Abstract

Dual-comb system parameters have significant impacts on the ranging accuracy. We present a theoretical model and a numerical simulation method for the parameter optimization of a dual-comb ranging system. With this method we investigate the impacts of repetition rate difference, repetition rate, and carrier-envelope-offset frequency on the ranging accuracy. Firstly, the simulation results suggest a series of discrete zones of repetition rate difference in an optimal range, which are consistent with the experimental results. Secondly, the simulation results of the repetition rate indicate that a higher repetition rate is very favorable to improve the ranging accuracy. Finally, the simulation results suggest a series of discrete optimal ranges of the carrier-envelope-offset frequency for the dual-comb system. The simulated results were verified by our experiments.

© 2015 Optical Society of America

1. Introduction

A mode-lock laser provides a series of optical pulses separated by the travel time of the laser ring cavity. When its repetition rate and carrier-envelope-offset frequency are stabilized referencing to a frequency standard (e.g. an atom clock), it becomes an optical frequency comb that can be used as an ultra-stable ruler in the space, time and frequency domains [1]. In the past 15 years, optical frequency combs have enabled revolutionary progress in distance metrology [2]. Generally, there are two ways to use optical frequency combs for distance measurement. One is to use the comb as a wavelength or frequency standard for CW lasers [3–7 ]. The other is to use the comb as a light source directly. Due to the inherent advantages of the comb itself, various principles have been developed for distance measurement, e.g. using the inter-mode beat signals of the comb [8, 9 ], using dispersive interferometry [10–12 ], using the pulse separation distance as a ruler [13–21 ], and dual-comb method [22–27 ]. In particular, the dual-comb method which can realize large dynamic range measurements of absolute distance with high precision at high speed has received more and more attention. This concept is also widely used in Fourier transform spectroscopy [28–33 ].

In the dual-comb system, several parameters have been demonstrated to have significant impacts on the final results, e.g., timing jitter [33, 34 ] and repetition rate difference. In a previous work [35], we investigated the influence of repetition rate difference (Δf r) on the ranging accuracy of a dual-comb system by changing experimental parameters. We showed an optimal range of Δf r, and demonstrated the impacts of Δf r on sub-sampling and the ranging results. However, such experimental optimization is laborious and time consuming. Furthermore, some important parameters are difficult to optimize experimentally. For example, the repetition rate is another factor of the equivalent sampling rate. However, due to limited tunable range of repetition rate, it is impractical to prepare a series of laser pairs with different repetition rates to investigate its impacts on measurement results.

In order to resolve the above problem, we developed a theoretical model and numerical simulation method for dual-comb system in the present study. Firstly, we simulated the influences of Δf r and made a comparison with our previous experimental results to demonstrate the efficacy of the model and simulation method. Secondly, we investigated the impacts of repetition rate on the ranging accuracy by using this simulation method. Thirdly, we simulated the impacts of carrier-envelope-offset frequency which was normally ignored in dual-comb distance measurement based on time-of-flight method [24–26 ]. Finally, we did an experiment to verify the simulation results of carrier-envelope-offset frequency.

2. Principle and theoretical model of dual-comb distance measurement

2.1 Principle

Figure 1 shows the schematic view of the dual-comb ranging system. One comb with a repetition rate of f r serves as the signal laser, and the other with a repetition rate of (f r + Δf r) serves as the local oscillator (LO) laser. The pulse train from the signal laser is introduced into a Michelson interferometer. In the output beam of the interferometer, there are two staggered co-propagating pulse trains separated by a time delay (Δt) caused by the path length difference (D) of the two arms in the interferometer [Fig. 1(a)]. Due to the minor difference of repetition rate, the pulse train from the LO laser can realize optical sampling of the two staggered pulse trains from the interferometer with a time slip of ΔT r ≈Δf r/f r 2, yielding a pair of cross-correlation interferograms in each updating period of T update = 1/Δf r [Fig. 1(b)].

 figure: Fig. 1

Fig. 1 Schematic of dual-comb ranging system. BS1–2: beam splitter; CR1–2: corner reflector; BPF: band-pass filter; PD: photodetector; LPF: low-pass filter. (a) Output beam of the interferometer at point A in the left figure. (b) Cross-correlation interferograms from the dual-comb experimental setup at point B. The inset shows an expanded view of the interferogram.

