Abstract

We study the radiation build-up in laminar and turbulent generation regimes in quasi-CW Raman fiber laser. We found the resulted spectral shape and generation type is defined by the total spectral broadening/narrowing balance over laser cavity round-trip, which is substantially different in different regimes starting from first round-trips of the radiation build-up. In turbulent regime, the steady-state is reached only after a few round-trips, while in the laminar regime the laser approaches the equilibrium spectrum shape asymptotically.

© 2015 Optical Society of America

1. Introduction

Quasi-CW fiber lasers such as Raman fiber lasers (RFLs) and Ytterbium-doped fiber lasers (YDFLs) are well-known for generating a huge number of different longitudinal modes simultaneously. Indeed, at typical spectrum width 0.1–1 nm and typical cavity lengths starting from 10 meters for YDFL to hundreds of kilometers for RFLs [1], the total number of generation modes is varying from thousands in YDFL to hundreds of millions in RFLs. It has been shown that numerous longitudinal modes interact nonlinearly via four-wave mixing processes which could be described in different limiting cases by wave turbulence approach [2,3]. In general, approaches of the optical wave turbulence found broad implications in optics recently [4] being capable to describe the emergence of optical rogue waves, supercontinuum generation [5], random fiber lasers [6]. Recently, intermittency and rogue waves in integrable turbulence have been observed using optical fiber as a test system [7–9]. Turbulent-like generation in YDFLs could be also modeled within the Ginzburg-Landau equation [10].

It was theoretically predicted that principally different generation type from turbulent generation could be possible in quasi-CW fiber lasers – a spectral condensate [11]. Further on, the spectral condensate was experimentally observed in [12]. The corresponding generation state was called a laminar generation in analogy with fluid flows in pipes and in contrast to well known turbulent generation.

The generation properties are very different in laminar and turbulent regimes [12]. In laminar phase, the generation spectrum is narrow and consists of highly correlated modes, which results in the suppression of intensity fluctuations, while in turbulent regime the generation spectrum is broad and intensity fluctuations are substantial. This makes fibre lasers, being dissipative in their nature, behave similar to Hamiltonian systems exhibiting a condensation phenomenon [4]. Till now, it is not clear what are the mechanisms establishing a spectral condensate (laminar generation) in a fibre laser and how the same initial noise evolves into so radically different (laminar and turbulent) generation regimes under very similar parameters of the laser.

Here we take this challenge by tracking in a dynamic way how the laser relaxes into steady-state from the initial noise. For turbulent regime, the radiation build-up in was studied previously in [13,14]. In [13] it was directly measured how the spectrum becomes broader owing to turbulence induced four-wave mixing after the laser is switched on. The role of the spectral profiles of mirrors on the radiation build-up in turbulent regime is studied numerically in [14]. Till now nothing is known about how the laminar regime is building up.

In the present paper we numerically study the radiation build-up in both laminar and turbulent cases in quasi-CW Raman fiber laser and tackle different mechanisms behind the generation formation. We show that the radiation dynamics start to differentiate after initial few round-trips when the pump light is switched on. In turbulent case, the radiation exhibits strong nonlinear broadening at each cavity pass and, at the same time, strong filtering (narrowing) on laser mirrors, so the spectrum acquires some self-consistent steady shape. In laminar case, the spectrum becomes incrementally narrower at each round-trip slowly approaching its final shape over many round-trips of evolution in the laser cavity.

2. Numerical model

We consider numerically RFL following [12], Fig. 1. The laser has a single-side pumping at 1455 nm and generates at 1555 nm. The spectral, temporal and statistical properties of the generated wave are described well by the nonlinear Schrödinger equation (NLSE) [15,16]:

