Abstract

In this paper a stretched-pulse, mode-locked Er-doped fiber laser based on graphene saturable absorber (SA) is presented. A 60 layer graphene/polymer composite was used as a SA. The all-fiber dispersion managed laser resonator with the repetition frequency of 21.15 MHz allows for Gaussian pulses generation with the full width at half maximum (FWHM) of 48 nm. The generated chirped pulses were compressed outside the cavity to the 88 fs using a piece of standard single mode fiber. The average output power and pulse energy were of 1.5 mW and 71 pJ, respectively.

© 2015 Optical Society of America

1. Introduction

Laser sources generating ultrashort optical pulses are extremely important for variety of applications ranging from materials processing, micromachining, medicine, metrology to fundamental sciences [1–5]. Ultrafast lasers based on fiber technology are mostly adjustment free, reliable, highly stable and immune to external perturbations. Additionally, because of the anomalous dispersion of standard optical fibers in the spectral range above ~1300 nm mode-locked fiber lasers operating in this range (e.g. Er- and Tm-doped fiber based) are usually designed in all-anomalous dispersion regime. This results in relatively simple cavity configuration of such soliton lasers (no dispersion management is needed). However, the pulse energy as well as the pulse duration are then limited by the soliton area theorem [6] and the stability criteria for optical solitons propagating inside laser cavity [7,8] (the soliton period (zs) need to be three times longer than the total laser cavity length (zc) which means that for the 100 fs pulses the zc have to be at the level of ~30 cm). Hence, the lasers operating in all-anomalous regime typically generate pulses with durations longer than 100 fs [9,10]. In order to overcome those limitations the short laser cavity can be used. However, this concept is restricted by the minimal length of the gain fiber and other passive fiber components and the Q-switched operation which can be favorable in short laser cavity. Another frequently used solution is the so called stretched-pulsed cavity configuration, where the intracavity nonlinearity is indirectly lowered by dividing the resonator into two segments with anomalous (standard optical fiber) and normal (dispersion compensating fiber, DCF) dispersion, respectively. The pulse propagating inside the cavity is alternately stretched and compressed, which results in its intensity reduction which in turn reduces the nonlinearity. Using this concept ultrashort pulses with duration below 100 fs were generated [7,11–16].

Stable pulse train generation in stretched-pulse fiber lasers is conditioned not only by the net dispersion, but also by the SA parameters, especially by modulation depth and recovery time. So far the shortest pulses have been generated using nonlinear polarization rotation (NPR) mechanism, which is often referred as artificial SA [7,11–14]. Since NPR is based on nonlinear Kerr effect, its recovery time is very short. It is therefore a powerful technique, which led to generation of the shortest pulses from Er-doped fiber laser [11]. However, the mode-locking performance is very sensitive to temperature changes and vibrations, hence readjustment of the laser is often necessary. Moreover the modulation depth of such artificial SA is difficult to measure and reproduce in different setups, which is essential for industrial applications. Those disadvantages can be eliminated through the use of real SA’s, which parameters can be precisely measured and controlled in the manufacturing processes.

Thanks to their very broadband and flat absorption spectrum, and fast recovery time carbon nanomaterials (carbon nanotubes (CNT), graphene) [15] as well as topological insulators [16], transition metal dichalcogenides [17] and black phosphorus [18,19] are considered as very promising candidates for SA. So far the mode-locked operation in dispersion-managed configuration was obtained in all-fiber lasers based on CNTs [20–22] and antimony telluride (Sb2Te3) [23]. Taking into account almost wavelength independent absorption spectrum of graphene, it is currently very extensively investigated as a universal and cost-effective SA. However, due to the very small modulation depth of single layer graphene (~0.4% at 1550 nm [24]), majority of the so far reported mode-locked fiber lasers were realized in all-anomalous dispersion regime [15,25–35]. Higher modulation depth level can be obtained by using multilayer graphene [32,33] or SAs based on side-polished fibers [31,35,36]. The effective modulation depth of the multilayer graphene SA is limited to few percent because the optical damage threshold while the concept using side-polished fibers requires additional technological efforts. To date the graphene saturable absorbers with modulation depth at the level of few percent allows for pulse generation in all-normal dispersion regime [36] and stretched-pulse configuration [37]. However the shortest pulse (174 fs) obtained from the stretched-pulse cavity were relatively long, most likely due to too low SA modulation depth.

In this paper we report ultrashort pulse generation from a dispersion-managed fiber laser based on graphene SA. The SA based on multilayer graphene/polymer composite was characterized by a modulation depth of 11% and a relatively high damage threshold of 460 µJ/cm2. The designed laser generated stable train of pulses as short as 88 fs. The optical spectrum was centered at 1545 nm with the FWHM of 48 nm. This are the shortest pulses ever generated from a fiber laser based on graphene.

