Abstract

We report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-rays with a photon energy of 12 keV and a bandwidth of ΔEE=5.4·104. The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.

© 2015 Optical Society of America

1. Introduction

Multilayer Laue lenses (MLL) are highest-resolution hard x-ray diffractive optics [1]. They have demonstrated a 2D spot size of 25 nm × 29 nm, at a photon energy of 19.5 keV, [2] and are suited for achieving spot sizes of a few nanometers at 2D focusing efficiencies of above 30 % [3]. MLLs are fabricated by depositing individual zones using thin film deposition techniques such as magnetron sputtering. Individual material layers are deposited with thicknesses following the Fresnel zone plate law [4], with alternating layers of low-Z and high-Z materials. Using this approach, zone widths of 1 nm and less can be manufactured [5, 6].

The thin-film approaches we use are ideally suited to achieve the large thickness along the optical axis, referred to here as section thickness t, which is required to obtain high focusing efficiencies at high photon energies. The optimum section thickness of, typically 5 µm or more, is achieved by sectioning the deposited multilayer structure. This results in aspect ratios of the individual layers that are orders-of-magnitude larger than it is possible for Fresnel zone plates made with photolithographic methods which are limited to aspect ratios less than about 25 [7]. MLL depositions provide the opportunity to fabricate lenses with virtually unlimited aspect ratios. The effective aperture can be enlarged by fabricating MLLs with advanced geometries, such as wedged MLL (wMLL). Zone interfaces in wMLLs are fabricated such that all zones satisfy the Bragg condition at once. So far two approaches have been proposed: to use a mask to make a deposition with a steep gradient, or to bend the structure [8–10].

wMLL will be able to allow focusing to one nanometer at high efficiencies [11, 12]. This is especially vital for operation at high photon energies, where the diffraction efficiency of zone plates is very limited due to their low aspect ratios [3]. By designing MLLs for off-axis imaging, as in the current work, unwanted diffraction orders can be blocked more easily than in a full lens geometry, such as a Fresnel zone plates [13]. This yields increased working distances and somewhat more physical clearance in order to accommodate the specimen and its environment.

Challenges, which have to be overcome to achieve high efficiencies, high flux, small focal sizes, and reasonable working distances include (i) the precise fabrication of multilayers with total deposition thicknesses in the order of several tens of micrometers, (ii) the fabrication of the wedged MLL structure [8, 14], and (iii) sectioning the deposited multilayers to a section thickness in the range of 5 30 µm without straining, bending or otherwise warping the structure [15]. If the layer placement of the stacks is not accurate, the lens will suffer reduced resolution due to aberrations [16]. In spite of these challenges, a virtually undistorted line focus of 11 nm was demonstrated using a single MLL [17]. Recently a focal-plane feature of below 10 nm has been demonstrated with a wedged MLL [18]. While the focal plane was significantly affected by aberrations caused by fabrication errors, it is encouraging to see that sub-10 nm focal spot sizes are in reach. Using a crossed setup with two MLL, a spot size of 25 nm × 27 nm has been demonstrated [2].

In this paper we report on an experimental study of the full length of 2.7 mm of the MLL with a newly achieved deposition thickness of 102 µm. This MLL was found to have defects in several regions, and the present report uses a novel approach to analyze these regions and the types of defects that occur. A small region at the extreme end of the 2.7 mm length did not contain defects, and a separate brief letter-length report has been prepared discussing the efficiency analysis of this part of the lens [19]. We furthermore discuss simulations of the diffraction properties of this structure, obtained using Coupled Wave Theory (CWT) [20, 21], and characterize fabrication artifacts observed in our measurements. The MLL studied was designed to have parallel interlayer interfaces and was arranged in the tilted geometry [22]. While the MLL showed kinking, it also has areas that were not kinked across the full 102 µm deposition thickness. We made measurements in the far field with area detectors, as a function of the rocking angle. Not only the Bragg diffracted focused beam, but also the transmitted beam were imaged. Extinction effects in the transmitted beam were found to correlate well with the occurrence of Bragg diffraction.

