Abstract

Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.

© 2015 Optical Society of America

1. Introduction

Wavelength-tunable semiconductor lasers are important light sources in the wavelength-division-multiplexing optical communication systems [1–9]. Based on thermal and carrier effects, varieties of continuous wavelength-tunable semiconductor lasers have been proposed and demonstrated, such as tunable distributed-feedback (DFB) lasers with film heaters [1,2], multi-section DFB lasers [3], tunable distributed amplification DFB lasers [4,5], three-electrode distributed-Bragg-reflector (DBR) lasers [6,7], and sampled grating and super-structured grating DBR lasers [8,9]. Continuous wavelength tuning range up to 22 nm was demonstrated for the three-electrode DBR laser [7]. However, complicated control of the injection currents is required for the continuous wavelength tuning.

Microlasers with a large longitudinal mode interval are a potential choice for realizing tunable semiconductor lasers [10–15]. Recently, square resonator microlasers have attracted a great attention for potential application in photonic integrated circuits and optical interconnects [12–29]. For a square resonator, the mode interval of high-Q confined modes will be twice of the longitudinal mode interval, which makes the square microresonator suitable for realizing single mode lasing [13,14,17,18]. However, the prediction was not observed for the square microlasers laterally confined by SiO2 and p-electrode layers [21,24]. Very recently, single mode operation with the side mode suppression ratio of 41 dB was realized for a square microlaser laterally confined by the bisbenzocyclobutene (BCB) layer, with a side length of 16 μm and a 2-μm-wide vertex output waveguide [28]. In addition, higher output powers were obtained for the square microlasers compared with the microdisk lasers [29].

In this paper, we demonstrate the widely and continuously tunable single-mode square semiconductor microlasers, with a midpoint-connected output waveguide for mode selection and unidirectional emission. The influences of the output waveguide on the mode behaviors are investigated numerically and experimentally. The results show that the mode selection caused by the output waveguide can result in mode-hopping-free single mode operation, through adjusting the width of the output waveguide. Therefore, the lasing wavelength can be tuned continuously by tuning the injection current. The tunable square microlaser provides wavelength tuning by injection current and it simplifies the fabrication process as well as the tuning process. For a square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm, single-mode operation is achieved with a continuous tuning range of 9.2 nm.

2. Simulation of mode selection

2.1 Numerical model

The square microresonator with the side length a and the output waveguide width w, are numerically investigated by two-dimensional (2D) finite-difference time-domain (FDTD) technique. As shown in Fig. 1(a), the square microresonator is laterally confined by a 200-nm silicon nitride (SiNx) layer and the BCB layer. The refractive indices of AlGaInAs/InP laser wafer, SiNx and BCB layers are taken to be 3.2, 2 and 1.54, respectively. A perfectly matched layer (PML) absorbing boundary condition is used to terminate the simulation area. A uniform mesh with cell size of 20 nm is used in the simulation and the time step is fixed to be 0.0467 fs according to the Courant limit. A cosine impulse modulated by a Gaussian function P(t) = exp[−(tt0)2/tw2]cos(2πf0t) is added to Hz at the point (x, y) = (1.2, −8.3) μm to excite the transverse electric (TE) modes. The pulse center t0 = 6.6 fs, the pulse half width tw = 19.8 fs, and the pulse center frequency f0 = 193.5 THz are used to excite the TE modes over a wide frequency range. The time-domain outputs of Hz at the points (x, y) = (8.3, 2.4), (2.5, 8.4) and (−8.3, 6.4) μm, are monitored and recorded as the FDTD outputs. The FDTD output is transformed from the time domain to the frequency domain through Padé approximation [30], and the mode wavelengths and Q factors are calculated from the peak wavelength and the width by fitting the resonance peak with a Lorentzian function.

 

Fig. 1 (a) The structure of the square microresonator used in the 2D FDTD simulation, (b) mode intensity spectra and (c) high resolution intensity spectra around 1530 nm for the 17.8-μm-side-length square microresonators with and without the output waveguide.

