Abstract

A tunable microstructure optical fiber for different orbital angular momentum states generation is proposed and investigated by simulation. The microstructure optical fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material of the microstructure fiber is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated via physical parameters, leading to the conversion between circular polarized fundamental mode and different orbital angular momentum states at tunable operating wavelengths. A theoretical model is established and the coupling mechanism is systematically analyzed and investigated based on coupled mode theory. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable refractive index conditions. The proposed fiber coupler is flexible and compact, making it a good candidate for tunable OAM generation and sensing systems.

© 2015 Optical Society of America

1. Introduction

Orbital angular momentum (OAM) beams, which carry OAM of L per photon, have found a variety of applications in optical tweezers and atom manipulation [1–3 ], nano-scale microscopy, as well as optical communications [4–6 ]. Research on optical vortex beams began in free space while fiber was not available at that time, and has been extensively studied for decades [7,8 ]. In 1998, optical fiber which can transmit OAM modes was first discussed by Alexeyev [9], and then the corresponding fiber OAM research boom followed in the last decade. Specially designed OAM fibers (which can support OAM modes and usually possess a high refractive index ring in fiber core) [10–12 ] and different approaches to generate OAM states in fiber have been proposed and demonstrated. Twisted special fibers [13–16 ], microbend fiber gratings [17] and dual-grating based on acoustic-optic interaction [18] are demonstrated to realize the excitation of OAM states. Novel compact OAM couplers with a simple structure utilized different kinds of Schott glass were designed by Y. Yan and his associates to realize the excitation of higher order OAM modes [19]. However, the high refractive index of Schott glass and the square core make it unsuitable for directly spliced with conventional fibers. Furthermore, with a fixed structure, the wavelength of the excited OAM mode in the above-mentioned fiber-based OAM coupler is also fixed, and only one kind of OAM mode can be generated, which brings difficulty to the development of highly capacity and integrated all-fiber OAM communication system.

In this paper, we design and show a new kind of microstructure fiber for different OAM modes generation at tunable operating wavelengths. The microstructure fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive indices can be modulated via physical parameters, allowing for the coupling between circularly polarized fundamental mode and different higher order OAM modes at tunable resonant wavelengths. We build a theoretical model, systematically analyze and explain the physical mechanism of mode couplings in this fiber based on coupled mode theory. The corresponding refractive index (RI) matching conditions, 3 dB spectral bandwidths, the tuning rates of resonant wavelengths, and the coupling lengths for different OAM modes are investigated in detail. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable RI conditions.

2. Fiber structure

The diameter of the designed microstructure fiber is 125 μm, and the background material of the microstructure fiber is made of pure silica. This fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The diameters of the hollow core and four small air holes are 4 μm and 2 μm, respectively. The ring size is also fixed with an inner radius of 5 μm and an outer radius of 6.5 μm, and the refractive index (RI) difference between the ring and background silica is 0.08, as shown in Fig. 1 .

 figure: Fig. 1

Fig. 1 Cross section and refractive index distribution of the designed fiber.

Download Full Size | PPT Slide | PDF

The hollow core and the surrounded four small air holes can be infiltrated by optical functional materials whose refractive indices are modulated by physical parameters, such as temperature, voltage, magnetic field, light intensity. The infiltrated material changes the dispersion curves of the fiber modes, allowing for the coupling between the input circularly polarized fundamental mode and the higher-order OAM modes in the fiber ring. Moreover, by regulating the RI of the functional material, this fiber can realize the coupling between circularly polarized fundamental mode and different higher order OAM modes at tunable operating wavelengths. The detailed analysis and calculations are described in the next section.

3. Theoretical model and results

To analyze the mechanism of mode conversion in the proposed optical fiber, we divide this fiber structure into two parts, as shown in Fig. 2 . Part ① is composed of four satellite holes, and part ② is a symmetric multilayered fiber which consists of a circular fiber core and a high refractive index ring. Without part ①, the fundamental core mode and the higher order mode in the high refractive index ring are orthogonal to each other in the circularly symmetric multilayered fiber. While in the proposed fiber, the surrounded four cylinders break the circular symmetry of the multilayered fiber and act as spatially dependent perturbation for this fiber, resulting in the mode conversion between fundamental core mode and the corresponding higher order modes in the high refractive index ring within a certain wavelength range.

 figure: Fig. 2

Fig. 2 The four surrounded cylinders act as perturbation for a symmetric multilayered fiber.

