Abstract

We report on a novel technology for high-speed inter-satellites optical communication by bidirectional beam tracking. By establishing the relation between the compensation effect and the parameters of response time and overshoot situation, the stability can be well compensated simply by the control system. Thus the relation between compensation effect and maintain time can be predicted from ground tests, and the certain evaluation standard could be established to meet the requirements of system. The other critical factors, such as signal-to-noise ratio and pointing angle error, have also been considered to improve the stability. The general approach can provide us a powerful path to overcome the performance limitation of bidirectional beam tracking, which can be expected to be widely applied in Free Space optics communications in future.

© 2015 Optical Society of America

1. Introduction

Thanks to the in-orbit tests successfully operated in recent years, the high-speed satellite optical communication is gradually moving towards engineering applications, which can open the doors to the next-generation of Free Space Optics communications [1–5]. Laser communication works in a highly confidential and immune way with large capacity, small terminal, and light weight over the traditional microwave communication technique [6]. Nevertheless, the performance limitations due to the long communication distance and extreme optical detection conditions, which usually allow for laser communication in optical diffraction limit environments, have largely restricted the applications of optical communication between satellites [7–9].

Bidirectional optical tracking communication is an alternative strategy to compensate satellite orbit and positioning accurately with advantages of long-term stability and high laser link quality [9]. The first bidirectional optical tracking communication experiment in the world has been successfully established between OICETS and ARTEMIS [3,10,11], which is preformed by JAXA and ESA using a laser beam in 2005. The holding time of the link is 10 mins with the communication data rate ~50Mbps (OICETS-ARTEMIS) and ~2Mbps (ARTEMIS-OICETS). The satellite to ground bidirectional optical communication links are performed between AlphaSat and Tan DEM-X at ESA site in 2013, with communication data rate up to ~1.8-2.8Gbps [1,12–14]. Because the laser beam is narrow, and the energy of receiver light is very weak, both high-performance pointing-acquisition-tracking (PAT) system and high-precision control accuracy are usually required [1,9,10]. Moreover, the pointing and tracking errors between satellites are usually coupled with each other, which make it a serious challenge to determine the compensation effect to the two terminals simultaneously. The characteristics of bidirectional tracking process and the constraint conditions of bidirectional beam stabilized tracking are critical to improve the stability of the communication links and extend the holding time of links. However, systematic study on constraint conditions of the stabilized inter-satellites bidirectional beam has rarely been reported yet.

Here for the first time we consciously devote to exploring a highly precise control system to explain the compensation effect in terms of the parameters in bidirectional beam tracking, which are easily monitored. In our study, the theoretical model of bidirectional beam stabilized tracking constraint conditions was firstly deduced, which is approximate to the actual situation. The kinetic compensation effect states were evolved into a curve relationship between parameters observed in control system, such as response time and overshoot situation. In this way, compensation effects could be exactly determined in the pre-designed control systems. Finally, the relation between compensation effect and maintain time was predicated from ground tests, and the certain evaluation standard could be established to meet the requirement of system. All of these can ensure high stability of bidirectional beam tracking communication.

2. Constraint conditions of stabilized tracking

2.1 The structure of the inter-satellites optical communication

The bidirectional beam tracking mechanism between satellites has been shown in Fig. 1. The transmitting terminal of satelliteI transmits a beacon light condition, while satelliteII is receiving. BN is the receiving antenna aperture plane. Once satelliteII has processed the information, it will transmit the signal light to satelliteI. Point A and B are the center of the receiving and transmitting terminal antenna aperture, respectively.

 

Fig. 1 The structure of the inter-satellites optical communication.

Download Full Size | PPT Slide | PDF

2.2 The control system

We use a series of control units to achieve the supposed value to satisfy parameters of system. As for satellite I, the pointing angle θ1* is the position information received from satelliteII. θ1 is the true value achieved by satelliteI’s control unit using negative feedback manner to get close to the given value. The mechanical structure turns the Charge Coupled Device (CCD) towards the spot to ensure the tracking stability. In addition, satelliteII works in the same way as satelliteI.

The dynamic process is significantly important to the tracking stability, and each part of the system plays an essential role in the long-term stability of inter-satellites optical communication. In our study, the whole system of the inter-satellites optical communication has been clearly designed as Fig. 2, along with the illustration of each functional unit in detail.

 

Fig. 2 The whole system of the inter-satellites optical communication.