Download Full Size | PPT Slide | PDF

2.2 Modes in square microresonator

For the square microresonator with a = 17.8 μm and w = 1.4 μm, the obtained mode intensity spectrum for the TE modes is plotted in Fig. 1(b). The mode numbers p and q for mode TEo,(p, q) and TEe,(p, q) are the numbers of the wave nodes along the sides of the square resonator, where the superscripts ‘o’ and ‘e’ indicate the anti-symmetry and symmetry relative to the diagonals of the square resonator [14]. As a comparison, the intensity spectrum for the TE modes in the perfect square microresonator with the same size is also calculated and plotted in Fig. 1(b) as the dashed line. To figure out the influences of the output waveguide on different modes, the high resolution spectra for modes around 1530 nm are calculated and plotted in Fig. 1(c) as the solid and dash lines for the square microresonator with and without the output waveguide. For the perfect square microresonator without the output waveguide, seven high-Q modes are observed around 1530 nm with the wavelengths of 1530.97, 1530.26, 1529.10, 1527.47, 1525.42, 1522.90 and 1520.06 nm. They are TEo,(52,54), TEo,(51,55), TEo,(50,56), TEo,(49,57), TEo,(48,58), TEo,(47,59) and TEo,(46,60) modes with the mode Q factors of 1.91 × 105, 1.30 × 105, 7.89 × 104, 2.55 × 104, 2.04 × 104, 1.69 × 104 and 3.05 × 104, corresponding to the fundamental,first-order, second-order, third-order, forth-order, fifth-order and sixth-order transverse modes, respectively. With the introduction of the output waveguide, the even order transverse modes TEo,(52,54), TEo,(50,56), TEo,(48,58) and TEo,(46,60) are suppressed, with |p - q| = 4n + 2 and n the transverse mode number [13,14], due to high coupling loss to the output waveguide.

Furthermore, the mode field distributions are simulated using a narrow-bandwidth exciting source around the resonant peak. The mode field distributions |Hz| are presented in Figs. 2(a) and 2(b) for TEo,(52,54) and TEo,(51,55) modes in the perfect square microresonator without the output waveguide, respectively. For TEo,(52,54) mode, the mode field distribution is strong in the middle region of the square sides, and thus the midpoint-connected output waveguide leads to a large coupling loss and a small mode Q factor. Similar to TEo,(52,54) mode, TEo,(50,56), TEo,(48,58) and TEo,(46,60) modes are suppressed due to the large coupling loss caused by the output waveguide. Because of the weak mode field distribution in the midpoints of the square sides, as shown in Fig. 2(b), TEo,(51,55) mode can still have a high mode Q factor with the introduction of the output waveguide. The mode Q factors for TEo,(51,55), TEo,(49,57) and TEo,(47,59) modes are 3.71 × 104, 6.18 × 103 and 4.21 × 103, respectively, at the output waveguidewidth of 1.4 μm, with those of TEo,(49,57) and TEo,(47,59) by fitting with Fano-shape-like resonances [31]. The result indicates that the mode Q factors for the third-order transverse mode TEo,(49,57) and fifth-order transverse mode TEo,(47,59) are much lower than that of the first-order transverse mode TEo,(51,55). TEo,(52,56), TEo,(50,54) and TEo,(49,53) modes at the mode wavelengths of 1501.32, 1560.35 and 1591.64 nm are also the high-Q first-order transverse modes, as shown in Fig. 1(a). The average mode interval between the high-Q first-order transverse modes is 30.1 nm, which is equal to the twice of the longitudinal mode interval. To have the high-Q mode interval of 30.1 nm, we should reduce the cavity length to 12.5 μm for a Fabry-Pérot cavity.

 

Fig. 2 Mode field distributions |Hz| for (a) TEo,(52,54) and (b) TEo,(51,55) in the 17.8-μm-side-length square microresonator .

Download Full Size | PPT Slide | PDF

In Table 1, the mode wavelengths and Q factors are summarized for TEo,(52,56), TEe,(52,55), TEo,(51,55), TEe,(50,55), TEo,(50,54), TEe,(50,53), TEo,(49,53) and TEe,(48,53) modes at the gain of 0 and 3.0 cm−1. The threshold gain can be calculated from gt=ngk0/Q, where k0 is the wave vector in a vacuum and ng is the mode group index. The obtained threshold gain for the high-Q first-order transverse modes is about 3.4~5.2 cm−1. The mode Q factors of the symmetrical modes TEe,(52,55), TEe,(50,55), TEe,(50,53) and TEe,(48,53) are much smaller than those of the anti-symmetrical modes TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53), because of a large radiation loss at the vertices of the square microresonator for the symmetrical modes [13].