Download Full Size | PPT Slide | PDF

When the incident light propagates from the single mode fiber to the proposed fiber core, the electric fields of the fundamental core mode A and the high order mode B in the ring can be expressed as:

EA(r)=A(z)EA(x,y)exp(iβAz),
EB(r)=B(z)EB(x,y)exp(iβBz).
Where EA(x,y)and EB(x,y)are normalized mode fields, βAand βB are the mode-propagation constants, and the coefficients A(z) and B(z) which varies with zrepresent the amplitudes of the optical field.

The existence of the four satellite cylinders will induce a spatially dependent perturbation which can be represented by a perturbing polarization ΔP(r) to the circularly symmetric multilayered fiber, leading to the energy exchange between fundamental core mode and higher order modes in the high index ring.

According to the coupled-mode theory [20], the coefficients A(z) and B(z) satisfy the following conditions:

dA(z)dz=eiβAziω4EA*ΔPdxdy,
dB(z)dz=eiβBziω4EB*ΔPdxdy,
where ω is the optical frequency. The perturbation ΔPcan be expressed by:
ΔP=ΔεE(r)=Δε[EA(r)+EB(r)],
where Δε is the perturbation to the permittivity which is caused by the existence of the four surrounded cylinders.

Thus the coefficients A(z) and B(z) of the two resonant modes can be obtained:

dA(z)dz=iκAAA+iκABBei(βBβA)z,
dB(z)dz=iκBBB+iκBAAei(βAβB)z.
The mode coupling coefficient κ is given by:
κνμ=ω4Eν*(x,y)ΔεEμ(x,y)dxdy,
The mode self-coupling terms κAA and κBB in Eqs. (6) and (7) mean a change in the propagation constants of the two modes as a result of the perturbation. Based on this calculation, the propagation constants of the two modes are βAand βB in the circularly symmetric multilayered fiber. While in the proposed fiber, the two modes propagate with the modified propagation constants βA+κAA and βB+κBB, respectively. The mode coupling terms κAB and κBA in Eqs. (6) and (7) mean the energy exchange between the two modes. According to the symmetrical characteristics of the two modes, without the four satellite holes around the fiber core, the overlap integral of the electric fields between the fundamental mode in fiber core and the higher-order mode in high index ring is equal to zero, and there’s no resonance between the two modes. Thus the four satellite holes are specially designed to break the circular symmetry of this fiber and make the mode coupling coefficient κAB or κBA to be nonzero. In the lossless fiber, the coupling coefficients satisfy: κAB*=κBA.

The mode self-coupling terms can be removed by expressing the coefficients A(z) and B(z) as A(z)=A˜(z)eiκAAz and B(z)=B˜(z)eiκBBz. So the coupled mode equations can be simplified to:

dA˜dz=iκABB˜ei2δz,
dB˜dz=iκBAA˜ei2δz.
Where δ is the phase mismatching coefficient, δ=(βB+κBBβAκAA)/2.

We suppose that the light power is only launched into the fundamental mode in fiber core at the initial position, and the initial value are A˜(0)=1 and B˜(0)=0. On this condition, the coupled mode equation can be solved as:

A˜(z)=(cosγziδγsinγz)eiδz,
B˜(z)=(iκBAγsinγz)eiδz.
Where γ=κABκBA+δ2. Accordingly, the power of the two modes also varies with the fiber length:
PA(z)=|A(z)|2=|A˜(z)|2=cos2γz+δ2γ2sin2γz,
PB(z)=|B(z)|2=|B˜(z)|2=|κBA|2γ2sin2γz,
Thus the mode coupling efficiency can be expressed as:
η=PB(z)PA(0)=|κBA|2γ2sin2γz,
Thus the maximum power transfer occurs at the length of: lc=π/2γ, which is also defined as the coupling length, and the complete power transfer will happen at a particular optical frequency when the phase matching condition is satisfied: δ=0.