As±z±+i2β2s2As±t2+αs2As±=iγs|As±|2As±+gs2(|Ap±|2+|Ap|2)As±,
where A is the complex field envelope, t is the time in a frame of reference moving with the pump, vgs is the difference between pump and generation Stokes waves inverse group velocities, β2, α, γ, g are the dispersion, linear attenuation, Kerr and Raman coefficients, ω stands for frequency. Sign ± denotes counter-propagating waves, “s” and “p” are used for generation and pump waves, z is the longitudinal coordinate with z = 0 at the starting point of propagation and z = L at the other fiber end, L is the fiber length. Note that for every point of the fiber, longitudinal coordinate value z+ for “+” wave corresponds to the value of z for “–“ wave and vice versa. Angle brackets denote time averaging. Spontaneous Raman emission was taken into account by using white noise as an initial condition [17]. Similar NLSE describes the evolution of the pump wave. We use the following parameters: αs = 0.83 km–1, αp = 0.51 km–1, γs = 2.58 (km*W)–1, γp = 3.0 (km*W)–1, gs = 1.30 (km*W)–1, gp = 1.51 (km·W)–1, β2p = 17.9 ps2/km, 1/vgs = –4.5 ns/km, L = 370 m, pump power P = 3 W. Mirrors were modeled by super-Gaussian profile of 6th order, full width at half maximum of 1 nm, and reflectivity of 1 at spectral maximum.

 

Fig. 1 Raman fiber laser setup with marked points where the generation properties are analyzed: A – initial point for the generation wave co-propagating with the pump wave, B – after propagation along the fiber, but before the reflection from the right laser mirror, C – after reflection from the laser mirror, D – after propagation in direction opposite to the pump wave.

Download Full Size | PPT Slide | PDF

3. Dynamics of radiation build-up in laminar and turbulent regimes

The generation properties of a laser depend on the cavity parameters, the spectral profiles of laser mirrors, and operation power: the laser can operate either in turbulent or laminar regime [12]. Here we investigate processes of radiation build-up in both regimes by fixing all cavity parameters except the value of the fiber dispersion. We use two values of the fiber dispersion: 7 ps2/km and 35 ps2/km. At low dispersion, the turbulent generation is established with broad generation spectrum, while in the laser with high fiber dispersion, the generation is laminar having narrow spectrum, Fig. 2(a). Note that intensity spatio-temporal dynamics and intensity probability density functions are also very different in both regimes: fluctuations are suppressed in laminar regime [12]. We also observe these features in our numerical simulations, but further we focus on spectral properties only to distinguish two regimes.

 

Fig. 2 (a) Optical spectrum in laminar (red) and turbulent (black) generation regimes. (b,c) The spectrum dynamics in (b) turbulent and (c) laminar regimes. N is the number of round-trips after the moment of time when the pump wave is switched on.

Download Full Size | PPT Slide | PDF

Starting from same noise conditions, the radiation evolves in different ways to the equilibrium spectrum in different generation regimes. Indeed, after first few round-trips, the spectral shape of generation spectrum repeats in general the spectral shape of laser mirrors, growing exponentially in its amplitude, Figs. 2(b) and 2(c). However, after the 5th round-trip, the spectral dynamics is substantially different in different regimes. In the turbulent regime the spectrum becomes broader while the generation wave continues to circulate in the cavity. In the laminar regime, after initial spectral broadening stage, the spectrum starts to become gradually narrower.

To study the radiation build-up in more details, we use the rms spectral width, Γ, as a measure of spectral width and calculate it at different points inside the resonator as well as track its changes over the successive cavity round-trips. In particular, we calculate the spectral width at points B and D, ΓB and ΓD, i.e. after each pass in the fiber before transmission through the laser mirror, and at points C and A, ΓC and ΓA, i.e. after the reflection from laser mirrors. Then we calculate the spectral broadening factor as a ratio ΓB/ ΓA and ΓD/ ΓC, which gives us the information of the impact of the propagation over the cavity fiber on spectral properties of the generation wave, Figs. 3(a) and 3(d). We also investigate the impact of cavity mirrors on spectral properties by calculating the spectral broadening factor as a ratio ΓC/ ΓB and ΓA/ ΓD, Figs. 3(b) and 3(e).

 

Fig. 3 Spectral broadening in turbulent (upper row, a–c) and laminar (lower row, d–f) regimes. (a), (d) Spectral broadening factors calculated as ΓB/ ΓA (black line) and ΓD/ ΓC (red line). (c), (d) The spectral broadening after reflection from the laser mirrors: factor ΓC/ ΓB is for the right mirror (black), factor as ΓA/ ΓD is for the left mirror (red). (c), (f) Intensity ACF background level (calculated at large temporal delays) at points A (black) and B (red).