Tables Icon

Table 1. Mode wavelengths and Q factors for the square microresonator with a midpoint output waveguide at a = 17.8 μm and w = 1.4 μm

2.3 Influences of circular corners

The fabricated square microresonators usually have round vertices after dry etching and wet chemical etching processes. Assuming the vertices to be a circular with a radius of r as shown in Fig. 1(a), we investigate the influences of the circular vertices on the mode characteristics. The mode wavelengths and Q factors are summarized in Table 2 for the high-Q modes at r = 0, 0.5 and 1 μm. At r = 0.5 μm, the mode intervals of the high-Q modes are still twice of the longitudinal mode interval as r = 0, with the mode Q factors of the anti-symmetrical modes are about five times of those of the symmetrical modes. However, the mode Q factors of the anti-symmetrical modes TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53) are about 20% less than those of the symmetrical modes TEe,(52,55), TEe,(50,55), TEe,(50,53) and TEe,(48,53), as r increases from 0.5 to 1 μm. The small difference of the mode Q factors shows that the mode interval of the high-Q modes reduces to the longitudinal mode interval at r = 1 μm. The results indicate that the square resonator with near perfect vertices is important to keep the mode interval of the high-Q modes twice of the longitudinal mode interval. The mode field distributions |Hz| for TEo,(51,55) and TEe,(50,55) are presented in Figs. 3(a)-3(d) at r = 0 and 1 μm, respectively. The large radiation loss caused by the round vertices is responsible for the low Q factor for TEo,(51,55) at r = 1 μm. For TEe,(50,55), the radiation loss induced by the round corners increases but the coupling loss caused by the output waveguide decreases, as r increases from 0 to 1 μm. Therefore, different to the anti-symmetrical mode, the mode Q factor for TEe,(50,55) at r = 1 μm is only slightly lower than that at r = 0.

Tables Icon

Table 2. Mode Q factors for the square microresonators with round corners

 

Fig. 3 Mode field distributions |Hz| for TEo,(51,55) at (a) r = 0 and (b) r = 1 μm, and TEe,(50,55) at (c) r = 0 and (d) r = 1 μm in the 17.8-μm-side-length square microresonator with the 1.4-μm-width output waveguide.

Download Full Size | PPT Slide | PDF

2.4 Influences of the output waveguide width

Finally, we investigate the influences of the output waveguide width on the mode Q factors for the square resonator with perfect vertices, i.e., r = 0. The mode Q factors versus the waveguide width w are plotted in Figs. 4(a) and 4(b) for the high-Q modes TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53) at g = 0 and g = 2 cm−1. The gain is taken to be 2 cm−1 due to the threshold gain of TEo,(52,56) is only 2.1 cm−1 as w = 1 μm. The mode field distributions of TEo,(52,56) and TEo,(50,54) modes are symmetrical to the middle line of the output waveguide while those of TEo,(51,55) and TEo,(49,53) modes are anti-symmetrical, due to the even and odd mode numbers. The mode Q factors of the symmetrical and anti-symmetrical modes degrade with the increase of the waveguide width at different rates. For g = 0, the mode Q factors of the symmetrical modes decrease more quickly with the increase of w than the anti-symmetrical modes as w < 1.4 μm. The symmetrical modes have higher Q factors as w < 1.2 μm, but the anti-symmetrical modes have higher Q factors as 1.2 μm < w < 1.47 μm. As 1.6 μm < w < 1.8 μm, the mode Q factors of the symmetrical modes are slightly higher than those of the anti-symmetrical modes. As taking the gain into consideration, the change of the mode Q factors are almost the same as g = 0, as shown in Fig. 4(b). Therefore, by adjusting the output waveguide width, we can even have the high Q symmetrical or anti-symmetrical modes with the wavelength interval as four times as the longitudinal mode interval, which is important for the square microlaser with a wide continuous wavelength tuning range. In the following section, we fabricate square microlasers based on the simulated results.