Download Full Size | PPT Slide | PDF

To extract the target distance from the cross-correlation interferograms obtained above, one solution is to fast Fourier transform (FFT) the cross-correlation interferograms in the RF domain, and obtain the time delay Δτ between the two interferograms in real time scale according to the phase shift in frequency domain. Another solution is to Hilbert transform the signal to get the envelopes of the interferograms, and then use Gaussian fitting to locate the peak centers of the interferograms to get Δτ. By dividing the scaling factor of f r /Δf r, the time delay (Δt) between reference and target pulses in effective time scale can be obtained as Δt = ΔτΔf r/f r [22,35 ]. Consequently, the target distance D can be calculated by

D=c2ngΔt=c2ngΔτΔfrfr,
where c is the speed of light in vacuum, n g is the group refractive index of air.

2.2 Theoretical model

In order to simulate the dual-comb ranging system, we set up a theoretical model first. The electric field of each ultrashort pulse can be treated as a carrier signal multiplied by the envelope function [36]:

Ep(t)=E^(t)exp[i(ωt+ϕce)],
where E^(t)= a0exp[(tc0)2] is the envelope function, ω is the angular frequency of the carrier and ϕ ce is the carrier-envelope phase. In this system, Gauss function is used to describe the envelope of pulse, the parameters a 0 and c 0 can be determined according to the parameters of the real pulse from the laser.

Then let us consider an infinite ultrashort pulse train with a period of T, it can expressed by

ET(t)=n=Ep(tnT).
In this pulse train, ϕ ce evolves from successive pulses by a fixed amount Δϕ ce. For the ease of calculation, we designate ϕ ce = nΔϕ ce. The repetition rate of this pulse train is f r = 1/T, and the carrier-envelope-offset frequency is f ceo = Δϕ ce f r/2π. When the pulse train travels a distance x, it can be expressed by
ET,Δϕce(x,t)=n=Ep[(txc)nT].
We denote the repetition periods and the carrier-envelope-offset phase slips by Ti and Δϕ ce i, respectively, where i = 1 for the signal laser and i = 2 for the LO laser. We also denote the path lengths of reference arm and measurement arm by x 1 and x 2, respectively. The signals arriving at the photodetector can be given by:

E=ET1,Δϕce1(x1,t)+ET1,Δϕce1(x2,t)+ET2,Δϕce2(0,t).

According to this equation we can use a numerical method to simulate the cross-correlation interferograms generated by the dual-comb system. Note that the refractive index of air is not considered in this model for simplicity.

3. Simulation of dual-comb distance measurement

In order to investigate the impacts of the dual-comb system parameters on the ranging performance, we use a numerical method to generate the cross-correlation interferograms according to the theoretical model described above. In the simulation, the general parameters are the same as in our experimental system [35], i.e., the repetition rate of LO laser is 56.17 MHz while that of signal laser is tunable from 56.16 to 56.185MHz, the center wavelength is 1560 nm, the pulse width is 3.06 ps (after a band-pass-filter with 200 GHz bandwidth), and the target distance is set to 0.5 m. Figure 2 shows samples of simulated cross-correlation interferograms of the dual-comb system. In Fig. 2(a), there are two peaks that stand for the cross-correlation interferograms. The left one is generated by the reference pulses and LO pulses, and the right one is generated by the measurement pulses and the LO pulses. Figure 2(b) shows an expanded view of the right peak. The simulated cross-correlation interferograms are very similar to that of the real experimental system shown in Figs. 1(a) and 1(b).

 figure: Fig. 2

Fig. 2 Simulated cross-correlation interferograms of the dual-comb system.

Download Full Size | PPT Slide | PDF

Consider the timing jitter effect of real experimental system, we set a random noise within [−1.75, 1.75] ps on the repetition period T of the signal laser in the simulation. By FFT of the simulated interferograms, we can get the path length difference (x 2x 1), i.e. target distance D. The difference between the preset distance and the result obtained by FFT method can be used to represent the ranging accuracy (δ D) in simulation.