2. MLL design parameters and fabrication

We report on the characterization of an MLL with an outermost zone width of 4 nm, and a long focal length of 9.6 mm at a photon energy of 12 keV. The MLL is comprised of zones with zone index 632 15802 of alternating WSi2 and Al layers. With zone 632 being closest to the optical axis the structure yields an off-axis MLL, with the outer 80 % of a corresponding half MLL. The resulting multilayer stack has a total stack thickness of 102 µm, approximately twice the thickness reported in previous experiments [23]. This is sufficient to accept the full coherent beam at a typical nanofocusing, and allows using the full coherence at a 3rd generation synchrotron.

The MLL stack was deposited in the MLL deposition system at Brookhaven National Laboratory using four of the nine available cathodes [24]. The composition of the WSi2 targets used is identical to that which was used in prior work [14, 17]. The Aluminum targets were mixed with approximately 5% silicon (by weight). It has been shown, that reactive sputtering using a certain nitrogen concentration in the sputter gas can reduce residual stress in a multilayer stack [3]. Stress reduction using this same scheme for MLL fabrication has been reported previously [24]. The process gas consisted of 90% argon and 10% nitrogen (by volume) with deposition pressure held at 4 mTorr using an upstream control feedback scheme.

After the deposition, the substrate and accompanying multilayer were diced using an ADT dicing saw to 2 mm × 2 mm squares. Sectioning and subsequent thinning was completed using standard mechanical slurry and pad polishing methods as has been reported previously for MLL processing [15] however due to the extreme deposition thickness of this MLL, a 50 µm thick diamond plate was added to the device as a support structure. In order to incorporate the diamond plate, one face of the MLL was polished, and then this polished face was glued to the diamond plate. After bonding, the entire MLL was thinned by polishing the exposed face which is opposing the diamond plate to a section width of around 8µm. For the x-ray experiments, the lens remained on the diamond plate. No significant effect on efficiency measurements is expected by a diamond plate given its small thickness, low absorption and overall uniformity.

Two major sources of errors exist for fabricating an accurate MLL structure: a layer placement error and mechanical deformation due to strain and mechanical handling. Layer placement error is the main contributor to the loss of focal performance with this optic. To reduce this error, multiple deposition, measurement, and correction iterations are executed.

The lens presented in this paper uses the first iteration of what will be several steps required to produce an error-free deposition. In order to assess the placement error, marker layers were incorporated into the deposition [24]. Mechanical deformation, such as bending, delamination and kinking in the lens, is caused by imprecise gluing processes. The primary type of imperfection due to sectioning and mounting is expected to be bending along with some kinking in the lens.

3. Experiments, calculations and results

The experiments were conducted at beamline 1-BM, a bending magnet beamline at the Advanced Photon Source [25]. A Si(111) double crystal monochromator was used to select x-rays with a photon energy of 12 keV. Slits were used to limit the divergence incident on the monochromator to result in an energy bandpass of ΔEE=5.4·104. The MLLs were mounted on the Prototype MLL microscope [26] in horizontally diffracting geometry. To illuminate the MLL, a second set of set of slits with a horizontal size of 200 µm and a vertical size of 3.3 mm was used. A Pilatus 100k Pixel detector [27] was placed 90 cm downstream from the MLL to record the diffracted wavefronts. A beamstop was placed downstream of the MLL to block the direct beam. The images recorded by the Pilatus detector have a resolution of 172 µm corresponding to the pixel size of the detector. Images were acquired for discrete tilting angles in a range of 3 deg in 0.01deg steps.

An AndorNeo CCD camera with a 6 µm pixel size, mated to a 2.5× objective and a scintillator were used to record the wavefront transmitted through the MLL. The effective resolution of this setup is of 2.4 µm. The scintillator was mounted such that it could be temporarily positioned at a distance of 33 cm downstream of the MLL. To study the diffraction properties the MLL was rocked in 0.05 deg steps through a range of 1.1 deg. We show in Fig. 1(a) a scheme of the experimental setup. Figure 1(b) shows a transmission image of approximately 1 mm of the lens with an extinction band going through the lens. For a perfect lens this should be parallel to the deposition i.e. the dark band should emerge for one distinctive d-spacing for every rocking angle. The total length of the MLL orthogonal to the beam difraction is 2.7 mm, corresponding to the size of the diced sample prepared for thinning. On the left side of the image two dark bands are visible along the aperture direction of the lens. This is the result of a kink in this particular region of the lens resulting in two parts of the lens complying with their respective Bragg condition.

