Abstract

The report firstly propose a new WS2 absorber based on fluorine mica (FM) substrate. The WS2 material was fabricated by thermal decomposition method. The FM was stripped into one single layer as thin as 20 μm and deposited WS2 on it, which can be attached to the fiber flank without causing the laser deviation. Similar to quartz, the transmission rate of FM is as high as 90% at near infrared wavelength from one to two micrometers. Furthermore, FM is a highly elastic material so that it is not easy to break off even its thickness was only 20 μm. On the contrary, quartz is hard to be processed and easy to break off when its thickness is less than 100 μm. Compared to organic matrix such as polyvinyl alcohol (PVA), FM has higher softening temperature, heat dissipation and laser damage threshold than those of organic composites. In our work, the modulation depth (MD) and non-saturable losses (NLs) of this kind of saturable absorber were measured to be 5.8% and 14.8%, respectively. The WS2/FM absorber has a high damage threshold of 406 MW/cm2, two times higher than that of WS2/PVA. By incorporating the saturable absorber into Yb-doped fiber laser cavity, a mode-locked fiber laser was achieved with central wavelength of 1052.45 nm. The repetition rate was 23.26 MHz and the maximum average output power was 30 mW. The long term stability of working was proved to be good too. The results indicate that WS2/FM film is a practical nonlinear optical material for photonic applications.

© 2015 Optical Society of America

1. Introduction

Passively mode locking technique with saturable absorber (SA) is one of the effective methods for generating optical pulses from picosecond to femtosecond regime in the field of fiber lasers [1–3]. Various kinds of nonlinear materials brought up a new era of SAs and attracted great attention in recent years by combining two excellent merits: (i) broadband nonlinear modulation effect, and (ii) ultra-fast photo-response. Carbon nanotubes [4,5], graphene [6] and topological insulators (TIs) [7] have been experimentally studied, which possess a high third-order nonlinear susceptibility and ultrafast carrier dynamics. In particularly, 2D semiconducting transition metal dichalcogenides (TMDs), such as MoS2 [8,9], WS2 [10] and MoSe2 [11,12] have received significant research and are considered to be a kind of promising SAs. Depending on the coordination and oxidation states of transition metal atoms, TMDs can either be semiconducting or metallic in nature [13].

In general, integrating TMD SAs into fiber laser system are usually in following forms which include substrate based SAs, solution based SAs, evanescent field based SAs, or SAs film pasted on fiber ferrules. From the practical point of view, each of these methods has weak points that limit widespread industrial applications. Substrate based SAs are usually fabricated by chemical vapor deposition (CVD) method [14]. When used in fiber laser cavity, the TMD layered materials are required to transfer from substrate to fiber surface and contact with the fiber surface by weak Van der Waals' force, which lead to the loose contact between the absorber and fiber surface. Solution based SAs require a host solution with low optical loss and appropriate refractive index, which is hard to find [15]. Evanescent field based SAs employed with tapered fiber or side polished fiber (SPF) entail extra optical loss and cost [16]. SAs film method is a simple and cost-effective alternative which possesses potential for practical applications [17,18]. Embedding SAs in polymer host materials has been used to form a thin-film composite and widely been used. Many kinds of polymer composites have been used as hosts, such as polymethylmethacrylate (PMMA) [19], polycarbonate [20], polyimide [21], and PVA [22]. However, optical damage threshold of SA/polymer composite film is mostly determined by the host polymer [23]. Attributing the reason that polymer is a kind of organic material, it generally has a low laser damage threshold.

To overcome these difficulties, we propose a new kind of absorber based on inorganic materials substrate instead of polymer host. For the first time, we present a novel technology to increase the laser damage threshold by depositing WS2 layers onto 20 μm thickness of one layer FM using a thermal decomposition method. FM is an ideal substrate material with the excellent virtues such as high temperature resistance, high elasticity, good transmission performance and non-absorbing impurities performance. The FM can be stripped into one layer with the thickness of 20 μm and is not easy to break off because of its high flexibility. Inserting such thin material into the fiber laser could not cause the laser deviation. In this work, we study the laser damage threshold of WS2/FM absorber upon high intensity laser in atmosphere conditions, and demonstrate the laser damage threshold as high as 406 MW/cm2. The MD and NLs are 5.8% and 14.8%. We report an all-normal-dispersion mode-locked fiber laser by incorporating WS2/FM film into Yb-doped fiber (YDF) laser. As high as 30 mW average output power were obtained. To the best of our knowledge, this is the highest average output power in TMD absorber mode locked fiber lasers. The 10 days stability experiment was performed and showed the potentiality of WS2/FM absorber for mode-locked fiber laser application in practice.