When we divide the designed fiber into two parts and consider the proposed structure as a symmetric multilayered fiber affected by perturbation, the mode coupling mechanism of the two modes can be solved by the coupled-mode theory. While we consider the proposed fiber as a whole waveguide, the total optical field of this fiber behaves as a pair of supermodes. As we have discussed above, Eqs. (11) and (12) show the variation of the mode field amplitudes for the fundamental core mode and high order mode in the high index ring. So the total mode field in the proposed fiber can be obtained as the combination of the two mode fields:

E(r)=EA(x,y)(cosγziδγsinγz)ei(βA+κAA+δ)z+EB(x,y)(iκBAγsinγz)ei(βB+κBBδ)z=(γδ)EA(x,y)+κBAEB(x,y)2γei(β¯+γ)z+(γ+δ)EA(x,y)κBAEB(x,y)2γei(β¯γ)z=E1(x,y)eiβ1z+E2(x,y)eiβ2z
Where
β¯=βB+κBB+βA+κAA2,
E1(x,y)=(γδ)EA(x,y)+κBAEB(x,y)2γ,
E2(x,y)=(γ+δ)EA(x,y)κBAEB(x,y)2γ,
And β1=β¯+γ, β2=β¯γ. E1(x,y) and E2(x,y) are independent of z. Equation (16) shows that the total field in the proposed fiber structure is a linear combination of two independent normal mode fields E1(x,y) and E2(x,y) with different propagation constants β1 and β2, respectively. Such modes are known as the supermodes in this fiber. Thus Eq. (16) indicates that if we consider this model as a whole fiber waveguide, the supermodes are the normal mode solutions of this fiber, and the variation of the mode field amplitudes in the fiber core and the high index ring can also be expressed as the interference of this pair of supermodes.

Next, we employ a commercial finite element code (Comsol) to investigate the dispersion relation of the resonant normal modes and the corresponding supermodes in this fiber. The refractive index of background silica is set to be 1.444 at 1550 nm and its material dispersion is considered by the Sellmeier equation [21]. We fill the five air holes with refractive index matching fluid which is produced by Cargille Laboratories Inc as a sample, whose refractive index is 1.473 for 1550 nm at 25°C and has a thermal-optic coefficient of −0.0004 refractive index unit per centigrade (RIU/°C). Thus the RI of the fluid can be regulated and controlled by external temperature. The material dispersion of the liquid is also fitted by the Cauchy equation [22].

We first built the whole fiber structure model in COMSOL and accurately calculated the dispersion curves of supermodes in the proposed fiber, which are shown in the left of Fig. 3 (hyperbolic lines). The strongest mode coupling occurs at the waist of the hyperbolic curves (δ=0), and the wavelength of the waist point is also defined as the coupling wavelength λc. The two pairs of supermodes in the insets are the superposition of HE11&EH51 modes (inset (1)) and HE11&HE71 modes (inset (2)). The four dispersion curves of supermodes in the insets exhibit a repulsion phenomenon in spectral branches, which is also defined as the avoided-crossing effect in microstructure fiber [23]. Accordingly, the modal energy distributions of supermodes formed from the resonant modes EH51 and HE71 at the coupling wavelengths are shown in the middle of Fig. 3. To ensure the resonant wavelengths are near 1550 nm, we adjust the external temperature at 14°C so that the RI of the fluid will change to 1.477617 at 1550 nm. The strongest mode coupling occurs at the two waist points (point I and point II) of the three dispersion curves: λEH51=1547.04nm for HE11 and EH51 modes and λHE71=1550nm for HE11 and HE71 modes.

 figure: Fig. 3

Fig. 3 Dispersion relationships of the resonant HE11, HE71, EH51 modes and the corresponding supermodes. The modal energy distributions of supermodes are shown at the right of this figure.