Download Full Size | PPT Slide | PDF

Furthermore, we could simplify the control system, as demonstrated in Fig. 3:where θ* is the true value of pointing angle, θin is the measuring value of θ*, and θout is the output pointing angle. θin cannot be equal to θ* because of the angle error due to the noise effect, and the output pointing angle is following the value of θin by a negative feedback. F(s) is the processing function including filters and proportional-integral-derivative (PID) controller. In our study, the bidirectional beam tracking system is an optical loop system. Each section completes the job of actual position following the value provided, which is a first order inertial element. When each section works together, the whole tracking communication system will evolve into a typical two-order system, which can be simplfied as the a typical two order system. We will talk it in detail in following section 3.

 

Fig. 3 The control unit.

Download Full Size | PPT Slide | PDF

In this way, when the input signal is speedy, we can obtain the compensation effect η, expressed as:

η=θoutθin=1lims01s(1+F(s)).
We can find that, if SNR is large enough to ignore the noise effect, the compensation effect η will evolve into a certain formula simply related to the running frequency ω0. In this way, it provided us the possibility to determine the compensation.

2.3 Measurement of pointing angle error

Here we present the center of mass coordinate of laser spot at (x^,y^). According to the center of mass method [15], the center of laser spot can be expressed as:

x^=inxi(Si+Ni)in(Si+Ni),
where Gi is the gray value of pixel, Si is the gray value of beacon, and Ni is the gray value of noise signal. We describeGi=Si+Ni, and the signal-to-noise ratio can be expressed as:
SNR=i=1nSii=1nNi.
Then we can get the center of mass coordinate error
Δx=11+SNR(x¯x¯),
where x¯ is the value of X-axial beacon without noise signal, and x¯ is the value with noise signal. So we can get x¯ and x¯, given as
x¯=i=1nxiSii=1nSi,x¯=i=1nxiNii=1nNi.
It should be noted that the situation of Y-axis is almost same with X-axis. Furthermore, in order to improve the accuracy of spot position measurement, we process the image using Median filter, threshold segmentation to diminish the noises caused by stray light, dark current and stars. So the center mass of background noise can be approximated as zero and the CCD measurement angle error can be described as
ΔΦ=11+SNR0G(Φ)Φ,
where
G(Φ)=exp(8Φ2θb2)
is the optical power loss function [16], Φ denotes the pointing angle error, and θb is the divergence angle of beacon beam. Using Eq. (6) and Eq. (7), the relationship between ΔΦ and Φ is given by
ΔΦ=Φ1+SNR0exp(8Φ2θb2),
where f is the focal length of equivalent lens, and (Δx,Δy) is the center of mass coordinate of light spot.

From Eq. (8), we can see that the CCD angle measurement error is remarkable when the θb is constant and SNR0 is 5, and the angle error is 1 μrad accounted for 16.67% of the measurement angle error. In addition, when the pointing angle beam is half of the divergence angle, the measurement angle error of CCD accounted for 59.64%, and when SNR0 is 70 and the measurement angle error is under 10%.

2.4 The effects of pointing angle error

In the bidirectional beam tracking process, the terminals are simultaneously tracking beacon beam from the opposite terminal, which are affected by the pointing accuracy of the pointing, acquisition and tracking (PAT) system. The maximum mean square of the pointing error angle is given as follows [17]

σ1θb42q.
The parameter q = 1 or 2 represents the condition of quantum limit and noise limit, respectively, and q = 1.5 is normally depending on the power level and SNR0. Generally, the exact value of q of different systems is very hard to obtain (9). In our study, the compensation effect is considered as a measurement standard of system, and given by the Eq. (10), which can be simply monitored by the pre-designed control system.
η=θoutθin=1lims01s(1+F(s)),
Φin is the receiving pointing angle error, and Φout is the remaining pointing angle error after compensating process of the PAT system. The compensation effect η is within the range of 0 and 1. η = 1 represents for the ideal system. For bidirectional tracking process, the performances of optical terminals are related to the pointing angle errors. The aperture can be adjusted in the PAT system to compensate the pointing angle error. While in transceiver coaxial optical communication terminal, the angle of the aperture will be changed to ΔΦ, as well as the emitted beam. The theoretical model for the bidirectional tracking process is
ΦA,B(t)=(1η)[ΦB,A(tT)+ΦA,B(t)].
Considering the angle measurement errors of CCD, the tracking steady constraint condition is
ΦA,B<{18ln[SNR0(η212η2)]}12θb.
The bidirectional beam tracking can be seen as a convergence of the iteration process. The compensation of the pointing angle error is in gradual convergence . The tracking variance constraint is shown as
σ2<{18ln[SNR0(η212η2)](1n(1η2)1n2(1η)2)}12θb.
From Eq. (13), it can be seen that, in bidirectional optical communication, tracking variance constraint is relative to the SNR0, CCD measuring error and compensation effect. Methods of eliminating noise are more ideal, and SNR of imaging plate is high. So the pointing angle error has little effect on angle measuring accuracy. If the measuring error is ignored, the compensation effect is the main factor of the stability of system.