 

Fig. 4 Mode Q factors versus the output waveguide width for TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53) at (a) g = 0 and (b) g = 2 cm−1 in the square microresonator with the side length of 17.8 μm.

Download Full Size | PPT Slide | PDF

3. Fabrication process and experimental results

3. 1 Fabrication process

The square microlasers are fabricated using AlGaInAs/InP laser wafer with the active region consisted of six compressively strained quantum wells (QWs) with 6-nm-thick wells and 9-nm-thick barriers. The photoluminescence wavelength of the QWs is about 1520 nm at room temperature and the bandgap wavelength of the barrier layer is 1.2 μm. The square resonators are etched with the depth of 4 μm by inductively coupled plasma etching process using the SiO2 layer as the mask. After the removal of the mask, a 200-nm SiNx layer is deposited using the plasma-enhanced chemical vapor deposition for increasing the adhesion of the BCB layer. Subsequently, the BCB layer is spin-coated twice to create a planar surface, followed by the annealing process in the N2 atmosphere. After that, the BCB layer is etched by reactive-ion-etching process without any mask to expose the microresonators. Finally, a contact window is etched on the top of each microresontor for the current injection and the Ti/Pt/Au is deposited by electron-beam evaporation as the p-contact electrode. Finally, the Au/Ge/Ni n-contact electrode is deposited by electron-beam evaporation after lapping down the wafer to about 120 μm. In order to avoid the deformed vertices, no wet etching is used in the fabrication process.

3. 2 Experimental results

The square microlasers are tested by bonding with p-side up on the heat sink, which is mounted on the thermoelectric cooler (TEC) for temperature control. For a square microlaser with the side length of 17.8 μm and the output waveguide width of 1.8 μm, the output powers coupled into a multi-mode fiber versus the continuous-wave (CW) injection current are plotted in Fig. 5(a) at the TEC temperature of 291 and 298 K as the solid and dash lines, respectively. The threshold currents are 4.5 and 5.5 mA at 291 and 298 K with the corresponding threshold current densities of 1.4 and 1.7 KA/cm2, respectively. A series resistor of 24 Ω is estimated from the I-V curve in Fig. 5(a) at the threshold current. Due to the temperature rise with the injection current, the output power decreases as the CW injection current is larger than 40 mA at 298 K. The lasing spectra of the square microlaser are measured by an optical spectrum analyzer at a resolution of 0.06 nm and presented in Fig. 5(b) at 298 K and I = 6, 15, 20, 30, 40, 50 and 58 mA, where the adjacent spectra are relatively shifted by 10 dB for clarity. Evident resonance peaks at 1516.48, 1529.39, 1542.37 and 1555.54 nm are observed at 6 mA and marked by A, B, C and D in Fig. 5(b). The wavelength intervals 12.91, 13.01 and 13.17 nm can be fitted by the longitudinal mode interval λ2/22ang with the group index ng ranged from 3.57 to 3.62. As the current increases from 15 to 20 mA, the lasing mode jumps 26.75 nm over two longitudinal mode intervals to mode D. This indicates that mode D has a higher mode Q factor than mode C and the mode interval between the high Q modes is twice of the longitudinal mode interval, which is in well agreement with the simulation results in Fig. 1. Furthermore, the coupling efficiency to the single-mode fiber η is measured, which is defined as the power coupled to the single-mode fiber to that measured by a 5-mm-diameter detector 2 mm away from the cleaved facet. The measured coupling efficiency is about 5.9% as I < 10 mA and 21% as I > 20 mA. Based on the simulated and experimental results, the increase of the coupling efficiency is corresponding to the transition of the lasing mode from the anti-symmetrical mode to the symmetrical mode relative to the output waveguide. Considering the higher mode Q factors for modes B and D than those of modes A and C, we can assign the modes B and D as the high-Q first-order transverse modes. Since mode B is anti-symmetrical relative to the output waveguide while mode D is symmetrical, modes B and D may be corresponding to modes TEo,(51,55) and TEo,(50,54) in Fig. 1(b), respectively. The third-order and fifth-order transverse modes are not observed due to the low mode Q factors. The lasing mode wavelength and the side-mode suppression ratio (SMSR) versus the CW injection current are summarized in Fig. 5(c) from 20 to 58 mA at the TEC temperature of 298 K. Single-mode operation with the SMSR > 36 dB is obtained with continuous wavelength tuning range of 6.4 nm as 20 mA < I < 55 mA. The SMSR decreases to 29 dB due to the low output power caused by the heating effect at 58 mA.