Download Full Size | PPT Slide | PDF

During the first few round-trips, while the radiation exponentially grows from the initial noise, the spectral properties in both regimes are almost the same, and there is no any spectral broadening during the propagation over the fiber, Figs. 3(a)-3(d). At the same time, the mirrors substantially filter out the amplified radiation out of mirrors bandwidth, Figs. 3(b)-3(e), see data up to 5th round-trip. After this initial stage the spectral broadening starts. In turbulent case (low dispersion, 7 ps2/km), the broadening factor tends to be around value of 2, i.e. the spectrum becomes almost twice broader after propagation over fiber comparing to that before the propagation, Fig. 3(b). However, each laser mirror sufficiently filters the radiation making the reflected spectrum almost twice as narrow (Fig. 3(d)) which is in agreement with recent experimental studies [18].

In the laminar case, at larger fiber dispersion, the radiation builds up in a different way. Again, the spectrum of generation wave becomes broader while propagating in the fiber, but the broadening factor in this case is much lower than in the turbulent case, being in the range 1.1–1.3, Fig. 3(a). As a result of narrower spectrum, the narrowing factor after the reflection from the laser mirror is less compared with turbulent case, being around 0.9 only.

Note substantially different spectral broadening factors for forward and backward-propagating generation waves (see black and red symbols on Figs. 3(a) and 3(b)), also observed in Ref [18]. Since spectral broadening in both regimes is a nonlinear process, its rate is proportional to the product of wave intensitiy and propagation distance. So overall spectral broadening is determined by integral ∫P dz, which is larger for forward-propagating wave (“+”-wave) due to the pump power depletion (see Fig. 4(a)). Spectral broadening factors ΓB/ ΓA and ΓD/ ΓC show strong linear correlation with ∫P dz (see Fig. 4(b)) with Pearson linear correlation coefficient of 0.98.

 

Fig. 4 (a) Longitudinal generation power distribution over the fiber for forward- (black) and backward-propagating (red) generation waves. (b) Linear correlation between spectral broadening factor and integral ∫ P(z) dz for forward (black) and backward propagation wave. Each dot corresponds to one cavity round-trip, gray line shows linear trend.

Download Full Size | PPT Slide | PDF

As a result of subsequent broadening during propagation and spectral narrowing on cavity mirrors, the spectrum acquires the self-sustained form in the case of turbulent generation: the total spectral broadening over the cavity round-trips fluctuates near unity after 7th round-trip, Fig. 5(a). Four-wave mixing induced turbulent spectral broadening in this case is exactly balanced by the narrowing on mirrors. Note that the balance cannot be reached after half of cavity round-trip, i.e. after propagation only in one direction and reflection from only one mirror. The total balance over cavity round-trip is important, so the radiation needs to make a full round-trip to reach the equilibrium.

 

Fig. 5 (a) Total spectral broadening factor calculated over entire cavity round-trip in laminar (black) and turbulent (red) regimes. Horizontal line marks the level at which there is no any spectral broadening or narrowing, i.e. spectral broadening factor is equal to unity. (b) Evolution of rms spectral width in laminar (black) and turbulent (red) regimes.

Download Full Size | PPT Slide | PDF

In the laminar regime, the total broadening over the entire cavity round-trip is less than unity, Fig. 5(a), meaning that the spectrum becomes narrower and narrower while radiation continues to be trapped inside the cavity. Overall, a much larger number of round-trips is needed to reach the equilibrium state in the laminar case, Fig. 5(b). It seems that the precise spectral profiles of laser mirrors are important to establish the total balance between spectral broadening during propagation and spectral narrowing on laser mirrors.

Another important question remaining unclear is the role of spectral correlations in both regimes. The spectral correlations should vanish during multiple four-wave mixing processes occurring during the propagation over the fiber. This results in spectral broadening, i.e. in the redistribution of the energy to the far spectral wings. However, each reflection from cavity mirrors removes excess spectral wings and tends to make the radiation less stochastic. In the case of large dispersion, i.e. in the laminar regime, the contribution of four-wave mixing is smaller because of larger dispersion induced mismatch, so specific spectral correlations could potentially sustain during broadening/filtering processes, which leads eventually to the formation of the coherent laminar state. This should be further investigated in details.