3.1 Impacts of repetition rate difference

In the dual-comb system, when the repetition rate of one laser (f r) is fixed, the repetition rate difference (Δf r) decides the equivalent sampling rate (f s = f r 2f r) in optical frequency domain. According to Eq. (1), the relative uncertainty of ranging result U D/D can be given by

UD/D=[(Ung/ng)2+(UΔτ/Δτ)2+(Ufr/Δfr)2+(Ufr/fr)2]1/2.
Consider the magnitude of the 4 terms on the right side, this equation can be simplified to UD/D=[(UΔτ/Δτ)2+(Ufr/Δfr)2]1/2 [26, 35 ]. Obviously, a larger Δf r is helpful to decrease the ranging uncertainty caused by the fluctuation of f r. On the other hand, a larger Δf r leads to a lower equivalent sampling rate, which is not good for recover signals in sampling. Additionally, too low sampling rate will increase the uncertainty of time measurement in FFT [35]. Therefore, optimization of Δf r is essential in the dual-comb system.

In our previous study, we have demonstrated experimental optimization of the repetition rate difference in a dual-comb ranging system [35]. In the present simulation, we set the system parameters the same as in the experimental system. When we tune the repetition rate difference from 100 Hz to more than 6000 Hz, there is an optimal range around 3400 Hz for distance measurement [Fig. 3(a) ]. The simulation results agree with the experimental results reported in [35] very well. The wide band of simulation results is resulted from the random noise setting of the repetition rate.

 figure: Fig. 3

Fig. 3 Simulated ranging accuracy of dual-comb system while tuning the repetition rate difference widely (a) and finely (b).

Download Full Size | PPT Slide | PDF

Similar to the experimental optimization, we also tuned the repetition rate difference finely from 2440 to 2480 Hz at an increment of 0.1 Hz. In this short range of tuning, the ranging accuracy varies over several cycles sharply [Fig. 3(b)]. This phenomenon also agrees with the experimental results exactly [35]. In the present system, the equivalent sampling rate f s is about 1.3 THz, but the frequency spectrum of a cross-correlation interferogram between two ultra-short laser pulses corresponds to the optical frequency (192 THz). This is why we use a band-pass-filter to limit the bandwidth of interferograms to be smaller than f s/2, so that it is still possible to reconstruct the signals under a specific condition according to the bandpass sampling theory. The specific condition is that a proper f s should be selected to make the spectrum of the sampled interferogram locate in the baseband (from 0 to f s/2) without overlapping with 0 Hz or f s/2 to avoid phase distortion [35]. Only a series of discrete range of f s as well as Δf r can fulfill this requirement. This is the reason that the ranging accuracy varies sharply and periodically while tuning Δf r finely. Note that in the simulation of wide tuning of Δf r [Fig. 3(a)], it is necessary to set Δf r to fulfill the requirements of bandpass sampling. The high consistency between the simulation and experimental results indicates the theoretical model and the simulation method developed in the present study are effective and reliable.

3.2 Impacts of repetition rate

The equivalent sampling rate of a dual-comb system is determined by f r and Δf r. Therefore, it is also attractive to investigate the impacts of f r on the ranging performance. In the simulation, we set f r at 50 MHz, 100 MHz, 150 MHz and 200 MHz successively, and investigated the relationship between ranging accuracy and the repetition rate for each case (Fig. 4 ). All the other parameters are the same as those described above. For each repetition rate, there is an optimal range of the repetition rate difference. With the increase of repetition rate, the repetition rate difference in the optimal range also increases and the corresponding ranging accuracy gets better. When the repetition rate is increased from 50 MHz to 200 MHz, the optimal repetition rate difference is changed from 3 kHz to 40 kHz, and the corresponding ranging accuracy is improved by two orders of magnitude. Therefore, a higher repetition rate is very favorable to improve the ranging accuracy of a dual-comb system. In the practical dual-comb system, the upper bound of repetition rate can be limited by the laser itself or the sampling and data processing electronics.

 figure: Fig. 4

Fig. 4 Simulated ranging accuracy of dual-comb system with different repetition rates while tuning the repetition rate difference widely.