Figure 4 gives the relationships between σ2 and θb, as well as η and SNR0. We can see that both θb and compensation effect η have obvious influence on σ2. When the θb is a fixed value, the compensation effect η is better, the greater σ2 is allowed.

 

Fig. 4 The relationships of maximal σ2 with θb(a), η and SNR0(b).

Download Full Size | PPT Slide | PDF

3. Analysis of the optical system

In order to determine the compensation effect η by parameters that can be easily monitored, we use the knowledge from classical control theory to describe it. In general, two order control system is the most basic system, and many advanced control systems can be simplified to this situation under certain conditions. Based on the discussion in the section 2.2, we use a typical 2-nd order system (ωn^2)/(s(s + 2ξωn)) to represent the open loop function F(s), as illustrated in Fig. 5.

 

Fig. 5 The block diagram of typical two order control system.

Download Full Size | PPT Slide | PDF

After the analysis of the typical two order control system, we can get the overshoot Mp and response time ts (Δ = 5%), which can be expressed as the equations below

Mp=eπξ1ξ2100%,
ts=3ξωn.
Where, ξ is the damping coefficient, and ωn is undamped natural frequency. The compensation effect η is determined by the Eq. (10), and it can also be described by the parameters in the optical system
η=12tsln2(Mp)3(ln2(Mp)+π2).
The relation curve of compensation effect η with overshoot Mp and response time ts has been shown in Fig. 6. We can see the compensation effect η is easily determined by overshoot Mp and response time ts in the control system. It provides us a general method to make it possible to predicte system standards and requirements.

 

Fig. 6 The relationships of η with overshoot Mp and response time ts.

Download Full Size | PPT Slide | PDF

4. Simulation experiment on the ground

In order to study the long-term stability of link quality, we have carried out the ground tests for the bidirectional beam tracking in inter-satellite optical communications. The tracking system mainly contains three parts: two laser communication terminals, a dynamic link simulator and two computers, as shown in Fig. 7. In the experiment, we study the special tracking system and optimize the inherent natures, such as the moment of inertia of the terminal, the maximum torque of the motors, and the performance of the controller and so on. And then we use the optimized system to carry out the 10 times ground simulation tests, orbiting tests as well as software simulations.

 

Fig. 7 The experiment tracking system in laboratory.

Download Full Size | PPT Slide | PDF

The maintain time of the optical link has been measured with operation time of 1.5h, and the relative speed is from 0.1mrad/s to 0.4mrad/s. Figure 8 shows the results of maintain time of link from ground tests under various constraint conditions. We can find that, when η is located in the range of 0.3~0.6, the temporarily stable states of link can be achieved. When η is smaller than 0.3, the compensation is poor, the system is hard to ensure the stabilized tracking quality. When η is beyond the 0.6, it means that the optical link of system has a good compensation effect and can be kept in an extremely stabilized state.

 

Fig. 8 Comparison of the maintain time of link (statistical data from 10 experiments).

Download Full Size | PPT Slide | PDF

In addition, compensation effect η can be ensured by the maintain time, which is also closely related to the response time and the overshoot from Eq. (16), which allows us to simply monitor the compensation effect by indexes of the control system. In order to get a stable link state, we can manage to get an evaluation standard of the response time and the overshoot to meet the system requires. The exciting method can provide us a powerful path to deal with performance limitation of inter-satellite bidirectional beam tracking due to vibrations and atmospheric turbulence, as well as the tracking and pointing error.

5. Conclusion

We have successfully explored a novel bidirectional beam tracking technique in inter-satellite optical communication. The constraint conditions of the steady tracking process were deduced. A minimal control system was also established for the first time, which allow for monitoring the compensation effect simply by the response time and overshoot situation. We have also established a certain evaluation standard by measuring the indexes of control system designed. Moreover, the relation between compensation effect and maintain time was predicted by ground tests, software simulation and orbiting test results. Thus, the compensation effect η can be determined to meet the maintain time the system required. The general approach can provide us a powerful path to overcome performance limitation of inter-satellite bidirectional beam tracking due to vibrations and atmospheric turbulence, as well as the tracking and pointing error.