2. WS2/FM absorber preparation and characterization

The WS2/FM absorber was fabricated by thermal decomposition as the following process. The 1 ml dimethylsulfoxide (DMSO) was added into the high purity (NH4)2WS4 (Alfa Aesar purity of 99.99%; 0.01g) powder to form a 1 wt% solution. The (NH4)2WS4 solution was treated by sonication in ultrasonic cleaner for 20 min to break down the undissolved particles. We made a thin and uniform (NH4)2WS4 film by spinning (NH4)2WS4 solution onto 20 μm FM substrate with a spinner at a rotating speed of 2000 rmp. The sample was put in the horizontal constant temperature zone after 20 min baking treatment at 120°C. Then, the sample was put into quarz tube furnace. When the pressure was pumped to 10−3 Pa by a molecular pump, the quarz tube was heated to 500°C at 10 °C/min for the annealing with gas mixture (Ar/H2 = 80/20 sccm) to efficiently remove the byproducts separated from the precursors. The (NH4)2WS4 precursors were thermally decomposed into WS2 after 60 min reaction. The samples were cooled to room temperature naturally to obtain lateral epitaxial structure.

To verify the quality of WS2/FM, we observed the morphology and SEM of WS2/FM. Figure 1(a) visually identify the large-area, uniform WS2 film. Figure 1(b) shows SEM image at high magnification of 1 μm and reveals the presence of compact and continuous WS2 film. We measured the thickness of WS2 to be 4 nm on the FM by Atomic Force Microscope (AFM), and calculated the layers number of WS2 to be 5. Table 1 summary the properties of FM and PVA. As a kind of inorganic material, the melting point and thermal conductivity of FM are 6 times and 10 times higher than that of PVA respectively, which indicate that WS2/FM can operate in high power regime. According to our knowledge, PVA has a weak hardness of 0.25. In contrast, FM possesses a hardness of 3, which is 12 times stronger than that of PVA. Both the FM and PVA have excellent light transmission characteristics. Also, they have equal refractive index of 1.5, which is relatively closed to silica fiber. So it can match well with silica fiber, therefore, avoiding the reflection of optical power.

 

Fig. 1 The morphology (a) and SEM (b) of WS2/FM.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. The properties comparison between FM and PVA.

A Raman spectroscopy system with an excitation wavelength of 633 nm was utilized to confirm the existence of WS2 nanosheets. Figure 2 shows two typical bands which are identified as E2g1 at 350.5 cm−1 and A1g at 420.7 cm−1, where E2g1 is assigned to the in-plane mode and A1g corresponds to the out-of-plane vibration mode of WS2 [24].

 

Fig. 2 The Raman spectrum of WS2 nanosheets excited by 633 nm laser.

Download Full Size | PPT Slide | PDF

The linear transmission was measured from 300 nm to 1100 nm. As depicted in Fig. 3(a), FM has a very flat and high profile at 90% and WS2/FM SA film has a high transmission of 80% at 1053 nm. A picosecond pulsed YDF laser (central wavelength: 1053 nm, pulse duration: 15 ps, repetition rate: 26.9 MHz) worked as the illumination source to study the nonlinear saturable absorption of WS2/FM SA. Figure 3(b) shows the nonlinear transmission curve as a function of peak power intensity. As can be seen here, the MD of WS2/FM is evaluated to be 5.8%. The NLs are 14.8%. Generally, the MD value for mode locking operation does not need to be very high, 5.8% MD is suited for passive mode locking [25]. In Table 2, we compared the nonlinear parameters of typical TMD SAs. It should be pointed out that NLs is a key parameter to evaluate the property of SA, which are unfavorable to high average output power of the fiber laser. Mostly, the NLs are relevant to the impurities in the absorbers. The impurities brought in thermal decomposition fabricating WS2 are negligible compare to that in the absorbers fabricated in chemical solution method as showed in Table 2. To the most of our knowledge, only evanescent field based wide band SAs could have less NLs than 10%. However, evanescent field method brought additional problems such as complicated fiber machining and mechanical stability.