Download Full Size | PPT Slide | PDF

Next, we built the symmetric multilayered fiber model in COMSOL and calculated the new propagation constants of the resonant modes HE11, HE71 and EH51 based on their mode self-coupling coefficients obtained by Eq. (8), as shown in the right of Fig. 3. There exist two crossing points in the dispersion curves where the strongest mode couplings will occur. However, the wavelength locations of the crossing points don’t accurately match the waist of the supermodes. This slight deviation is mainly because the calculations of the self-coupling coefficients based on the coupled-mode theory do not consider the change of mode field distribution after the perturbation. In fact, the introduction of the four cylinders has obvious influence on the distribution of mode fields, especially the fundamental core mode. Thus the self-coupling coefficients can only represent the approximate modifications of new propagation constants.

From Eq. (15) we can indicate that if the fiber length satisfies the maximum power transfer condition, the 3 dB spectral bandwidth range can be defined as:

|κBA|2γ212,
Due to the relationship: κAB*=κBAin the lossless fiber, Eq. (20) can be simplified to |δ||κAB|. Within this range, the two modes are well coupled, and the 3 dB spectral bandwidth can also be calculated from this equation. Moreover, δ=0for perfect phase matching is achieved at the coupling wavelength. Therefore, the effective index differences between the two supermodes in the insets at the coupling wavelengths match the condition: Δnδ=0=λ|κAB|/π. So the coupling length of the corresponding resonance is determined by the waist of the hyperbolic curves: lc=λ/2Δnδ=0. This principle also applies to other resonant modes, and the detailed 3 dB spectral bandwidth and coupling length for each mode is calculated and listed later in this paper.

Similarly, the coupling between HE11 mode and higher order modes HE91 and EH71 can also be realized by altering the RI of the fluid to be 1.452817 at 75°C. The dispersion relationships for the corresponding supermodes are shown at the left of Fig. 4 . Similarly, as shown in the right of Fig. 4, the dispersion curves of the resonant modes obtained via the mode-coupling theory also have a slight deviation compared to that of the supermodes. According to the dispersion curve of supermodes, the strongest mode-coupling occurs at wavelengths λEH71=1553.4nm for HE11 and EH71 modes and λHE91=1549.86 nm for HE11 and HE91 modes, respectively.

 figure: Fig. 4

Fig. 4 Modified dispersion relationships of the resonant HE11, HE91, EH71 modes and the corresponding supermodes. The modal energy distributions of supermodes are shown at the right of this figure.

Download Full Size | PPT Slide | PDF

In optical fibers, OAM modes exist as π2-phase-shifted linear combinations of vector modes HEL+1,m or EHL1,m [24]. This theorem can be expressed in equations [25]:

OAM±L,m±=HEL+1,meven±iHEL+1,modd,
OAM±L,m=EHL1,meven±iEHL1,modd.

Where L represents the topological charge, which means the number of 2π phase shifts along the circle around the beam axis [7], and m is the number of concentric rings in the intensity profile of the modes. The superscript sign in OAM±L,m± or OAM±L,m denotes the direction of the circular polarization, and ±L indicates the direction of the wave front rotation.

The fiber we designed can convert HE11even and HE11odd mode to different higher order modes simultaneously in different conditions at a specific wavelength. Take Fig. 3 as an example, if we input circularly polarized mode HE11even±iHE11odd into the fiber core, the output mode in the high-index ring will be OAM±61±=HE71even±iHE71odd with an orbital angular momentum of ±6 per photon at the wavelength of 1550.00 nm and OAM±61=EH51even±iEH51odd at the wavelength of 1547.04 nm. Thus the proposed fiber can realize the conversion between circular polarized fundamental mode and different higher-order orbital angular momentum fiber modes.

If we continuously increase the refractive index of the fluid, more lower-order eigenmodes will be excited respectively. However, the corresponding RI is beyond the variation range of the fluid mentioned above at work temperature. So we change the filled refractive index matching fluid to another type of the same series whose RI is 1.500 for 1550 nm at 25°C and has the same thermal-optic coefficient. We calculated the excitation of four lower-order eigenmodes including EH31, HE51, EH11 and HE31 modes under this fluid material respectively, and the detailed generation information is shown below. Therefore, if the input light is circularly polarized mode HE11even±iHE11odd, another four different vector modes OAM±41±=HE51even±iHE51odd,OAM±41=EH31even±iEH31odd,OAM±21=EH11even±iEH11oddand OAM±21±=HE31even±iHE31odd will be generated at different temperature conditions.