Download Full Size | PPT Slide | PDF

The data shown in Fig. 4 for the four repetition rates were obtained with the same optical bandwidth (Δυ comb = 200 GHz) of the interferograms. It is necessary to point out that the optimal range of repetition rate difference is also related to the optical bandwidth of the interferograms. For example, if we change the optical bandwidth from 200 GHz to 400 GHz (corresponding 1.5 nm to 3 nm) in case of 100 MHz repetition rate, the upper bound of Δf r (f r 2/2Δυ comb) limited by the Nyquist condition changes from 25 kHz to 12.5 kHz. The center of optimal range of repetition rate difference shifts from 10 kHz to 5.5 kHz accordingly (Fig. 5 ). This result indicates that it is reasonable to select a repetition rate difference of 5 kHz for a dual-comb ranging system with a repetiton rate of 100 MHz and a bandwidth of 3 nm [22].

 figure: Fig. 5

Fig. 5 Simulated ranging accuracy of the dual-comb system with a repetition rate of 100 MHz while tuning the repetition rate difference widely. It shows two cases with different optical bandwidth of interferogram (200 GHz and 400 GHz).

Download Full Size | PPT Slide | PDF

3.3 Impacts of carrier-envelope-offset frequency

In most dual-comb ranging systems, f ceo is free running to reduce the system complexity [24–26 ]. The investigators used Hilbert transform [24] or nonlinear crystal [26] to remove the carrier and got the envelope of the interferogram. However, whether the drift of f ceo will still impact the ranging accuracy has not been investigated yet. Here, we reveal this impact by simulation using the same parameters described in Section 3.1 (except Δf r is fixed at 2500 Hz). In the simulation, we set f ceo of the LO laser to zero for simplicity and tuned f ceo of the signal laser by 112 MHz (nearly twice of f rep). The simulation results (Fig. 6 ) show that the ranging accuracy varies four cycles sharply. There are several discrete optimal ranges of f ceo for the dual-comb system, which is similar to that obtained by tuning Δf r. In order to investigate whether removing the carrier of interferogram can remove the impacts of f ceo on ranging accuracy, we also calculated the ranging results by using the Hilbert transform method described in Section 2.1. Nevertheless, the results obtained by FFT method and Hilbert transform method do not show significant differences (Fig. 6). Therefore, it is necessary to select and maintain f ceo in these discrete ranges in dual-comb system even only considering the envelope of the interferogram in data processing.

 figure: Fig. 6

Fig. 6 Simulated ranging accuracy of dual-comb system while tuning f ceo. The results obtained by FFT and Hilbert transform methods are both shown for a comparison.

Download Full Size | PPT Slide | PDF

4. Experimental verification

In order to verify the simulated ranging results of tuning f ceo, we built an experimental setup. The schematic of this setup is shown is Fig. 1. The parameters of the experimental system are the same as in simulation, i.e., f r = 56.17 MHz, Δf r = 2500 Hz, the center wavelengths of both lasers are 1560 nm, the bandwidth of the band-pass-filter is 200 GHz, and the target distance is 0.5 m. The repetition rates of the signal and the LO lasers were both stabilized referencing to a rubidium atomic clock (SIM940, Stanford Research Systems). To extract f ceo signals, we built f-to-2f interferometers [36] for both lasers. During the experiment, f ceo of the LO laser was stabilized while f ceo of the signal laser was changed by 103 MHz in total by tuning its pump current. Here, we use the variation of measured distance and the corresponding standard deviation to indicate the ranging accuracy. Both of them vary over several cycles sharply during the f ceo tuning (Fig. 7 ). In each cycle, there is an optimal range of f ceo. The changing period is nearly 28 MHz, which is highly consistent with the simulated results (Fig. 6). Such good accordance between simulation and experimental results shows our simulation method is also applicable for optimizing f ceo in the dual-comb ranging system.

 figure: Fig. 7

Fig. 7 Experimental results of dual-comb system while tuning f ceo. The variation of measured distance and the standard deviation (200 samples) are used to indicate the ranging accuracy.