The amount of spectral correlations could be phenomenologically taken into account by calculating the background level of the intensity autocorrelation function K(t)=(P(τ)P(t+τ)dτ)/(P2(τ)dτ), Kbg=limtK(t), where P is generation power. In turbulent regime, the radiation is almost completely stochastic as Kbg = 0.5 (this value corresponds to the exponential statistics for the total intensity, i.e. spectral correlations are absent), Fig. 3(c). Very recently by using a novel asynchronous optical sampling technique, it was experimentally shown that intensity probability density function is almost exponential in a turbulent regime [19]. Note that the radiation co-propagating with the pump wave is less stochastic, as Kbg reaches almost 0.8, Fig. 3(c), red curve, i.e. substantial spectral correlations exist. In the laminar regime, the radiation becomes gradually more and more coherent, as Kbg gradually increases over cavity passes, Fig. 3(f). Further studies of the evolution of the intensity probability density function and spectral correlation function could provide additional insight on the mechanisms of the laminar and turbulent generation build-up and mechanism of establishing and loss of coherence and spectral correlations in the system.

4. Conclusion

To conclude, the acquired spectrum shape in different generation regime is defined by the balance of the spectral broadening during the propagating over the cavity fiber and spectral narrowing during the reflection from cavity mirrors. In turbulent regime, the overall spectral broadening balance after each round-trip is around unity, which results in establishing the self-similar generation spectrum which is not changed from one round-trip to another. In laminar regime, the radiation becomes gradually narrower at each cavity round-trip as the spectral narrowing prevails over spectral broadening because of specific mirrors spectral profiles and dispersion restricted nonlinear spectral broadening during propagation over the cavity fiber.

Acknowledgments

We acknowledge support by the ERC project UltraLaser, the Russian Ministry of Education and Science (14.B25.31.0003, ZN-06-14/2419), the Russian Foundation for Basic Research (15-02-07925), Presidential Grant for Young researchers (14.120.14.228-MK). N.T. is supported by the Russian Science Foundation (14-21-00110).

References and links

1. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009). [CrossRef]   [PubMed]  

2. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007). [CrossRef]  

3. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012). [CrossRef]   [PubMed]  

4. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014). [CrossRef]   [PubMed]  

5. B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009). [CrossRef]  

6. D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015). [CrossRef]   [PubMed]  

7. S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014). [CrossRef]   [PubMed]  

8. P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015). [CrossRef]   [PubMed]  

9. M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015). [CrossRef]  

10. S. Wabnitz, “Optical turbulence in fiber lasers,” Opt. Lett. 39(6), 1362–1365 (2014). [CrossRef]   [PubMed]  

11. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009). [CrossRef]  

12. E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013). [CrossRef]  

13. P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013). [CrossRef]   [PubMed]  

14. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010). [CrossRef]   [PubMed]  

15. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef]   [PubMed]  

16. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]  

17. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef]   [PubMed]  

18. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011). [CrossRef]   [PubMed]  

19. P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
    [Crossref] [PubMed]
  2. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [Crossref]
  3. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012).
    [Crossref] [PubMed]
  4. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
    [Crossref] [PubMed]
  5. B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
    [Crossref]
  6. D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
    [Crossref] [PubMed]
  7. S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
    [Crossref] [PubMed]
  8. P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
    [Crossref] [PubMed]
  9. M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
    [Crossref]
  10. S. Wabnitz, “Optical turbulence in fiber lasers,” Opt. Lett. 39(6), 1362–1365 (2014).
    [Crossref] [PubMed]
  11. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
    [Crossref]
  12. E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
    [Crossref]
  13. P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013).
    [Crossref] [PubMed]
  14. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010).
    [Crossref] [PubMed]
  15. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
    [Crossref] [PubMed]
  16. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012).
    [Crossref]
  17. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  18. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011).
    [Crossref] [PubMed]
  19. P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015).
    [Crossref] [PubMed]

2015 (4)

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015).
[Crossref] [PubMed]

2014 (3)

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

S. Wabnitz, “Optical turbulence in fiber lasers,” Opt. Lett. 39(6), 1362–1365 (2014).
[Crossref] [PubMed]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

2013 (2)

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013).
[Crossref] [PubMed]

2012 (2)

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012).
[Crossref]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (3)

B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

2007 (1)

1972 (1)

Ania-Castañón, J. D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Babin, S. A.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012).
[Crossref] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[Crossref]

Barviau, B.

B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
[Crossref]

Christodoulides, D. N.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

Churkin, D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Churkin, D. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012).
[Crossref]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
[Crossref] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[Crossref]

Conforti, M.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Dalloz, N.