With the RI variation of the filled material, not only different fiber modes can be excited, but also the resonant wavelengths for each mode can be controlled. We alter the RI of the corresponding fluid material for each mode at a step of 104, and calculate the resonant wavelength shifts for different resonant modes. Figure 5 shows the variations of the coupling wavelengths for different modes as RI changes, and Table 1 lists the detailed regulation rates of the resonant wavelengths for different fiber modes. The maximum tuning rate (−55683.8 nm/RIU) of coupling wavelength is 111 nm (from 1603 nm to 1492 nm) within 0.002 RI fluctuations for HE31 mode, and the minimum rate (−8149.6 nm/RIU) is 16 nm (from 1539.5 nm to 1555.5 nm) within 0.002 RI fluctuations for HE91 mode. The wavelength tuning rate is related to the RI change coefficient of the filled material. For the fluid with a negative thermal-optic coefficient of −0.0004 RIU/°C utilized in this paper, the maximum and minimum temperature-tuning rates for HE31 mode and HE91 mode are 22.3 nm/°C and 3.38 nm/°C, respectively.

 figure: Fig. 5

Fig. 5 The variations of coupling wavelengths as RI changes for different modes.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. The regulation rates of the resonant wavelengths for different excited modes.

According to the above formula and the simulation results, we calculated and summarized a detailed table to list the generation information of the eight eigenmodes around the resonant wavelength of 1550 nm, including the corresponding RI of the filled material, the resonant wavelengths, 3 dB spectral bandwidths and coupling lengths, respectively. As shown in Table 2 , different modes have different coupling lengths, and the mode coupling efficiency can extend 100% if the fiber length is just the odd times of the coupling length for a certain mode without consideration of transmission loss at the coupling wavelength in theory. Thus the fiber length can be designed specifically for every OAM mode. The minimum fiber length is 1.39 mm for the generation of HE51 mode, and the maximum fiber length can be designed to be 33.80 mm to generate HE71 mode. So this microstructure fiber can be applied as a wavelength tunable broadband high efficiency mode coupler for a single OAM mode generation.

Tables Icon

Table 2. Detailed parameters for the generation of different modes.

Moreover, we can also unify the fiber length at a certain value for generating several OAM modes. For example, if we fill the air holes with an index matching fluid with RI of 1.500 for 1550 nm at 25°C, as has been simulated above, the output will be different OAM modes: OAM±41±mode (42.0°C), OAM±41mode (43.52°C), OAM±21mode (21.64°C) and OAM±21± mode (18.3°C) at the same resonant wavelength of 1550 nm. Thus we can fix the fiber length at 7.2 mm to respectively generate these eight OAM modes under different temperatures, and the energy conversion efficiencies are 92.2% (OAM±41±), 96.2% (OAM±41), 61.1% (OAM±21) and 61.1% (OAM±21±) for the eight OAM modes at 1550 nm, respectively. The actual number of the excited OAM modes is dependent on the RI adjustable range of the material filled in the air holes. With a wider RI adjustable range, more OAM modes can be excited with different RI conditions.

The proposed fiber device is controllable and flexible, for the functional material infiltrated in the hollow core and four small air holes can be any optical material whose refractive index matches the corresponding resonant conditions and can be modulated via physical parameters. For example, the refractive index matching fluid with a negative thermal-optic coefficient (−0.0004 RIU/°C) we have used in this paper, the magnetic fluid whose RI can be modulated by external magnetic field [26], the photoinduced azo-polymer mixture with a tunable RI which is dependent on light irradiation [27], and so on.

4. Conclusion

A flexible and compact microstructure fiber for different orbital angular momentum states generation at tunable operating wavelengths has been proposed and investigated by simulation. The fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes, and the background material is pure silica, which is more compatible to be integrated with conventional optical fibers. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated by physical parameters, leading to the coupling between circularly polarized fundamental mode and different higher order OAM modes at tunable operating wavelengths. We build a theoretical model and systematically analyze the coupling mechanism based on coupled mode theory. The dispersion relations for different resonant eigenmodes and supermodes are investigated. And the corresponding refractive index matching conditions, 3 dB spectral bandwidths, the tuning rates of resonant wavelengths and the coupling lengths for different excited modes are calculated and listed in this paper. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable RI conditions. The proposed microstructure fiber is expected to be applied in tunable OAM generation and sensing systems.