Download Full Size | PPT Slide | PDF

To explain the impacts of f ceo on the ranging accuracy, it is necessary to analyze the spectrum of the interferograms generated by the signal and LO lasers. In optical frequency domain, the a th to (a + k)th modes of the LO laser and the b th to (b + k)th modes of the signal laser were filtered out by the bandpass filter [Fig. 8(a) ]. The beat frequency between the a th mode of the LO laser and the b th mode of the signal laser can be expressed as

fb=(a×fr+fceo_S)[b×(fr+Δfr)+fceo_L],
where f ceo_S and f ceo_L are the carrier-envelope-offset frequencies of the signal and LO lasers, respectively. When the interferograms are received by the photodetector (PD), the RF spectrum of the PD output contains multi-heterodyne beats including a set of frequencies: f set = {f b, f b + Δf r, f b + 2Δf r, …, f b + kΔf r } [Fig. 8(b)]. The output of PD was digitized synchronously with the LO pulses and low pass filtered at 28 MHz (f r/2). To meet Nyquist sampling condition, the bandwidth of f set, i.e., kΔf r should be smaller than f r/2. Therefore, the bandwidth of the bandpass filter used for the interferogram (Δυ comb = kf r) should be smaller than f r 2/(2Δf r). This conclusion is the same as that obtained from the optical frequency domain analysis [35].

 figure: Fig. 8

Fig. 8 Frequency-domain description of the dual-comb system. (a) optical frequency domain; (b) RF frequency domain.

Download Full Size | PPT Slide | PDF

To avoid aliasing in sampling, f set should locate at the Nyquist band (0, f r/2) without overlapping with 0Hz or f r/2. Unfortunately, when f ceo_S or f ceo_L is changing, f b as well as f set is shifting. It will cause phase distortion in sampling periodically, and the changing period is exactly f r/2. Therefore, in the dual-comb distance measurement, even only use the time-of-flight method based on the envelope of the interferogram, aliasing problem in sampling cannot be avoided if f ceo is shifting. It is still necessary to select and maintain f ceo in discrete optimal ranges during measurement. On the other hand, when f ceo_S and f ceo_L are stabilized, changing Δf r will also shift f b and f set. This will also cause phase distortion periodically with a period of f r/b (8.2 Hz for the present system). This conclusion is in accord with the simulation results shown in Fig. 3(b) and the experimental results [35]. According to Eq. (7), it is also easy to derive that tuning Δf r or tuning f ceo can compensate each other to avoid aliasing in sampling.

5. Conclusion

We have presented a theoretical model and a numerical simulation method for the dual-comb ranging system. With this simulation method, we firstly investigated the impacts of repetition rate difference on the dual-comb ranging accuracy. The simulation results suggest a series of discrete zones of repetition rate difference in an optimal range for the dual-comb system, which is consistent with the conclusion drawn in experiments. Secondly, the simulation results of the repetition rate indicate that a higher repetition rate is very favorable to improve the ranging accuracy of a dual-comb system. Finally, we investigated the impacts of carrier-envelope-offset frequency on the dual-comb ranging accuracy. The simulation results suggest a series of discrete optimal ranges of the carrier-envelope-offset frequency for the dual-comb system. The simulation results were confirmed by our experiments. The analysis of frequency domain reveals that shifting carrier-envelope-offset frequency causes aliasing in sampling periodically, no matter the carrier of the interferogram is removed or not in data processing. Therefore, it is also essential to select carrier-envelope-offset frequency in dual-comb system. The conclusions of parameter optimization presented here are also potentially useful for the dual-comb spectroscopy.

Acknowledgments

This work was supported by National Natural Science Foundations of China (61575105 and 61377103), the Beijing Higher Education Young Elite Teacher Project (YETP0085) and the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (2011YQ120022).