 

Fig. 3 (a) Linear transmission of FM and WS2/FM; (b) Nonlinear absorption of WS2/FM SA.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Nonlinear parameters of SAs and corresponding laser properties.

3. Experimental setup

The YDF laser is schematically shown in Fig. 4. The ring fiber laser cavity is comprised of a gain fiber, a wavelength division multiplexer (WDM), a polarization independent isolator (PI-ISO), an optical coupler (OC), a polarization controller (PC) and a WS2/FM SA. A 50 cm long YDF (Liekki Yb 1200-4/125) with absorption coefficient of 1200 dB/m at 976 nm was employed as the gain medium. The YDF was pumped by a 976 nm laser diode (LD). The PI-ISO was used to force the unidirectional operation in the fiber ring cavity. The PC works by applying pressure with an adjustable clamp. The pressure on the fiber causes a birefringence within the fiber core. It can make fiber laser operate in a proper state with enough nonlinear effect which is easily for mode locking operation. The optical coupler was used, 30% portion of the laser was coupled out from the laser cavity. Since the laser cavity in this case is at the state of all-normal-dispersion, a spectral filter is essential for stable mode-locking operation. As a result, a fiber-pigtailed filter centered at 1053 nm with bandwidth of 2 nm was inserted in the cavity to obtain mode-locking at 1 μm wavelength. The total length of the laser oscillator cavity is about 8.9 m.

 

Fig. 4 Yb-doped mode-locked fiber laser setup.

Download Full Size | PPT Slide | PDF

4. Results and discussion

In the experiments, YDF laser started the continuous wave (CW) at the pump of 50 mW. When pumping power reached 550 mW, the mode-locking operation was obtained with output power of 25.5 mW accompanying transition between unstable and stable operation [31]. The maximum output power reached to 30 mW with the pump power of 630 mW. As shown in Fig. 5(a), the typical bell-shape [32] mode-locking optical spectrum is centered at 1053 nm with 3-dB spectral bandwidth of 0.29 nm. Similar to reference [33,34], the 3-dB spectral bandwidth doesn’t cover the whole spectrum range of filter. The pulse duration generated by all-normal-dispersion fiber laser is in hundreds of ps level, which indicates that nonlinear effect is not strong. It is noted that the width of spectral pedestal is about 2 nm, which is mainly due to the spectral filtering effect. When the pump power reached 635 mW, the mode-locking operation became unstable and the fluctuation of spectrum was obvious. However, the stable mode-locking operation was observed again when the pump power decreased to 550 mW. The corresponding oscilloscope trace is depicted in Fig. 5(b), the pulse trace on oscilloscope shows relatively uniform intensity with a pulse-to-pulse interval of 43 ns corresponding to the cavity roundtrip time. The pulse duration was measured to be 713 ps at the pump power of 630 mW as shown in Fig. 5(c) by 6 GHz oscilloscope (Lecroy 8600A) and 10 GHz detector. However, limited by the 6 GHz bandwidth of oscilloscope, we are unable to probe the fine structure of mode-locking pulses. Radio-frequency spectra measurement of the output pulses was conducted as shown in Fig. 5(d). A strong signal peak with a fundamental repetition rate of 23.26 MHz was clearly observed and the signal-to-noise ratio was measured about ~55 dB. It is noted that mode-locking operation of all-normal-dispersion fiber laser has been enabled by MoS2 as shown in Table 2. The present work demonstrates all-normal-dispersion passively mode-locked fiber laser by WS2 SA. Unlike the soliton operation in 1.55 μm region, the optical pulse generated by all-normal-dispersion fiber laser is heavily chirped and the pulse duration is hundreds of ps. Compared with nonlinear polarization rotation technique, the mode-locked results are not the best, which reflected in narrow optical spectrum and long pulse width. The possible reason is that fiber laser operated in all-normal-dispersion regime. In order to obtain better mode locking performance, we would optimize dispersion compensation work by using a pair of gratings or a chirped fiber Bragg gratings. For the comparison of output power, our fiber laser emits average power of 30 mW, which is at higher power output level. Dissipative soliton resonance [35] is a kind of novel mechanism to acquire high power output. Recently, Luo reported the highest average power output of the dissipative soliton resonance pulses obtained from mode-locked fiber lasers [36]. In further experiments, we will focus attention on the dissipative soliton researching to enhance averge power.