Acknowledgment

This work was supported by the National Key Basic Research and Development Program of China (Grant No. 2011CB301701), the National Natural Science Foundation of China (Grant Nos. 61322510, 11174154 and 11174155), the Tianjin Natural Science Foundation (Grant No. 14JCZDJC31300), and the National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No. 201410055072).

References and links

1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]  

2. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014). [CrossRef]   [PubMed]  

3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

4. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

5. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014). [CrossRef]   [PubMed]  

6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]   [PubMed]  

7. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

8. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004). [CrossRef]  

9. A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

10. C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23(8), 10553–10563 (2015). [CrossRef]   [PubMed]  

11. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015). [CrossRef]  

12. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015). [CrossRef]   [PubMed]  

13. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008). [CrossRef]  

14. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013). [CrossRef]   [PubMed]  

15. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013). [CrossRef]  

16. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012). [CrossRef]   [PubMed]  

17. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012). [CrossRef]   [PubMed]  

18. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006). [CrossRef]   [PubMed]  

19. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012). [CrossRef]   [PubMed]  

20. J. Liu, Photonic Devices (Cambridge University, 2005), Ch. 4.

21. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965). [CrossRef]  

22. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22(19), 3070–3072 (1983). [CrossRef]   [PubMed]  

23. T. Han, Y. G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 35(12), 2061–2063 (2010). [CrossRef]   [PubMed]  

24. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

25. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014). [CrossRef]   [PubMed]  

26. Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011). [CrossRef]  

27. X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010). [CrossRef]  

References

  • View by:

  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  2. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
    [Crossref] [PubMed]
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  4. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  7. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).
  8. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  9. A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).
  10. C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23(8), 10553–10563 (2015).
    [Crossref] [PubMed]
  11. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015).
    [Crossref]
  12. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
    [Crossref] [PubMed]
  13. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
    [Crossref]
  14. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
    [Crossref] [PubMed]
  15. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
    [Crossref]
  16. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
    [Crossref] [PubMed]
  17. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [Crossref] [PubMed]
  18. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref] [PubMed]
  19. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
    [Crossref] [PubMed]
  20. J. Liu, Photonic Devices (Cambridge University, 2005), Ch. 4.
  21. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  22. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22(19), 3070–3072 (1983).
    [Crossref] [PubMed]
  23. T. Han, Y. G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 35(12), 2061–2063 (2010).
    [Crossref] [PubMed]
  24. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).
  25. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  26. Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
    [Crossref]
  27. X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
    [Crossref]

2015 (4)

2014 (3)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[Crossref] [PubMed]

2013 (4)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

2012 (4)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

2011 (3)

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (2)

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

T. Han, Y. G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 35(12), 2061–2063 (2010).
[Crossref] [PubMed]

2008 (1)

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

2006 (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

2004 (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

1998 (1)

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

1983 (1)

1965 (1)

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Alexeyev, A. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Alexeyev, C. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Barnett, S. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

Biancalana, F.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Brunet, C.

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Cheng, X.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Cooper, P. R.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Dolinar, S.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dolinar, S. J.

Fadeyeva, T. A.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Fazal, I. M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Golowich, S.

Golowich, S. E.

Gregg, P.

Han, T.

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Kristensen, P.

Lapin, B. P.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

LaRochelle, S.

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Liu, B.

Liu, Y. G.

Luo, Y.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Lv, R.

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

Malitson, I.

Messaddeq, Y.

Milione, G.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015).
[Crossref]

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rusch, L. A.

Russell, P. St. J.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Soskin, M. S.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

St. J. Russell, P.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

Tai, B.

Tian, X.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ung, B.

Vaity, P.

Volyar, A. V.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, Q.

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

Wang, Z.

Weiss, T.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Wong, G. K. L.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Wu, W.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Xi, X. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Yang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

Yavorsky, M. A.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, L.

Zhang, Q.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Zhang, Y.

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zhu, B.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Zou, B.