El-Taher, A. E.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Falkovich, G.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

Fatome, J.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Finot, C.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Garnier, J.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

Haelterman, M.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Hansson, T.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

Harper, P.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Ismagulov, A. E.

Kablukov, S. I.

Karalekas, V.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Kibler, B.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
[Crossref]

Kolokolov, I. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Lebedev, V. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Mezentsev, V. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Michel, C.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Millot, G.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

Mussot, A.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Nikulin, M. A.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Onorato, M.

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

Picozzi, A.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
[Crossref]

Pitois, S.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

Podivilov, E. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012).
[Crossref] [PubMed]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[Crossref]

Randoux, S.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015).
[Crossref] [PubMed]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013).
[Crossref] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011).
[Crossref] [PubMed]

Shu, X.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Smirnov, S. V.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012).
[Crossref]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
[Crossref] [PubMed]

Smith, R. G.

Sugavanam, S.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Suret, P.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015).
[Crossref] [PubMed]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013).
[Crossref] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011).
[Crossref] [PubMed]

Tarasov, N.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Terekhov, I. S.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Turitsyn, S. K.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

Turitsyna, E. G.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

Vatnik, I. D.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Vergeles, S. S.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Wabnitz, S.

Walczak, P.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

P. Walczak, S. Randoux, and P. Suret, “Statistics of a turbulent Raman fiber laser,” Opt. Lett. 40(13), 3101–3104 (2015).
[Crossref] [PubMed]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

P. Suret, P. Walczak, and S. Randoux, “Transient buildup of the optical power spectrum in Raman fiber lasers,” Opt. Express 21(2), 2331–2336 (2013).
[Crossref] [PubMed]

Zlobina, E. A.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar–turbulent transition in a fibre laser,” Nat. Photonics 7(10), 783–786 (2013).
[Crossref]

Opt. Commun. (1)

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rep. (1)

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542(1), 1–132 (2014).
[Crossref] [PubMed]

Phys. Rev. A (3)

B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79(6), 063840 (2009).
[Crossref]

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events,” Phys. Rev. A 91(2), 023823 (2015).
[Crossref]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[Crossref]

Phys. Rev. Lett. (3)

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[Crossref] [PubMed]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113(11), 113902 (2014).
[Crossref] [PubMed]

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Raman fiber laser setup with marked points where the generation properties are analyzed: A – initial point for the generation wave co-propagating with the pump wave, B – after propagation along the fiber, but before the reflection from the right laser mirror, C – after reflection from the laser mirror, D – after propagation in direction opposite to the pump wave.
Fig. 2
Fig. 2 (a) Optical spectrum in laminar (red) and turbulent (black) generation regimes. (b,c) The spectrum dynamics in (b) turbulent and (c) laminar regimes. N is the number of round-trips after the moment of time when the pump wave is switched on.
Fig. 3
Fig. 3 Spectral broadening in turbulent (upper row, a–c) and laminar (lower row, d–f) regimes. (a), (d) Spectral broadening factors calculated as ΓB/ ΓA (black line) and ΓD/ ΓC (red line). (c), (d) The spectral broadening after reflection from the laser mirrors: factor ΓC/ ΓB is for the right mirror (black), factor as ΓA/ ΓD is for the left mirror (red). (c), (f) Intensity ACF background level (calculated at large temporal delays) at points A (black) and B (red).
Fig. 4
Fig. 4 (a) Longitudinal generation power distribution over the fiber for forward- (black) and backward-propagating (red) generation waves. (b) Linear correlation between spectral broadening factor and integral ∫ P(z) dz for forward (black) and backward propagation wave. Each dot corresponds to one cavity round-trip, gray line shows linear trend.
Fig. 5
Fig. 5 (a) Total spectral broadening factor calculated over entire cavity round-trip in laminar (black) and turbulent (red) regimes. Horizontal line marks the level at which there is no any spectral broadening or narrowing, i.e. spectral broadening factor is equal to unity. (b) Evolution of rms spectral width in laminar (black) and turbulent (red) regimes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A s ± z ± + i 2 β 2s 2 A s ± t 2 + α s 2 A s ± =i γ s | A s ± | 2 A s ± + g s 2 ( | A p ± | 2 + | A p | 2 ) A s ± ,

Metrics