 

Fig. 1 (a) Schematic view of the MLL measurement setup. Diffraction data are acquired by rocking the MLL through the incident beam, satisfying the local Bragg conditions for different d-spacings consecutively. The distance between MLL and detector is d1 = 90 cm. For transmission measurements, the beamstop is removed and an Andor Neo CCD camera is put in place d2 = 33 cm downstream of the lens. (b) Example of an acquired transmission image. The top and bottom dark areas represent shadows of the slits. The higher absorbing WSi2/Al structures have somewhat larger absorption than the silicon enclosing the MLL structure in a sandwich (similar to [15]) and therefore appear as a gray band with extinction features in areas where the local Bragg condition is satisfied. The d-spacing of the MLL varies vertically from 4 nm on the upper end to 20 nm on the lower end of the structure. A dark extinction band is visible near the middle.

Download Full Size | PPT Slide | PDF

To be able to make quantitative comparisons between measured and expected MLL performance, we performed calculations based on CWT. The local diffraction efficiency was calculated for the measured section thickness of 9.6 µm, for 100 tilt angles between 0.5 deg and +0.5. This four-dimensional data set was compared to the measured local intensity of the MLL, as recorded in the far-field by the Pilatus detector.

In Fig. 2 the intensity on the detector is plotted as a function of rocking angle. The position on the detector can be matched with a specific position on an ideal lens. A similar representation of diffraction data has been shown previously [28].

 

Fig. 2 Diffracted beam as a function of rocking angle for the first order for a 172 µm wide segment of the structure. The diffracted beam is bright where diffraction is most intense. Increasing angular width of the diffracted beam corresponds to increased Darwin width of the Bragg peak for larger d-spacings, and corresponds to a reciprocal space representation of the Fresnel zone plate law. Intensity is shown with linear scaling.

Download Full Size | PPT Slide | PDF

ImageJ [29] proved to be a valuable tool for data analysis of such images. Here the pixel size of 172 µm corresponds to a resolution of 2 µm on the lens owing to the magnification factor arising from the lens to detector distance of 90 cm. The angular resolution is given by the angular step size in the measurement. The beam transmitted through the lens is blocked by a beamstop, as is part of the positive first order. We discuss here analyses for the negative (focusing) first diffraction order.

The results of CWT calculations for an ideal lens are presented in Fig. 3(a). In the calculations we find a smooth change with rocking angle. No discontinuities are present. The measured data presented in 3 (b) reveals a discontinuity, namely an abrupt shift in the angle at a position of 74 µm of the deposited thickness. This discontinuity corresponds to a kinking of the lens which could be caused by built-up stress and results in two parts of the lens along the aperture direction complying with their respective Bragg condition at once. Such an effect has been discussed at the example of Fig. 1(b). Grown-in stress also enhances the likelihood of damage as a result of processing a multilayer wafer into a lens.

 

Fig. 3 Diffraction efficiency as a function of the rocking angle shown as a result of (a) the calculation for a perfect lens, (b) measurement of a lens with a kink and (c) measurement of a bent lens. Intensities are shown in logarithmic scales.

Download Full Size | PPT Slide | PDF

In Fig. 4(a) the layer placement error is shown as the measured inverse bilayer spacing as a function of the radius. The information regarding the layer placement was gathered by SEM measurements of the marker layer distances.

 

Fig. 4 (a) Spatial frequency as a function of the radius of the corresponding zone plate structure. (b) The calculation of the lens with the actual measured layer placement error and calculation based on the ideal design are shown in (b) and (c) respectively. Intensity is shown in logarithmic scale. Note that part (c) is identical to Fig. 3(a) and shown here for a better comparison.

Download Full Size | PPT Slide | PDF

The apparent deviation in the far field diffraction pattern between ideal and actual deposition is small. This is shown in Fig. 4(b) and (c). While this has little effect on the efficiency of the lens, already a layer placement error of one zone results in destructive interference in the focal point and therefore may lead to a significant distortion of the focal intensity distribution and commensurate increase of the spot size. Detailed discussions can be found in [16,30]. The angular displacement between measurement data and calculations has been determined for the whole structure to obtain information about its quality. A related analysis of angular differences between two lenses has been made in [9].