 

Fig. 5 (a) Output power and applied voltage versus CW injection current at 291K and 298K, (b) lasing spectra at different currents at 298 K, and (c) lasing wavelength and SMSR versus the current at 298 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.8 μm.

Download Full Size | PPT Slide | PDF

The lasing modes with double longitudinal mode interval are also observed for the square microlasers with the side length of 17.8 μm and the output waveguide width w of 1.6 and 2 μm, as shown in Fig. 6 (a) and (b), respectively.

 

Fig. 6 Lasing spectra at different currents at 298 K for the square microlaser with the side length of 17.8 μm and the output waveguide width of (a) 1.6 μm and (b) 2 μm, respectively.

Download Full Size | PPT Slide | PDF

Finally, the lasing characteristics are studied for a square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm. The output powers versus the CW injection current are plotted in Fig. 7 (a) at the TEC temperature of 291 and 298 K as the solidand dash lines, respectively. The threshold currents are 3.5 and 4.5 mA with the corresponding threshold current densities of 1.1 and 1.4 KA/cm2 at 291 and 298 K, respectively. The lasing spectra at I = 5, 15, 25, 35, 45, 55 and 65mA are presented in Fig. 7(b) at the TEC temperature of 291 K, where the adjacent spectra are relatively shifted by 10 dB for clarity. Three evident peaks at 1519.33, 1532.06 and 1544.95 nm are observed at I = 5 mA, and marked as A, B and C in Fig. 7(b). The dominant lasing mode keeps constant at the mode B with the increase of the injection current, which indicates mode B has a higher mode Q factor than modes A and C. Based on the simulation results in Figs. 1 and 4, mode B is the high-Q first-order transverse mode and the mode number may be TEo,(51,55), while modes A and C are the low-Q modes. The measured coupling efficiency to the single-mode fiber is only 5.86%, so the lasing mode is anti-symmetrical mode relative to the output waveguide, which agrees well with the simulation results in Fig. 4 as the output waveguide width is 1.4 μm. The lasing wavelength and the SMSR versus the CW injection current are summarized in Fig. 7(c) at 291 K, which shows a continuous wavelength tuning range of 9.26 nm with the SMSR > 26 dB from 5 to 65 mA. From the I-V curve in Fig. 7(a) and the lasing wavelength under different injection current in Fig. 7(c), the tuning rate of 0.068 nm/mW is calculated. Under a pulsed current with a pulse duty of 1% and a pulse width of 10 ns, the mode wavelength redshift rate of 0.114 nm/K is obtained by varying the TEC temperature. Based on the redshift rate, the temperature rise of 81 K is obtained from 5 to 65 mA and the practical laser temperature is about 379 K at 65 mA. Furthermore, the lasing spectra are measured under different TEC temperatures and presented in Fig. 8(a), and the wavelength of the dominant lasing mode and the corresponding SMSR are summarized in Fig. 8(b). As the TEC temperature increases from 286 to 319 K, no mode hopping is observed and the wavelength of the dominant lasing mode increases from1532.20 to 1536.00 nm with the wavelength redshift of 3.8 nm. The SMSR is lower than 15 dB as the TEC temperature is higher than 319 K due to the low output power caused by the high temperature.

 

Fig. 7 (a) Output power and applied voltage versus CW injection current at 291 and 298K, (b) lasing spectra at different currents at 291 K, and (c) lasing mode wavelength and SMSR versus the current at 291 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.