 

Fig. 5 Experimental results. (a) optical spectrum, (b) oscilloscope trace, (c) pulse profile, and (d) radio-frequency spectrum.

Download Full Size | PPT Slide | PDF

In order to evaluate the long term stability of mode locking, the experiments have been performed over 10 days, the power fluctuation percentage is less than 4.5%. We also recorded the optical spectrum of mode-locked fiber everyday as shown in Fig. 6(a). As depicted from Fig. 6(b), we note that the central spectral peak locations, spectral bandwidth, spectral strength remained reasonably stable over the time period. To verify whether the mode-locking operation is purely contributed by the saturable absorption of the WS2/FM film, we removed WS2/FM film from laser cavity, mode locking operation was not observed despite that the pump and PC were tuned over a full range. The results show that mode locking operation is indeed contributed by the saturable absorption of WS2/FM film.

 

Fig. 6 (a) Long term optical spectrum measured over 10 days, (b) The drift of central wavelength and spectrum width over 10 days.

Download Full Size | PPT Slide | PDF

Finally, we performed the pulsed laser induced damage threshold experiments for both WS2/FM absorber and WS2/PVA composite absorber. It is found that the damage threshold results from the high peak power of the laser rather than from the heat due to the average power [37]. A typical measurement trace is shown in Fig. 7. It is noted that WS2/PVA has lower transmittance than WS2/FM under low power intensity. The corresponding reason is that FM has higher flatness than PVA. WS2/PVA would bring more scatter losses when used in damage threshold measurement. For WS2/FM absorber, when the input peak power was lower than 406 MW/cm2, no damage was observed and the transmission remained at the level of 85.6%. Once damage was occurred, the transmission drop was clearly observed. In this example, we estimate that the threshold of WS2/FM is 406 MW/cm2, which is two times higher than that of WS2/PVA. It can be concluded that inorganic materials based SAs can endure high power operation. For comparison, we also performed the mode locking experiments with WS2/PVA, which shows bad results of low average power and poor long time stability.

 

Fig. 7 Damage threshold measurement results.

Download Full Size | PPT Slide | PDF

5. Conclusions

In conclusion, we report a new WS2/FM absorber instead of WS2/PVA composite absorber. The WS2/FM absorber showed some virtues such as high laser damage threshold, low NLs, high transmission rate and so on. By using the absorber, as high as 30 mW average output power was obtained from Yb-doped mode locked fiber laser. The long term stability of laser opertion is good too. The results indicate that WS2/FM absorber is a practical nonlinear optical material for laser mode locking applications.

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) under Grants 61378024.

References and links

1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]  

2. X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015). [CrossRef]   [PubMed]  

3. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015). [CrossRef]   [PubMed]  

4. X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013). [CrossRef]  

5. X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014). [CrossRef]   [PubMed]  

6. Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]  

7. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]  

8. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014). [CrossRef]   [PubMed]  

9. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014). [CrossRef]  

10. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015). [CrossRef]   [PubMed]  

11. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015). [CrossRef]   [PubMed]  

12. Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015). [CrossRef]  

13. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013). [CrossRef]   [PubMed]  

14. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014). [CrossRef]   [PubMed]  

15. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008). [CrossRef]   [PubMed]  

16. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef]   [PubMed]  

17. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef]   [PubMed]  

18. M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014). [CrossRef]  

19. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett. 31(7), 915–917 (2006). [CrossRef]   [PubMed]  

20. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]  

21. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008). [CrossRef]   [PubMed]  

22. X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013). [CrossRef]  

23. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014). [CrossRef]  

24. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015). [CrossRef]  

25. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]  

26. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014). [CrossRef]   [PubMed]  

27. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014). [CrossRef]   [PubMed]  

28. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015). [CrossRef]   [PubMed]  

29. R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

30. R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015). [CrossRef]  

31. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013). [CrossRef]   [PubMed]  

32. X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012). [CrossRef]  

33. P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015). [CrossRef]  

34. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015). [CrossRef]   [PubMed]  

35. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009). [CrossRef]   [PubMed]  

36. Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015). [CrossRef]   [PubMed]  

37. C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  2. X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
    [Crossref] [PubMed]
  3. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
    [Crossref] [PubMed]
  4. X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
    [Crossref]
  5. X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref] [PubMed]
  6. Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [Crossref]
  7. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  8. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
    [Crossref] [PubMed]
  9. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  10. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
    [Crossref] [PubMed]
  11. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref] [PubMed]
  12. Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
    [Crossref]
  13. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  14. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
    [Crossref] [PubMed]
  15. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008).
    [Crossref] [PubMed]
  16. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [Crossref] [PubMed]
  17. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
    [Crossref] [PubMed]
  18. M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
    [Crossref]
  19. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett. 31(7), 915–917 (2006).
    [Crossref] [PubMed]
  20. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
    [Crossref]
  21. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]
  22. X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
    [Crossref]
  23. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
    [Crossref]
  24. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
    [Crossref]
  25. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
    [Crossref]
  26. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
    [Crossref] [PubMed]
  27. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  28. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
    [Crossref] [PubMed]
  29. R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).
  30. R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
    [Crossref]
  31. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
    [Crossref] [PubMed]
  32. X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
    [Crossref]
  33. P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
    [Crossref]
  34. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
    [Crossref] [PubMed]
  35. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]
  36. Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
    [Crossref] [PubMed]
  37. C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
    [Crossref]

2015 (12)

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref] [PubMed]

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

2014 (8)

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

2013 (4)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
[Crossref] [PubMed]

2012 (4)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

2010 (1)

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (2)

2006 (1)

2004 (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Ahmed, M. H. M.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Ali, N. M.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Arof, H.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Bae, M.

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Bennion, I.

Cai, Z.

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Cao, G.

Chen, H.

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Chen, J.

Chen, S.

Chen, Y.

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Cheng, X.

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Cui, Y.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Du, J.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Fu, H.

Gan, X.

Gao, C.

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Gao, C. X.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Goh, C. S.

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Guo, C.

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Han, D.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

Han, W.

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Harun, S. W.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Hasan, T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Hennrich, F.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Hirooka, T.

Howe, R. C. T.

Hu, G.

Hu, J.

Hu, X.

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Hu, X. H.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

Huang, Y.

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Itoga, E.

Itoh, K.

Ivanenko, A.

Jang, S.

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Jeong, H.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

Jiang, B.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

Jiang, G.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Kaino, T.

Kassani, S. H.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Kataura, H.

Kelleher, E. J. R.

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Khazaeinezhad, R.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

Khripunov, S.

Kieu, K.

Kim, B. Y.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Kobtsev, S.

Komatsu, K.

Kukarin, S.

Lan, C.

Lee, C. C.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
[Crossref]

Li, C.

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Li, H.

Li, I. L.

Li, L. J.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, X.

Li, X. H.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Li, Y.

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Lin, R.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Liu, A.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Liu, H.

Liu, M.

Liu, X.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Liu, X. L.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Liu, Y.

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Lu, S. B.

Luo, A. P.

Luo, Z.

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Luo, Z. C.

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

Manaf, M.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Mansuripur, M.

Mao, D.

Martinez, A.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008).
[Crossref] [PubMed]

Mei, T.

Miller, J. M.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
[Crossref]

Milne, W. I.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Nakahara, S.

Nakazawa, M.

Nishizawa, N.

Oh, K.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

Park, K. J.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Peng, J.

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Radnatarov, D.

Rahman, A. A.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Rozhin, A. G.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Runcorn, T. H.

Sakakibara, Y.

Salleh, Z. S.

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

Scardaci, V.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Schibli, T. R.

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
[Crossref]

Seno, Y.