Acknowledgment

This work was supported by excellent Satellite Optical Communications team in Harbin Institute of Technology.

References and links

1. X. Li, S. Yu, J. Ma, and L. Tan, “Analytical expression and optimization of spatial acquisition for intersatellite optical communications,” Opt. Express 19(3), 2381–2390 (2011). [CrossRef]   [PubMed]  

2. I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001). [CrossRef]  

3. R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011). [CrossRef]  

4. Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007). [CrossRef]  

5. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

6. S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

7. V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000). [CrossRef]  

8. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32(30), 5893–5901 (1993). [CrossRef]   [PubMed]  

9. S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015). [CrossRef]   [PubMed]  

10. N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008). [CrossRef]  

11. S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

12. S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

13. I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001). [CrossRef]  

14. T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002). [CrossRef]  

15. C. Hindman and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” in Proceedings of the MILCOM 2004-IEEE Military Communications Conference (2004), pp. 41–47.

16. I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

17. U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43. [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. X. Li, S. Yu, J. Ma, and L. Tan, “Analytical expression and optimization of spatial acquisition for intersatellite optical communications,” Opt. Express 19(3), 2381–2390 (2011).
    [Crossref] [PubMed]
  2. I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
    [Crossref]
  3. R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
    [Crossref]
  4. Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
    [Crossref]
  5. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).
  6. S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).
  7. V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
    [Crossref]
  8. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32(30), 5893–5901 (1993).
    [Crossref] [PubMed]
  9. S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015).
    [Crossref] [PubMed]
  10. N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
    [Crossref]
  11. S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.
  12. S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).
  13. I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
    [Crossref]
  14. T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
    [Crossref]
  15. C. Hindman and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” in Proceedings of the MILCOM 2004-IEEE Military Communications Conference (2004), pp. 41–47.
  16. I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).
  17. U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43.
    [Crossref]

2015 (4)

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015).
[Crossref] [PubMed]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

2011 (2)

X. Li, S. Yu, J. Ma, and L. Tan, “Analytical expression and optimization of spatial acquisition for intersatellite optical communications,” Opt. Express 19(3), 2381–2390 (2011).
[Crossref] [PubMed]

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

2008 (1)

N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
[Crossref]

2007 (1)

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

2004 (1)

S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

2002 (1)

T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[Crossref]

2001 (2)

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

2000 (1)

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[Crossref]

1993 (1)

Adhikari, P.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Alouini, M.-S.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

Ansari, I. S.

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

Arai, K.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Bird, A.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Brown, W.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Chan, V. W. S.

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[Crossref]

Cheng, J.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

Czichy, R.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Dallmann, D.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Demelenne, B.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Dunbar, B.

N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
[Crossref]

Fields, R. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Fujiwara, Y.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Gregory, M.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43.
[Crossref]

Hakakha, H.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Heine, F.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43.
[Crossref]

Heine, F. F.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Hindman, C.

C. Hindman and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” in Proceedings of the MILCOM 2004-IEEE Military Communications Conference (2004), pp. 41–47.

Jono, T.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Kämpfner, H.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Kim, I. I.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Korevaar, E. J.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Kozlowski, D. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Kunimori, H.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Lee, S.

N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
[Crossref]

Li, X.

Luna, J. J.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Lunde, C. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Ma, J.

S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015).
[Crossref] [PubMed]

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

X. Li, S. Yu, J. Ma, and L. Tan, “Analytical expression and optimization of spatial acquisition for intersatellite optical communications,” Opt. Express 19(3), 2381–2390 (2011).
[Crossref] [PubMed]

S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

Ma, Z.

Ma, Z. T.

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

Meyer,

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Mitchell, M.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Mokuno, M.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Muckherjee, U.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Muhlnikel, G.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Oppenhaeuser, G.

T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[Crossref]

Reinhardt, K.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Riley, B.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Saucke, J.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Seel, S.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Siegman, A. E.

Sodnik, Z.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Sterr, B.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Sterr, U.

U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43.
[Crossref]

Tan, L.

Tan, L. Y.

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

Tanzillo, N.

N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
[Crossref]

Toberton, L.

C. Hindman and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” in Proceedings of the MILCOM 2004-IEEE Military Communications Conference (2004), pp. 41–47.

Tolker-Nielsen, T.

T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[Crossref]

Toyoshima, M.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Wandernoth, B. K.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wandernoth, R.

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Wicker, J. M.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wong, L. R.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wong, N. M.

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

Wu, F.

S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015).
[Crossref] [PubMed]

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

Yamawaki, T.