Download Full Size | PPT Slide | PDF

 

Fig. 8 (a) Lasing spectra at different TEC temperatures at 12 mA, and (b) lasing mode wavelength and SMSR versus the TEC temperature at 12 mA, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, the mode selection in the square microlasers with a midpoint output waveguide has been investigated numerically and experimentally, for realizing wide and continuous wavelength-tunable single mode lasing. The numerical results reveal that the output waveguide can make the mode interval of the high-Q modes as large as four times of the longitudinal mode interval by choosing the proper width of the output waveguide. Therefore, single-mode operation without mode hopping can be achieved and the lasing wavelength can be tuned continuously by tuning the injection current. The square resonator microlasers with the side length of 17.8 μm are fabricated by dry etching technique without a wet chemical etching smooth process, which can keep near perfect vertices of the square microresonator. At the output waveguide width of 1.4 μm, mode-hopping-free single mode operation with a continuous tuning range of 9.2 nm is achieved by tuning the injection current. As the output waveguide width is 1.8 μm, single mode operation with continuous tuning range of 6.4 nm is obtained. The results reveal the possibility for the precise control of lasing mode in the square microlasers. With the simple fabrication process and the compact size, the square resonator microlaser can offer compact tunable light source for photonic integrated circuits and optical interconnects.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61235004, 61321063, and 61376048, and the Beijing Natural Science Foundation under Grant 4142052.

References and links

1. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992). [CrossRef]  

2. C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013). [CrossRef]  

3. L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014). [CrossRef]  

4. H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998). [CrossRef]  

5. N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011). [CrossRef]  

6. H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal Jr., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990). [CrossRef]  

7. M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991). [CrossRef]  

8. S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002). [CrossRef]  

9. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004). [CrossRef]  

10. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009). [CrossRef]   [PubMed]  

11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007). [CrossRef]   [PubMed]  

12. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001). [CrossRef]   [PubMed]  

13. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003). [CrossRef]  

14. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003). [CrossRef]  

15. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004). [CrossRef]  

16. H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004). [CrossRef]  

17. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004). [CrossRef]  

18. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005). [CrossRef]  

19. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006). [CrossRef]  

20. Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007). [CrossRef]  

21. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008). [CrossRef]   [PubMed]  

22. H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009). [CrossRef]  

23. K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010). [CrossRef]  

24. K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010). [CrossRef]  

25. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef]   [PubMed]  

26. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014). [CrossRef]  

27. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015). [CrossRef]  

28. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

29. C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014). [CrossRef]  

30. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001). [CrossRef]  

31. X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
    [Crossref]
  2. C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
    [Crossref]
  3. L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
    [Crossref]
  4. H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
    [Crossref]
  5. N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
    [Crossref]
  6. H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
    [Crossref]
  7. M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
    [Crossref]
  8. S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
    [Crossref]
  9. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  10. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
    [Crossref] [PubMed]
  11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [Crossref] [PubMed]
  12. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001).
    [Crossref] [PubMed]
  13. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
    [Crossref]
  14. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
    [Crossref]
  15. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
    [Crossref]
  16. H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
    [Crossref]
  17. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
    [Crossref]
  18. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
    [Crossref]
  19. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
    [Crossref]
  20. Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
    [Crossref]
  21. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
    [Crossref] [PubMed]
  22. H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
    [Crossref]
  23. K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
    [Crossref]
  24. K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
    [Crossref]
  25. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  26. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
    [Crossref]
  27. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
    [Crossref]
  28. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).
  29. C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
    [Crossref]
  30. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
    [Crossref]
  31. X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
    [Crossref]

2015 (1)

2014 (3)

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

2013 (1)

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

2011 (2)

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

2010 (2)

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

2009 (2)

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (1)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

2005 (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

2004 (4)

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

2003 (3)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

2002 (1)

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

2001 (2)

A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001).
[Crossref] [PubMed]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

1998 (1)

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

1992 (1)

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

1991 (1)

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

1990 (1)

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Akulova, Y.

An, K.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Baets, R.

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Barton, J. S.

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Chang, R. K.

Chapuran, T. E.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Che, K. J.

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Chen, Q.

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

Chen, X. F.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Chinone, N.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Coldren, C. W.

Coldren, L. A.

Cooper, J. M.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Courvoisier, F.

Di Cioccio, L.

Du, Y.

Fan, Z. C.