Set, S. Y.

Shen, D.

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Shen, D. Y.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Song, Y.

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Song, Y. W.

Sumimura, K.

Sun, Z.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Tang, D.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Tang, D. Y.

Tang, R.

Torrisi, F.

Tsang, Y. H.

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Wan, X.

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Wang, F.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Wang, F. Z.

Wang, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

Wang, Q.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Wang, Q. J.

Wang, Y.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Wang, Y. G.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Wang, Y. S.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Wang, Z.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wen, S.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wen, S. C.

Weng, J.

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

White, I. H.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Woodward, R. I.

Wu, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Wu, K.

Wu, X.

Xia, H.

Xiang, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Xiong, F.

Xu, B.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Xu, H.

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, W. C.

Yamashita, S.

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

Yang, H.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

Yang, Z.

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Yao, X.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

Yeom, D.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Yoshida, M.

Yu, X.

Zeng, H.

Zhang, H.

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Zhao, C. J.

Zhao, J.

Zhao, L. M.

Zhao, W.

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Zheng, J.

Zhong, M.

Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, “Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser,” Opt. Lett. 40(6), 1097–1100 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Zhou, K.

Adv. Mater. (1)

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater. 20(21), 4040–4043 (2008).
[Crossref]

Appl. Phys. B (2)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

C. C. Lee, J. M. Miller, and T. R. Schibli, “Doping-induced changes in the saturable absorption of monolayer graphene,” Appl. Phys. B 108(1), 129–135 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Y. Song, S. Jang, W. Han, and M. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

IEEE J. Lightwave Technol. (1)

R. Khazaeinezhad, S. H. Kassani, H. Jeong, D. Yeom, and K. Oh, “Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS2) film,” IEEE J. Lightwave Technol. 33, 3550–3557 (2015).

IEEE Photonics Technol. Lett. (2)

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, “Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser,” IEEE Photonics Technol. Lett. 27(3), 264–267 (2015).
[Crossref]

J. Lightwave Technol. (2)

X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, “All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser,” J. Lightwave Technol. 30(15), 2502–2507 (2012).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q –switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (10)

X. Li, Y. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref] [PubMed]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008).
[Crossref] [PubMed]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref] [PubMed]

D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Opt. Laser Technol. (3)

X. H. Li, Y. G. Wang, Y. S. Wang, X. L. Liu, W. Zhao, X. H. Hu, Z. Yang, W. Zhang, C. X. Gao, D. Y. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

M. H. M. Ahmed, N. M. Ali, Z. S. Salleh, A. A. Rahman, S. W. Harun, M. Manaf, and H. Arof, “All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber,” Opt. Laser Technol. 62, 40–43 (2014).
[Crossref]

X. Li, Y. Wang, Y. Wang, X. Liu, W. Zhao, X. Hu, Z. Yang, W. Zhang, C. Gao, D. Shen, C. Li, and Y. H. Tsang, “Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber,” Opt. Laser Technol. 47, 144–147 (2013).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (1)

Photonics Res. (1)

Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe) for passively mode-locked soliton fiber laser,” Photonics Res. 3(3), A79–A86 (2015).
[Crossref]

Sci. Rep. (4)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref] [PubMed]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The morphology (a) and SEM (b) of WS2/FM.
Fig. 2
Fig. 2 The Raman spectrum of WS2 nanosheets excited by 633 nm laser.
Fig. 3
Fig. 3 (a) Linear transmission of FM and WS2/FM; (b) Nonlinear absorption of WS2/FM SA.
Fig. 4
Fig. 4 Yb-doped mode-locked fiber laser setup.
Fig. 5
Fig. 5 Experimental results. (a) optical spectrum, (b) oscilloscope trace, (c) pulse profile, and (d) radio-frequency spectrum.
Fig. 6
Fig. 6 (a) Long term optical spectrum measured over 10 days, (b) The drift of central wavelength and spectrum width over 10 days.
Fig. 7
Fig. 7 Damage threshold measurement results.

Tables (2)

Tables Icon

Table 1 The properties comparison between FM and PVA.

Tables Icon

Table 2 Nonlinear parameters of SAs and corresponding laser properties.

Metrics