The results of the analyses are shown in Fig. 5. The results of the layer tilt analysis are shown as a part of the overall scheme to clarify the geometry in Fig. 5(a) in a color map. Quantitative results of this data is shown in Fig. 5(b). The 3D representation was added for clearer visualization of the kinks, which appear as steps. In addition the black boxes on this color map show the two segments, which produce the diffraction as shown in Fig. 3(b) and (c); the left encircled segment inherits a kink while the encircled boxed segment has present bending.

 

Fig. 5 (a) shows a color map based on the layer tilt analysis including the kinks identified. The far right segment inherits a bent segment but no kinks and is expected to be usable for focusing experiments. (b) shows the color map with an additional 3D representation, where the kinks are visible as steps for better visualization. The black boxes on the color mark the segments, for which Fig. 3(b) and (c) show the respective diffraction pattern. (c) shows the color map of (b) with two modifications: the nonzero angles at the interface to the substrate are disregarded and the large kinks are removed from the data. This representation shows the residual angular deformation.

Download Full Size | PPT Slide | PDF

For the representation in Fig. 5(c) the relative segment-to-segment tilt is nulled and the large kinks have been removed. This visualizes the overall angular displacement and the residual bending of the individual segments without the larger effects. This might be a result of internal stress as well as the sectioning process.

The whole structure has a width of 2.7 mm and only a segment of somewhat more than 100 µm would be needed for those experiments. For a lens structure, where the sectioning is made for a much larger area than necessary this method can be used to find a section suitable for focusing experiments. The part of the lens on the far right side of all the representations has been chosen for a more detailed analysis of the diffraction efficiency. Measurements have shown this lens has a diffraction efficiency of approximately 14 % for the part without kinks [19].

4. Conclusions

We tested a large-acceptance MLL with an aperture of 102 µm, made out of a new materials system, WSi2/Al. The measurements involved the acquisition of diffraction data of a rocking series and comparison to theoretical results obtained with the Coupled Wave Theory. Using this approach, we were able to identify local kinking and bending of the MLL across the whole 2.7 mm long section. This approach allows the study of fabrication artifacts during deposition and sectioning of MLLs using a bending magnet beamline as opposed to a high-brilliance insertion device beamline. Iterating between fabrication and diagnostics promises to increase optimization of fabrication and sectioning parameters. At the same time, the approach presented allows fast screening of an MLL optic to find the optimum area for nanofocusing, prior to mounting the optic into an MLL microscope or nanoprobe.

Acknowledgments

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357 and the European Union and the Free State of Saxony via ESF project 100087859, ENano. Work carried out at National Synchrotron Light Source II and the Center for Functional Nanomaterials at Brookhaven National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. DE-SC00112704.

References and links

1. J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

2. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011). [CrossRef]   [PubMed]  

3. H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys . 47(26), 263001 (2014). [CrossRef]  

4. D. Attwood, Soft x-rays and extre ultraviolet radiation: principles and applications (Cambridge University Press, 1999). [CrossRef]  

5. Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002). [CrossRef]  

6. S. Braun and H. Mai, “Multilayers for x-ray optical purposes,” in Metal based thin films for electronics, K. Wetzig and C. M. Schneider, eds. (Wiley-VCH, 2006).

7. J. Vila-Comamala, S. Gorelick, E. Farm, C. M. Kewish, A. Diaz, R. Barret, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011). [CrossRef]   [PubMed]  

8. R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008). [CrossRef]  

9. S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014). [CrossRef]  

10. M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015). [CrossRef]  

11. C. G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B 74(3), 033405 (2006). [CrossRef]  

12. H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007). [CrossRef]  

13. H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013). [CrossRef]  

14. X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015). [CrossRef]   [PubMed]  

15. H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007). [CrossRef]   [PubMed]  

16. H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007). [CrossRef]  

17. X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013). [PubMed]  

18. A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015). [CrossRef]  

19. A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015). [CrossRef]  

20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969). [CrossRef]  

21. J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992). [CrossRef]  

22. H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

23. A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014). [CrossRef]   [PubMed]  

24. R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012). [CrossRef]  

25. A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

26. D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent 7,597,475 (October 62009).

27. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009). [CrossRef]   [PubMed]  

