(24), 3943–3955 (2013).
[Crossref]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

2012 (2)

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (1)

2008 (2)

A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
[Crossref]

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

2007 (1)

2006 (2)

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006).
[Crossref]

2004 (2)

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
[Crossref]

2003 (1)

1999 (1)

1998 (1)

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

1997 (1)

1993 (1)

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc. J. Optoelectron. 140(5), 275–284, (1993).
[Crossref]

1991 (1)

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

1987 (3)

R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987).
[Crossref]

D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” J. Lightwave Technol. 5(2), 268–273 (1987).
[Crossref]

D. Marcuse, “Bandwidth of forward and backward coupling directional couplers,” J. Lightwave Technol. 5(12), 1773–1777 (1987).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Aissat, A.

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

Andriolli, N.

Baehr-Jones, T.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Baets, R.

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

Bassi, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Bensebti, M.

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

Bergman, K.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

Biberman, A.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

Boeck, R.

Bojko, R.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Boyd, J. T.

N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006).
[Crossref]

Boyd, R. W.

Canciamilla, A.

A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
[Crossref]

Carloni, L. P.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

Chan, J.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

Chrostowski, L.

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Chrowtowski, L.

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

Contu, P.

Costa, R.

Cunningham, J. E.

Cusmai, G.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

D’Errico, A.

David, K.

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

De La Rue, R.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

De Leon, I.

Di Pasquale, F.

Dicaire, M.-C. N.

Engan, H. E.

Fainman, Y.

Fard, S. T.

Ferdjani, K.

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

Flueckiger, J.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

Gnan, M.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Greenberg, M.

Grieco, A.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Hendry, G.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

Hochberg, M.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Hu, T.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Ikeda, K.

Jaeger, N. A. F.

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[Crossref] [PubMed]

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

Jiang, G.

Jiang, X.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Khan, M. H.

Krishnamoorthy, A. V.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Lin, C.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

Liu, A.

Liu, Y.

Luo, Y.

Madhavan, N. S.

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

Marcuse, D.

D. Marcuse, “Bandwidth of forward and backward coupling directional couplers,” J. Lightwave Technol. 5(12), 1773–1777 (1987).
[Crossref]

D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” J. Lightwave Technol. 5(2), 268–273 (1987).
[Crossref]

Martinelli, M.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28(17), 1567–1569 (2003).
[Crossref] [PubMed]

März, R.

R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987).
[Crossref]

Melloni, A.

A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
[Crossref]

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28(17), 1567–1569 (2003).
[Crossref] [PubMed]

Mizrahi, A.

Monguzzi, P.

Morichetti, F.

A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
[Crossref]

Morthier, G.

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

Nacer, S.

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

Nezhad, M. P.

Nolting, H. P.

R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987).
[Crossref]

Orlandi, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Pintus, P.

Poladian, L.

Pond, J.

Popovic, M.

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).

Priye, V.

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

Qi, M.

Qiu, H.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Raj, K.

Reid, A.

Rouger, N.

Samarelli, A.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Schulz, S. A.

Schwelb, O.

Shao, H.

Shen, H.

Shenoy, M. R.

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

Shi, W.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

W. Shi, “Silicon photonic filters for wavelength-division multiplexing and sensing applications,” PhD thesis, University of British Columbia (2012).

Shubin, I.

Siano, R.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

Skaar, J.

Sorel, M.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Strain, M. J.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Tan, D. T. H.

Testa, F.

Thyagarajan, K.

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

Upham, J.

Velha, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Wang, X.

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

X. Wang, “Silicon photonic waveguide Bragg gratings,” PhD thesis, University of British Columbia (2013).

Wang, Y.

Weber, J.-P.

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc. J. Optoelectron. 140(5), 275–284, (1993).
[Crossref]

Willems, J.

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

Xiao, S.

Yang, J.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, Incorporated, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, Incorporated, 2007).

Yu, P.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Yun, H.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

Zamek, S.

Zhang, N.

N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006).
[Crossref]

Zhang, W.

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

Zheng, X.

Appl. Phys. Lett. (2)

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100(12), 121118 (2012).
[Crossref]

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

Electron. Lett. (1)

J. Willems, K. David, G. Morthier, and R. Baets, “Filter characteristics of DBR amplifier with index and gain coupling,” Electron. Lett. 27(10), 831–833 (1991).
[Crossref]

IEE Proc. J. Optoelectron. (1)

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc. J. Optoelectron. 140(5), 275–284, (1993).
[Crossref]

IEEE Photon. J. (1)

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5(5), 2202511 (2013).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29(6), 06F309 (2011).
[Crossref]

Opt. Commun. (1)

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234(1–6), 211–216 (2004).
[Crossref]

Opt. Eng. (1)

N. Zhang and J. T. Boyd, “Forward and backward grating-assisted directional couplers in silicon for wavelength-division multiplexing tunable add-drop applications,” Opt. Eng. 45(5), 054603 (2006).
[Crossref]