References and links

1. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]  

2. S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009). [CrossRef]  

3. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006). [CrossRef]   [PubMed]  

4. Y. Bitou, T. R. Schibli, and K. Minoshima, “Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator,” Opt. Express 14(2), 644–654 (2006). [CrossRef]   [PubMed]  

5. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008). [CrossRef]   [PubMed]  

6. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013). [CrossRef]   [PubMed]  

7. G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015). [CrossRef]   [PubMed]  

8. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef]   [PubMed]  

9. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010). [CrossRef]  

10. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006). [CrossRef]   [PubMed]  

11. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008). [CrossRef]   [PubMed]  

12. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011). [CrossRef]   [PubMed]  

13. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004). [CrossRef]   [PubMed]  

14. M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008). [CrossRef]  

15. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009). [CrossRef]   [PubMed]  

16. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009). [CrossRef]   [PubMed]  

17. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]  

18. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011). [CrossRef]   [PubMed]  

19. G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013). [CrossRef]   [PubMed]  

20. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014). [CrossRef]   [PubMed]  

21. J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015). [CrossRef]   [PubMed]  

22. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]  

23. T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010). [CrossRef]   [PubMed]  

24. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011). [CrossRef]   [PubMed]  

25. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013). [CrossRef]  

26. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014). [CrossRef]   [PubMed]  

27. N. B. Hébert, S. Boudreau, J. Genest, and J. D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22(23), 29152–29160 (2014). [CrossRef]   [PubMed]  

28. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef]   [PubMed]  

29. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010). [CrossRef]  

30. S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20(7), 7375–7387 (2012). [CrossRef]   [PubMed]  

31. N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012). [CrossRef]  

32. Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014). [CrossRef]   [PubMed]  

33. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014). [CrossRef]   [PubMed]  

34. H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015). [CrossRef]   [PubMed]  

35. G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014). [CrossRef]  

36. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  2. S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  3. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [Crossref] [PubMed]
  4. Y. Bitou, T. R. Schibli, and K. Minoshima, “Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator,” Opt. Express 14(2), 644–654 (2006).
    [Crossref] [PubMed]
  5. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  6. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  7. G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
    [Crossref] [PubMed]
  8. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  9. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [Crossref]
  10. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  11. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [Crossref] [PubMed]
  12. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  13. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  14. M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008).
    [Crossref]
  15. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [Crossref] [PubMed]
  16. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]
  17. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  18. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  19. G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
    [Crossref] [PubMed]
  20. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  21. J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
    [Crossref] [PubMed]
  22. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  23. T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010).
    [Crossref] [PubMed]
  24. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  25. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  26. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
    [Crossref] [PubMed]
  27. N. B. Hébert, S. Boudreau, J. Genest, and J. D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22(23), 29152–29160 (2014).
    [Crossref] [PubMed]
  28. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  29. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  30. S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20(7), 7375–7387 (2012).
    [Crossref] [PubMed]
  31. N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
    [Crossref]
  32. Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
    [Crossref] [PubMed]
  33. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  34. H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
    [Crossref] [PubMed]
  35. G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
    [Crossref]
  36. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
    [Crossref]

2015 (3)

2014 (6)

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J. D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22(23), 29152–29160 (2014).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20(7), 7375–7387 (2012).
[Crossref] [PubMed]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
[Crossref]

2011 (3)

2010 (4)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

2009 (4)

2008 (4)

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008).
[Crossref]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2006 (3)

2004 (1)

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2002 (1)

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
[Crossref]

2000 (1)

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Araki, T.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010).
[Crossref] [PubMed]

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Balling, P.

Baumann, E.

Berg, S. A.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bhattacharya, N.

Bitou, Y.

Boudreau, S.

Braat, J. J. M.

Cao, S.

Chun, B. J.

Coddington, I.

Cui, M.

Cui, P.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
[Crossref]

Dändliker, R.

Deschênes, J. D.

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Genest, J.

Giorgetta, F. R.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Guo, Y.

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hébert, N. B.

Hindle, F.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
[Crossref] [PubMed]

Hsieh, Y. D.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Hu, M.

Hyun, S.

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Inaba, H.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
[Crossref] [PubMed]

Iyonaga, Y.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jang, Y.-S.

Joo, K.-N.

Kabetani, Y.

Kang, H. J.

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kim, S.-W.

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

Kim, Y.

Kim, Y.-J.

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Knabe, K.

Kobayashi, Y.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kren, P.

Kuse, N.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
[Crossref]

Le Floch, S.

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lévêque, S.

Li, Y.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Liang, F.

Lin, J.

Liu, T.-A.

Masika, P.

Matsumoto, H.

Meiners-Hagen, K.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Minoshima, K.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

Ni, K.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Ohgi, Y.