28. T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008). [CrossRef]  

29. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012). [CrossRef]   [PubMed]  

30. A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.
  2. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
    [Crossref] [PubMed]
  3. H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
    [Crossref]
  4. D. Attwood, Soft x-rays and extre ultraviolet radiation: principles and applications (Cambridge University Press, 1999).
    [Crossref]
  5. Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
    [Crossref]
  6. S. Braun and H. Mai, “Multilayers for x-ray optical purposes,” in Metal based thin films for electronics, K. Wetzig and C. M. Schneider, eds. (Wiley-VCH, 2006).
  7. J. Vila-Comamala, S. Gorelick, E. Farm, C. M. Kewish, A. Diaz, R. Barret, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
    [Crossref] [PubMed]
  8. R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
    [Crossref]
  9. S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
    [Crossref]
  10. M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
    [Crossref]
  11. C. G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B 74(3), 033405 (2006).
    [Crossref]
  12. H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
    [Crossref]
  13. H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013).
    [Crossref]
  14. X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
    [Crossref] [PubMed]
  15. H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
    [Crossref] [PubMed]
  16. H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
    [Crossref]
  17. X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
    [PubMed]
  18. A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
    [Crossref]
  19. A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
    [Crossref]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  21. J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992).
    [Crossref]
  22. H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).
  23. A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
    [Crossref] [PubMed]
  24. R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
    [Crossref]
  25. A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.
  26. D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent7,597,475 (October62009).
  27. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
    [Crossref] [PubMed]
  28. T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
    [Crossref]
  29. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  30. A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015).
    [Crossref]

2015 (4)

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

2014 (3)

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

2013 (2)

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013).
[Crossref]

2012 (2)

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (1)

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

2008 (2)

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

2007 (3)

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

2006 (1)

C. G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B 74(3), 033405 (2006).
[Crossref]

2002 (1)

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

1992 (1)

J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Andrejczuk, A.

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
[Crossref]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015).
[Crossref]

Aquila, A.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Assoufid, L.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Attwood, D.

D. Attwood, Soft x-rays and extre ultraviolet radiation: principles and applications (Cambridge University Press, 1999).
[Crossref]

Bajt, S.

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
[Crossref]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Barret, R.

Barthelmess, M.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Barty, A.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Bean, R. J.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Bergamaschi, A.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Bouet, N.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Braun, S.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

S. Braun and H. Mai, “Multilayers for x-ray optical purposes,” in Metal based thin films for electronics, K. Wetzig and C. M. Schneider, eds. (Wiley-VCH, 2006).

Broennimann, C.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Chapman, H. N.

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
[Crossref]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Chu, L.

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Chu, Y.

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Chu, Y. S.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013).
[Crossref]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

Conley, R.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

David, C.

De Carlo, F.

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

Diaz, A.

Dinapoli, R.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Eigenberry, E. F.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Eom, D.

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Ermann, M.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Farm, E.

Gawlitza, P.

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Goetze, K.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Gorelick, S.

Graafsma, H.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Guzenko, V. A.

Harder, R.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Hecker, M.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

Heinrich, B.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Hiller, Jon

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Holt, M.

Huang, X.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Ichimaru, S.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Jahedi, N.

Johnson, I.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Kagoshima, Y.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Kalbfleisch, S.

Kang, C.

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

Kang, H. C.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Kewish, C.

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

Kewish, C. M.

J. Vila-Comamala, S. Gorelick, E. Farm, C. M. Kewish, A. Diaz, R. Barret, V. A. Guzenko, M. Ritala, and C. David, “Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime,” Opt. Express 19(1), 175–184 (2011).
[Crossref] [PubMed]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

Khachatryan, R.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Koritala, R.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Koyama, T.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Kraft, P.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Krüger, P.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Krzywinski, J.

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mater. Express 5(4), 748–755, (2015).
[Crossref]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015).
[Crossref]

Kubec, A.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

Kujala, N.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Laas, R.

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Lai, B.

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

Lauer, K.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Legnini, D.

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Leontowich, A. F. G.

Leson, A.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

Li, L.

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Lima, E.

Liu, C.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Lu, M.

Macrander, A. T.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Mai, H.