Fedeli, J. M.

Fish, G. A.

Fujiwara, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Goldstein, E. L.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Goodman, M. S.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Guo, W. H.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

Hattori, H. T.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Huang, L.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Huang, Y. P.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Huang, Y. Z.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Iga, R.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Ishii, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Jagadish, C.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Johansson, L.

Kano, F.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Kawaguchi, Y.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Kim, J.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Kim, S. B.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Kit, S.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Kitajima, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Klinga, T.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Kobrinski, H.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Kondo, Y.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Lagahe, C.

Lai, Y. C.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Lee, C. W.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Li, L. Y.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Li, S. M.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Li, W. B.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Li, W. J.

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

Liang, S.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Liu, B. W.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

Liu, D. Y.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Liu, X. J.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Long, H.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Lu, Q. Y.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

Lv, X. M.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Ma, X. W.

Menocal, S. G.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Moon, H. J.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Nilsson, S.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Nunoya, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Öberg, M.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Ojala, P.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Oohashi, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Poon, A. W.

Regreny, P.

Rojo Romeo, P.

Ryu, S. W.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Sakano, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Sato, T.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Seassal, C.

Sewell, P.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Sewell, P. D.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

Shi, Y. C.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Sim, J. S.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Sun, S. P.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Suzuki, M.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Tan, H. H.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Tang, S.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Ting, D. K.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Tsuchiya, T.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Tur, M.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vecchi, M. P.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Verstuyft, S.

Wang, Q.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Wang, S. J.

Wang, W.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Xiao, J. L.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Xiao, Z. X.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Xu, K. Z.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Yang, Y. D.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Yoshikuni, Y.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Yu, L. J.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

Yuan, Z. S.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Zah, C.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Zhang, C.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Zhang, T. T.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Zhu, H. L.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Zhu, L. F.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Zou, L. X.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Appl. Phys. Lett. (1)

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Chin. Phys. Lett. (1)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

IEEE J. Quantum Electron. (4)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (6)

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

J. Appl. Phys. (1)

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Opt. Lett. (2)

Semicond. Sci. Technol. (1)

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Other (1)

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The structure of the square microresonator used in the 2D FDTD simulation, (b) mode intensity spectra and (c) high resolution intensity spectra around 1530 nm for the 17.8-μm-side-length square microresonators with and without the output waveguide.
Fig. 2
Fig. 2 Mode field distributions |Hz| for (a) TEo,(52,54) and (b) TEo,(51,55) in the 17.8-μm-side-length square microresonator .
Fig. 3
Fig. 3 Mode field distributions |Hz| for TEo,(51,55) at (a) r = 0 and (b) r = 1 μm, and TEe,(50,55) at (c) r = 0 and (d) r = 1 μm in the 17.8-μm-side-length square microresonator with the 1.4-μm-width output waveguide.
Fig. 4
Fig. 4 Mode Q factors versus the output waveguide width for TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53) at (a) g = 0 and (b) g = 2 cm−1 in the square microresonator with the side length of 17.8 μm.
Fig. 5
Fig. 5 (a) Output power and applied voltage versus CW injection current at 291K and 298K, (b) lasing spectra at different currents at 298 K, and (c) lasing wavelength and SMSR versus the current at 298 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.8 μm.
Fig. 6
Fig. 6 Lasing spectra at different currents at 298 K for the square microlaser with the side length of 17.8 μm and the output waveguide width of (a) 1.6 μm and (b) 2 μm, respectively.
Fig. 7
Fig. 7 (a) Output power and applied voltage versus CW injection current at 291 and 298K, (b) lasing spectra at different currents at 291 K, and (c) lasing mode wavelength and SMSR versus the current at 291 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.
Fig. 8
Fig. 8 (a) Lasing spectra at different TEC temperatures at 12 mA, and (b) lasing mode wavelength and SMSR versus the TEC temperature at 12 mA, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.

Tables (2)

Tables Icon

Table 1 Mode wavelengths and Q factors for the square microresonator with a midpoint output waveguide at a = 17.8 μm and w = 1.4 μm

Tables Icon

Table 2 Mode Q factors for the square microresonators with round corners

Metrics