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Yilmaz, F.

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

Yu, S.

Yu, S. Y.

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

Yura, H. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Acta Astronaut. (1)

Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, and B. Demelenne, “Optical inter-orbit communications engineering test satellite (OICETS),” Acta Astronaut. 61(1-6), 163–175 (2007).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[Crossref]

IEEE T Wirel, Commun. (2)

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic Capacity Analysis of Free-Space Optical Links With Nonzero Boresight Pointing Errors,” IEEE T Wirel, Commun. 14(8), 4248–4264 (2015).

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance Analysis of Free-Space Optical Links Over Malaga (M) Turbulence Channels with Pointing Errors,” IEEE T Wirel, Commun. 99, 1 (2015).

J. Optoelectronics Laser, Networking (1)

S. Y. Yu, J. Ma, and L. Y. Tan, “Methods of improving acquisition probability of scanning in intersatellite optical communication,” J. Optoelectronics Laser, Networking 16(12), 57–62 (2004).

Opt. Express (2)

Proc. SPIE (6)

N. Tanzillo, B. Dunbar, and S. Lee, “Development of a lasercom testbed for the pointing, acquisition, and tracking subsystem of satellite-to-satellite laser communications link,” Proc. SPIE 6877, 687704 (2008).
[Crossref]

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

R. A. Fields, D. A. Kozlowski, H. T. Yura, L. R. Wong, J. M. Wicker, C. T. Lunde, M. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

S. Y. Yu, Z. T. Ma, F. Wu, J. Ma, and L. Y. Tan, “Overview and trend of steady tracking in free-space optical communication links,” Proc. SPIE 9521, 95210N (2015).

I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[Crossref]

T. Tolker-Nielsen and G. Oppenhaeuser, “In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[Crossref]

Other (3)

C. Hindman and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” in Proceedings of the MILCOM 2004-IEEE Military Communications Conference (2004), pp. 41–47.

U. Sterr, M. Gregory, and F. Heine, “Beaconless acquisition for ISL and SGL, summary of 3 years operation in space and on ground,” in Proceedings of the 2011-IEEE International Conference on Space Optical Systems and Applications (2011) pp. 38–43.
[Crossref]

S. Seel, H. Kämpfner, F. Heine, D. Dallmann, and G. Muhlnikel, M.M. Gregory, K. Reinhardt, J. Saucke, U. Muckherjee, B. Sterr, R. Wandernoth, Meyer, and R. Czichy, “Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook,”in Proceedings of the Aerospace Conference (IEEE, 2011), pp. 1–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The structure of the inter-satellites optical communication.
Fig. 2
Fig. 2 The whole system of the inter-satellites optical communication.
Fig. 3
Fig. 3 The control unit.
Fig. 4
Fig. 4 The relationships of maximal σ2 with θb(a), η and SNR0(b).
Fig. 5
Fig. 5 The block diagram of typical two order control system.
Fig. 6
Fig. 6 The relationships of η with overshoot Mp and response time ts.
Fig. 7
Fig. 7 The experiment tracking system in laboratory.
Fig. 8
Fig. 8 Comparison of the maintain time of link (statistical data from 10 experiments).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

η= θ out θ in =1 lim s0 1 s(1+F(s)) .
x ^ = i n x i ( S i + N i ) i n ( S i + N i ) ,
SNR= i=1 n S i i=1 n N i .
Δx= 1 1+SNR ( x ¯ x ¯ ),
x ¯ = i=1 n x i S i i=1 n S i , x ¯ = i=1 n x i N i i=1 n N i .
ΔΦ= 1 1+SN R 0 G(Φ) Φ,
G(Φ)=exp( 8 Φ 2 θ b 2 )
ΔΦ= Φ 1+SN R 0 exp( 8 Φ 2 θ b 2 ) ,
σ 1 θ b 4 2q .
η= θ out θ in =1 lim s0 1 s(1+F(s)) ,
Φ A,B (t)=(1η)[ Φ B,A (tT)+ Φ A,B (t) ].
Φ A,B < { 1 8 ln[ SN R 0 ( η 2 12 η 2 ) ] } 1 2 θ b .
σ 2 < { 1 8 ln[ SN R 0 ( η 2 12 η 2 ) ]( 1 n(1 η 2 ) 1 n 2 (1η) 2 ) } 1 2 θ b .
Mp= e πξ 1 ξ 2 100%,
ts= 3 ξ ω n .
η=1 2ts ln 2 ( Mp ) 3( ln 2 ( Mp )+ π 2 ) .

Metrics