S. Braun and H. Mai, “Multilayers for x-ray optical purposes,” in Metal based thin films for electronics, K. Wetzig and C. M. Schneider, eds. (Wiley-VCH, 2006).

Mancini, D. C.

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

Marathe, S.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Maser, J.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent7,597,475 (October62009).

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

Meents, A.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Melzer, K.

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Miller, J.

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Morgan, A. J.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Mozzan-ica, A.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Nazaretski, E.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Niese, S.

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

Nocher, D.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Oberthuer, D.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Ohchi, T.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Patommel, J.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

Pennicard, D.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Prasciolu, M.

Prascioulu, M.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Qian, J.

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Ritala, M.

Robinson, I. K.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

Rose, V.

Schleptz, C. M.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Schmahl, G.

J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992).
[Crossref]

Schmitt, B.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Schroer, C. G.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

C. G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B 74(3), 033405 (2006).
[Crossref]

Shen, Q.

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

Shi, X.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Shu, D.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent7,597,475 (October62009).

Stephenson, G. B.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

Stoupin, S.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Sullivan, J.

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Takaono, H.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Takenaka, H.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Tsuji, T.

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Vila-Comamala, J.

Vogt, S.

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

Wieczorek, M.

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Willmott, P. R.

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Wojcik, M.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

Yan, H.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013).
[Crossref]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011).
[Crossref] [PubMed]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent7,597,475 (October62009).

YanH, H.

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

Yefanov, O.

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Yun, W.

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

Zhou, J.

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. T. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23(10), 12496–12507 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Zschech, E.

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Appl. Phys. Express (1)

T. Koyama, S. Ichimaru, T. Tsuji, H. Takaono, Y. Kagoshima, T. Ohchi, and H. Takenaka, “Optical properties of MoSi2/Si multilayer laue lens as nanometer X-Ray focusing device,” Appl. Phys. Express 1(11), 117003 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. T. Macrander, A. Kubec, R. Conley, N. Bouet, J. Zhou, M. Wojcik, and J. Maser, “Efficiency of a multilayer-Laue-lens with a 102 µm aperture,” Appl. Phys. Lett. 107(8), 081904 (2015).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Phys. D: Appl. Phys (1)

H. Yan, R. Conley, N. Bouet, and Y. S. Chu, “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D: Appl. Phys.  47(26), 263001 (2014).
[Crossref]

J. Synchrotron Radiat. (3)

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20(1), 89–97 (2013).
[Crossref]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21(5), 1122–1127 (2014).
[Crossref] [PubMed]

P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eigenberry, B. Heinrich, I. Johnson, A. Mozzan-ica, C. M. Schleptz, P. R. Willmott, and B. Schmitt, “Performance of single-photon-counting PILATUS detector modules,” J. Synchrotron Radiat. 16(3), 368–375 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Nucl. Instr. Meeth. Phys. Res. (1)

H. Yan, H. C. Kang, J. Maser, A. T. Macrander, C. M. Kewish, C. Liu, R. Conley, and G. B. Stephenson, “Characterization of a multilayer Laue lens with imperfections,” Nucl. Instr. Meeth. Phys. Res. 582(1), 126–128 (2007).
[Crossref]

Opt. Commun. (1)

J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2), 355–362 (1992).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. B (2)

C. G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev. B 74(3), 033405 (2006).
[Crossref]

H. Yan, J. Maser, A. T. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76(11), 115438 (2007).
[Crossref]

Proc. SPIE (1)

R. Conley, N. Bouet, J. Zhou, H. Yan, Y. Chu, K. Lauer, J. Miller, L. Chu, and N. Jahedi, “Advanced multilayer Laue lens fabrication at NSLS-II,” Proc. SPIE 8502, 850202 (2012).
[Crossref]

Ref. Sci. Instrum. (1)

R. Conley, C. Liu, J. Qian, C. Kewish, A. T. Macrander, H. YanH, C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Ref. Sci. Instrum. 79(5), 053104 (2008).
[Crossref]

Rev. Sci. Instrum. (2)

Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, “Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source,” Rev. Sci. Instrum. 73(3), 1485–1487 (2002).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, R. Khachatryan, M. Wieczorek, A. T. Macrander, H. Yan, J. Maser, Jon Hiller, and R. Koritala, “Sectioning of multilayers to make a multilayer Laue lens,” Rev. Sci. Instrum. 78(4), 046103 (2007).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).
[PubMed]