Ozawa, A.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Picqué, N.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Pollinger, F.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Qu, X.

Sakaguchi, Y.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Salvadé, Y.

Schibli, T. R.

Schouten, R. N.

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008).
[Crossref]

Schuhler, N.

Shen, L.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Shi, H.

Sinclair, L. C.

Song, Y.

Swann, W. C.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Takahashi, M.

Takahashi, S.

Takamasu, K.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Urbach, H. P.

van den Berg, S. A.

Wang, C.

Wang, G.

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Wei, D.

Wei, H.

Wu, G.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
[Crossref] [PubMed]

Wu, H.

Wu, X.

Xing, S.

Xu, L.

Yan, S.

Yang, H.

Yang, L.

Yasui, T.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010).
[Crossref] [PubMed]

Ye, J.

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Yokoyama, S.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, Y. Ohgi, S. Yokoyama, and T. Araki, “Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging,” Appl. Opt. 49(28), 5262–5270 (2010).
[Crossref] [PubMed]

Zeitouny, M. G.

Zeng, X.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Zhang, F.

Zhang, H.

Zhou, Q.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Zhu, J.

Appl. Opt. (3)

Appl. Phys. Express (2)

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express 5(11), 112402 (2012).
[Crossref]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

J. Eur. Opt. Soc. (1)

M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. 3, 08003 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
[Crossref]

Meas. Sci. Technol. (2)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Nat. Commun. (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Opt. Express (14)

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Y. Bitou, T. R. Schibli, and K. Minoshima, “Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator,” Opt. Express 14(2), 644–654 (2006).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J. D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22(23), 29152–29160 (2014).
[Crossref] [PubMed]

S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20(7), 7375–7387 (2012).
[Crossref] [PubMed]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Sci. Rep. (1)

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of dual-comb ranging system. BS1–2: beam splitter; CR1–2: corner reflector; BPF: band-pass filter; PD: photodetector; LPF: low-pass filter. (a) Output beam of the interferometer at point A in the left figure. (b) Cross-correlation interferograms from the dual-comb experimental setup at point B. The inset shows an expanded view of the interferogram.
Fig. 2
Fig. 2 Simulated cross-correlation interferograms of the dual-comb system.
Fig. 3
Fig. 3 Simulated ranging accuracy of dual-comb system while tuning the repetition rate difference widely (a) and finely (b).
Fig. 4
Fig. 4 Simulated ranging accuracy of dual-comb system with different repetition rates while tuning the repetition rate difference widely.
Fig. 5
Fig. 5 Simulated ranging accuracy of the dual-comb system with a repetition rate of 100 MHz while tuning the repetition rate difference widely. It shows two cases with different optical bandwidth of interferogram (200 GHz and 400 GHz).
Fig. 6
Fig. 6 Simulated ranging accuracy of dual-comb system while tuning f ceo. The results obtained by FFT and Hilbert transform methods are both shown for a comparison.
Fig. 7
Fig. 7 Experimental results of dual-comb system while tuning f ceo. The variation of measured distance and the standard deviation (200 samples) are used to indicate the ranging accuracy.
Fig. 8
Fig. 8 Frequency-domain description of the dual-comb system. (a) optical frequency domain; (b) RF frequency domain.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D = c 2 n g Δ t = c 2 n g Δ τ Δ f r f r ,
E p ( t ) = E ^ ( t ) exp [ i ( ω t + ϕ c e ) ] ,
E T ( t ) = n = E p ( t n T ) .
E T , Δ ϕ c e ( x , t ) = n = E p [ ( t x c ) n T ] .
E = E T 1 , Δ ϕ c e 1 ( x 1 , t ) + E T 1 , Δ ϕ c e 1 ( x 2 , t ) + E T 2 , Δ ϕ c e 2 ( 0 , t ) .
U D / D = [ ( U n g / n g ) 2 + ( U Δ τ / Δ τ ) 2 + ( U f r / Δ f r ) 2 + ( U f r / f r ) 2 ] 1 / 2 .
f b = ( a × f r + f ceo_S ) [ b × ( f r + Δ f r ) + f ceo_L ] ,

Metrics