Opt. Express (7)

D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

Opt. Lett. (10)

L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22 (20), 1571–1573 (1997).
[Crossref]

J. Skaar and H. E. Engan, “Phase reconstruction from reflectivity in fiber Bragg gratings,” Opt. Lett. 24(3), 136–138 (1999).
[Crossref]

A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28(17), 1567–1569 (2003).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, H. Yun, L. Chrostowski, and N. A. F. Jaeger, “High performance Vernier racetrack resonators,” Opt. Lett. 37(24), 5199–5201 (2012).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34 (9), 1357–1359 (2009).
[Crossref] [PubMed]

R. Boeck, L. Chrostowski, and N. A. F. Jaeger, “Thermally tunable quadruple Vernier racetrack resonators,” Opt. Lett. 38(14), 2440–2442 (2013).
[Crossref] [PubMed]

Opt. Quant. Electron. (2)

R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,’ Opt. Quant. Electron. 19(5), 273–287 (1987).
[Crossref]

S. Nacer, A. Aissat, K. Ferdjani, and M. Bensebti, “Influence of dispersion on spectral characteristics of GADC optical filters,” Opt. Quant. Electron. 38(8), 701–710 (2006).
[Crossref]

Proc. SPIE (3)

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

M. R. Shenoy, K. Thyagarajan, V. Priye, and N. S. Madhavan, “Estimation of the characteristic parameters of fiber Bragg gratings from spectral measurements,” Proc. SPIE 3666, 94 (1998).
[Crossref]

A. Canciamilla, F. Morichetti, and A. Melloni, “Full characterization of integrated optical ring-resonators by phase-sensitive time-domain interferometry,” Proc. SPIE 7138, 71381L (2008).
[Crossref]

Other (15)

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).

The MathWorks Inc., “Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense - MATLAB lsqcurvefit,” http://www.mathworks.com/help/optim/ug/lsqcurvefit.html .

The MathWorks Inc., “Discrete-time analytic signal using Hilbert transform - MATLAB hilbert,” http://www.mathworks.com/help/signal/ref/hilbert.html .

R. Boeck, “Silicon ring resonator add-drop multiplexers,” Master’s thesis, University of British Columbia (2011).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, Incorporated, 2007).

X. Wang, “Silicon photonic waveguide Bragg gratings,” PhD thesis, University of British Columbia (2013).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
[Crossref]

W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. A. F. Jaeger, “Add-drop filters in silicon grating-assisted asymmetric couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3D.3.

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2013), paper CTu3F.5.

W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.91.

W. Shi, “Silicon photonic filters for wavelength-division multiplexing and sensing applications,” PhD thesis, University of British Columbia (2012).

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. De La Rue, “Microring resonator with wavelength selective coupling in SOI,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

H. Qiu, T. Hu, P. Yu, J. Yang, and X. Jiang, “Add-drop filter with asymmetric vertical gratings in silicon-on-insulator rib waveguides,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper AF4A.10.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Diagram of a contra-DC. (b) A close-up view of a portion of a contra-DC (figure was adapted from [9]).
Fig. 2
Fig. 2 (a) Diagram depicting some of the relevant contra-DC parameters as functions of Δβ. (b) Experimental drop port spectrum of one of our devices as a function of Δβ.
Fig. 3
Fig. 3 Experimental drop port spectra for the devices from (a) “run 1,” (c) “run 2,” and (e) “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm. Experimental through port spectra for the devices from (b) “run 1,” (d) “run 2,” and (f) “run 3” with gap distances equal to 140 nm, 220 nm, 340 nm, and 400 nm.
Fig. 4
Fig. 4 (a) Experimental bandwidth at FWHM versus gap distance and (b) extracted coupling coefficient versus gap distance using the FWHM method. (c) Experimental bandwidth at FWHM versus corrugation width and (d) extracted coupling coefficient versus corrugation width for devices from “run 1” with a fixed gap distance of 280 nm using the FWHM method.
Fig. 5
Fig. 5 Comparison between the FWHM method, the null method, and the curve-fit method to determine |κ| for (a) “run 1,” (b) “run 2,” and (c) “run 3.” (d) Drop port spectrum of a contra-DC with a gap distance of 300 nm from “run 2,” which is chosen to illustrate that there can be multiple possible choices for the location of the first null to the left of the main lobe (the red dots indicate possible choices for the null location).
Fig. 6
Fig. 6 Theoretical predicted minimum bandwidth at FWHM versus coupling length including experimental data points from the devices with gap distances of 400 nm from the three fabrication runs.
Fig. 7
Fig. 7 (a) Experimental and simulated (using the extracted |κ| obtained using the FWHM method) drop port and through port spectra for a contra-DC (from “run 2”) with a gap distance equal to 140 nm. (b) Comparison between the experimental spectra from “run 2” and the simulated spectra using the extracted |κ| of 18466 m−1 from “run 1” for contra-DCs with gap distances of 140 nm. Comparison between the experimental (c) drop port spectra and (d) through port spectra from “run 1,” “run 2,” and “run 3” and the simulated spectra using the average extracted |κ| of 18856 m−1 from the three runs for contra-DCs with gap distances of 140 nm.
Fig. 8
Fig. 8 Comparison between the experimental and the simulated (using extracted |κ|s determined from the FWHM method) (a) maximum power coupling factor and (b) minimum power transmission factor versus gap distance.
Fig. 9
Fig. 9 Comparison between the experimental through port (a) group delay response and (b) dispersion response that were determined using the Hilbert transform method and the simulated results that were determined using the extracted |κ| of 19882 m−1 as well as the measured results using the OVA.
Fig. 10
Fig. 10 Diagram depicting some of the relevant parameters used in our derivation.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