A. J. Morgan, M. Prascioulu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lens,” Sci. Rep. 5, 09892 (2015).
[Crossref]

Thin Solid Films (1)

S. Niese, P. Krüger, A. Kubec, R. Laas, P. Gawlitza, K. Melzer, S. Braun, and E. Zschech, “Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer,” Thin Solid Films 571, 321–324, (2014).
[Crossref]

Other (7)

S. Braun and H. Mai, “Multilayers for x-ray optical purposes,” in Metal based thin films for electronics, K. Wetzig and C. M. Schneider, eds. (Wiley-VCH, 2006).

J. Maser, G. B. Stephenson, S. Vogt, W. Yun, A. T. Macrander, H. C. Kang, C. Liu, and R. Conley, “Multilayer Laue lenses as high-resolution x-ray optics,” in Proceedings of Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 185–194.

D. Attwood, Soft x-rays and extre ultraviolet radiation: principles and applications (Cambridge University Press, 1999).
[Crossref]

H. C. Kang, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, J. Maser, S. Bajt, and H. N. Chapman, “Synchrotron x-ray study of multilayers in Laue geometry,” in Proceedings of Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics), pp. 127–132 (2004).

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. (in press) (2015).
[Crossref]

A. T. Macrander, M. Ermann, N. Kujala, S. Stoupin, S. Marathe, X. Shi, M. Wojcik, D. Nocher, R. Conley, J. Sullivan, K. Goetze, J. Maser, and L. Assoufid, “X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source,” Synchrotron Radiation Instruments Conference, New York City, USA, July 6–10, 2015.

D. Shu, H. Yan, and J. Maser, “Multidimensional alignment apparatus for hard x-ray focusing with two multilayer laue lenses,” US Patent7,597,475 (October62009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic view of the MLL measurement setup. Diffraction data are acquired by rocking the MLL through the incident beam, satisfying the local Bragg conditions for different d-spacings consecutively. The distance between MLL and detector is d1 = 90 cm. For transmission measurements, the beamstop is removed and an Andor Neo CCD camera is put in place d2 = 33 cm downstream of the lens. (b) Example of an acquired transmission image. The top and bottom dark areas represent shadows of the slits. The higher absorbing WSi2/Al structures have somewhat larger absorption than the silicon enclosing the MLL structure in a sandwich (similar to [15]) and therefore appear as a gray band with extinction features in areas where the local Bragg condition is satisfied. The d-spacing of the MLL varies vertically from 4 nm on the upper end to 20 nm on the lower end of the structure. A dark extinction band is visible near the middle.
Fig. 2
Fig. 2 Diffracted beam as a function of rocking angle for the first order for a 172 µm wide segment of the structure. The diffracted beam is bright where diffraction is most intense. Increasing angular width of the diffracted beam corresponds to increased Darwin width of the Bragg peak for larger d-spacings, and corresponds to a reciprocal space representation of the Fresnel zone plate law. Intensity is shown with linear scaling.
Fig. 3
Fig. 3 Diffraction efficiency as a function of the rocking angle shown as a result of (a) the calculation for a perfect lens, (b) measurement of a lens with a kink and (c) measurement of a bent lens. Intensities are shown in logarithmic scales.
Fig. 4
Fig. 4 (a) Spatial frequency as a function of the radius of the corresponding zone plate structure. (b) The calculation of the lens with the actual measured layer placement error and calculation based on the ideal design are shown in (b) and (c) respectively. Intensity is shown in logarithmic scale. Note that part (c) is identical to Fig. 3(a) and shown here for a better comparison.
Fig. 5
Fig. 5 (a) shows a color map based on the layer tilt analysis including the kinks identified. The far right segment inherits a bent segment but no kinks and is expected to be usable for focusing experiments. (b) shows the color map with an additional 3D representation, where the kinks are visible as steps for better visualization. The black boxes on the color mark the segments, for which Fig. 3(b) and (c) show the respective diffraction pattern. (c) shows the color map of (b) with two modifications: the nonzero angles at the interface to the substrate are disregarded and the large kinks are removed from the data. This representation shows the residual angular deformation.

Metrics