Zou, G.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

Adv. Opt. Photonics (1)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7, 66–106 (2015).

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible all-optical modulation based on evanescent wave absorption of a single-mode fiber with azo-polymer overlay,” IEEE Photonics Technol. Lett. 22(18), 1352–1354 (2010).
[Crossref]

J. Magn. Magn. Mater. (1)

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323(23), 2987–2996 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Nat. Commun. (2)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (2)

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013).
[Crossref]

Phys. Rev. Lett. (2)

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St. J. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref] [PubMed]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Science (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Other (1)

J. Liu, Photonic Devices (Cambridge University, 2005), Ch. 4.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cross section and refractive index distribution of the designed fiber.
Fig. 2
Fig. 2 The four surrounded cylinders act as perturbation for a symmetric multilayered fiber.
Fig. 3
Fig. 3 Dispersion relationships of the resonant HE11, HE71, EH51 modes and the corresponding supermodes. The modal energy distributions of supermodes are shown at the right of this figure.
Fig. 4
Fig. 4 Modified dispersion relationships of the resonant HE11, HE91, EH71 modes and the corresponding supermodes. The modal energy distributions of supermodes are shown at the right of this figure.
Fig. 5
Fig. 5 The variations of coupling wavelengths as RI changes for different modes.

Tables (2)

Tables Icon

Table 1 The regulation rates of the resonant wavelengths for different excited modes.

Tables Icon

Table 2 Detailed parameters for the generation of different modes.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E A ( r ) = A ( z ) E A ( x , y ) exp ( i β A z ) ,
E B ( r ) = B ( z ) E B ( x , y ) exp ( i β B z ) .
d A ( z ) d z = e i β A z i ω 4 E A * Δ P d x d y ,
d B ( z ) d z = e i β B z i ω 4 E B * Δ P d x d y ,
Δ P = Δ ε E ( r ) = Δ ε [ E A ( r ) + E B ( r ) ] ,
d A ( z ) d z = i κ A A A + i κ A B B e i ( β B β A ) z ,
d B ( z ) d z = i κ B B B + i κ B A A e i ( β A β B ) z .
κ ν μ = ω 4 E ν * ( x , y ) Δ ε E μ ( x , y ) d x d y ,
d A ˜ d z = i κ A B B ˜ e i 2 δ z ,
d B ˜ d z = i κ B A A ˜ e i 2 δ z .
A ˜ ( z ) = ( cos γ z i δ γ sin γ z ) e i δ z ,
B ˜ ( z ) = ( i κ B A γ sin γ z ) e i δ z .
P A ( z ) = | A ( z ) | 2 = | A ˜ ( z ) | 2 = cos 2 γ z + δ 2 γ 2 sin 2 γ z ,
P B ( z ) = | B ( z ) | 2 = | B ˜ ( z ) | 2 = | κ B A | 2 γ 2 sin 2 γ z ,
η = P B ( z ) P A ( 0 ) = | κ B A | 2 γ 2 sin 2 γ z ,
E ( r ) = E A ( x , y ) ( cos γ z i δ γ sin γ z ) e i ( β A + κ A A + δ ) z + E B ( x , y ) ( i κ B A γ sin γ z ) e i ( β B + κ B B δ ) z = ( γ δ ) E A ( x , y ) + κ B A E B ( x , y ) 2 γ e i ( β ¯ + γ ) z + ( γ + δ ) E A ( x , y ) κ B A E B ( x , y ) 2 γ e i ( β ¯ γ ) z = E 1 ( x , y ) e i β 1 z + E 2 ( x , y ) e i β 2 z
β ¯ = β B + κ B B + β A + κ A A 2 ,
E 1 ( x , y ) = ( γ δ ) E A ( x , y ) + κ B A E B ( x , y ) 2 γ ,
E 2 ( x , y ) = ( γ + δ ) E A ( x , y ) κ B A E B ( x , y ) 2 γ ,
| κ B A | 2 γ 2 1 2 ,
O A M ± L , m ± = H E L + 1 , m e v e n ± i H E L + 1 , m o d d ,
O A M ± L , m = E H L 1 , m e v e n ± i E H L 1 , m o d d .

Metrics