| κ c | 2 = | A 2 ( 0 ) A 1 ( 0 ) | 2 = | κ | 2 sinh 2 ( s L ) s 2 cosh 2 ( s L ) + ( Δ β 2 ) 2 sinh 2 ( s L )
| t c | 2 = | A 1 ( L ) A 1 ( 0 ) | 2 = s 2 s 2 cosh 2 ( s L ) + ( Δ β 2 ) 2 sinh 2 ( s L )
κ = ω 4 ξ a * ( x , y ) ε m ( x , y ) ξ b ( x , y ) d x d y
| δ β H | = ( 2 π Δ f H c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) ) = ( 2 π Δ λ L λ L λ 0 ) ( n g , a ( λ 0 ) + n g , b ( λ 0 ) )
| δ β L | = ( 2 π Δ f L c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) ) = ( 2 π Δ λ H λ H λ 0 ) ( n g , a ( λ 0 ) + n g , b ( λ 0 ) )
δ β avg = | δ β H | + | δ β L | 2 = π Δ λ bw λ L λ H ( n g , a ( λ 0 ) + n g , b ( λ 0 ) )
| κ | 2 sinh 2 ( s L ) s 2 cosh 2 ( s L ) + ( δ β avg 2 ) 2 sinh 2 ( s L ) = 1 2 tanh 2 ( | κ | L )
| κ | = [ δ β avg 2 4 π 2 L 2 ] 1 2 ,
Δ λ bw min 2.783115 λ 0 2 π L [ n g , a ( λ 0 ) + n g , b ( λ 0 ) ]
δ β H = Δ β ( f H ) Δ β ( f 0 )
δ β H = β a ( f H ) + β b ( f H ) 2 π Λ β a ( f 0 ) β b ( f 0 ) + 2 π Λ
δ β H = β a ( f H ) + β b ( f H ) β a ( f 0 ) β b ( f 0 )
= ( 2 π c ) ( n a ( f H ) f H + n b ( f H ) f H n a ( f 0 ) f 0 n b ( f 0 ) f 0 )
= ( 2 π c ) ( n a ( f H ) f H n a ( f 0 ) f 0 + n b ( f H ) f H n b ( f 0 ) f 0 )
δ β H = ( 2 π Δ f H c ) ( n a ( f 0 ) + f H d n a d f | f 0 + n b ( f 0 ) + f H d n b d f | f 0 ) .
δ β H = ( 2 π Δ f H c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) )
δ β L = ( 2 π Δ f L c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) )
δ β avg = | δ β H | + | δ β L | 2
δ β avg = ( 2 π 2 c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) ) ( Δ f H + Δ f L )
δ β avg = ( π c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) ) ( f H + f L )
δ β avg = ( π c ) ( n g , a ( f 0 ) + n g , b ( f 0 ) ) ( c λ L c λ H )
δ β avg = ( π Δ λ bw λ L λ H ) ( n g , a ( λ 0 ) + n g , b ( λ 0 ) )
2 | κ | 2 sinh 2 ( s L ) tanh 2 ( | κ | L ) = s 2 cosh 2 ( s L ) + ( δ β avg 2 ) 2 sinh 2 ( s L ) .
lim κ 0 2 | κ | 2 sinh 2 ( s L ) tanh 2 ( | κ | L ) = lim κ 0 [ s 2 cosh 2 ( s L ) + ( δ β avg 2 ) 2 sinh 2 ( s L ) ]
cos ( δ β avg L ) 1 L 2 = δ β avg 2 4
cos ( δ β avg L ) + ( δ β avg L ) 2 4 1 = 0 .
Δ λ bw min = 2.783115 λ L λ H π L [ n g , a ( λ 0 ) + n g , b ( λ 0 ) ]
Δ λ bw min 2.783115 λ 0 2 π L [ n g , a ( λ 0 ) + n g , b ( λ 0 ) ] .

Metrics