2. Graphene based saturable absorber

The graphene layers used in the experiment were grown by chemical vapor deposition (CVD) on copper substrate using Aixtron Black Magic Pro system and afterwards immersed in a poly(methylmethacrylate) (PMMA) support, forming a stable, free-standing foil containing many layers of graphene. The detailed information of the graphene/PMMA composite fabrication process were given previously in [34]. In order to generate the ultrashort pulses in the stretched-pulse regime a SA with relatively high (~10% or even higher) modulation depth is required [20–22]. Because the effective modulation depth of single layer graphene is ~0.4% [24] to get high modulation depth the multilayer structure is needed. As an example, the measured effective modulation depth of a 21-layer graphene/PMMA composite is 5.5% [32]. Hence, in order to get the effective modulation depth in the target 10% level tens of graphene layers need to be used. For this purpose three 1x1 mm2 pieces of the composite containing 20 layers of graphene were stacked onto the fiber ferule, which guaranteed that the fiber core with the 63.5 µm2 area was entirely covered. Such a prepared fiber connector was then connected with the clean one via fiber adapter. The power-dependent transmittance of the SA was measured in the all-fiber setup [32] using a high-intensity mode-locked fiber laser operating at 1560 nm (Menlo Systems T-Light, 100 MHz, 100 mW). Changing the incident fluence in the 1 – 550 µJ/cm2 range (limited by the available pump source and the losses introduced by the optical variable attenuator) the effective modulation depth was investigated. The measured nonlinear optical transmittance of the SA is presented in Fig. 1. The effective modulation depth, the non-saturable losses and the saturation fluence of it were of 11%, 65% and 190 µJ/cm2, respectively. The SA could not be fully saturated because of the limited average power of the source used in the measurement setup. Moreover the damage of the SA was observed above the 460 µJ/cm2. To confirm that the modulation depth increases with the number of graphene layers the nonlinear transmittance of one piece of the graphene/PMMA composite with 20 graphene layers was performed. The effective modulation depth was at the level of 4.8% (inset in Fig. 1.) and was 2.3 times lower in comparision to the SA containing graphene/PMMA composite consisting of 60 graphene layers.

 

Fig. 1 The measured nonlinear transmittance of the prepared SA with the effective modulation depth of 11% and 65% non-saturable losses and 190µJ/cm2 saturation fluence (inset graph: nonlinear transmittance of graphene/PMMA composite containing 20 graphene layers).

Download Full Size | PPT Slide | PDF

We have also investigated the SA with 4 pieces of the graphene/PMMA composite. However, its damage threshold was reduced to ~180 µJ/cm2 which was too low to obtain mode-locked operation in the investigated laser setup. Its high non-saturable losses caused that the laser operated in continuous wave (CW) or Q-switching regime at 1530 nm at the pump power level up to 170 mW. The SA damage was observed for higher pumping powers.

3. Experimental setup

The configuration of the stretched-pulse mode-locked fiber laser is depicted in Fig. 2. As an active fiber, a 35 cm long piece of erbium doped fiber (EDF, LIEKKI Er80-4/125) was used. The laser was pumped via a fused 980/1550 nm wavelength division multiplexer (WDM) by a 980 nm laser diode. The fiber isolator forced unidirectional signal propagation inside the cavity while the signal was coupled out using 20% output coupler (OC). Fiber-based in-line polarization controller (PC) allows to adjust the optimal intra-cavity polarization to start the mode-locked operation. The investigated setup was designed in the near-zero dispersion regime. The laser cavity consisted of two types of normal dispersion fibers: 0.35 m EDF with group velocity dispersion (GVD, β2) at the level of 58 ps2/km and 2.03 m DCF with β2 = 60 ps2/km. The remaining part of the resonator consisted of anomalous dispersion fibers: 1.1 m HI1060 fiber with β2 = −7 ps2/km and 6.18 m SMF-28 fiber with β2 = −22 ps2/km. All of the fibers were organized in the laser cavity in two dispersion segments – normal and anomalous - which results in the total net group delay dispersion (GDD) of approx. −0.0015 ps2. The OC was positioned just behind the normal dispersion segment to obtain the broadest optical spectrum outside the cavity. Another advantage of this solution is the possibility of pulse compression at the output using just a piece of standard single mode fiber. It is worth to emphasizing the all used components were polarization insensitive. Hence, the mode-locking mechanism based only on saturable absorption of graphene (there is no possibility to obtain hybrid mode-locking uses NPR and graphene).

 

Fig. 2 The setup of the stretched-pulse Er-doped mode-locked fiber laser (EDF – erbium doped fiber, DCF - dispersion compensation fiber, OC – output coupler, GSA – graphene saturable absorber, PC – polarization controller).

Download Full Size | PPT Slide | PDF

The performance of the laser was observed using an optical spectrum analyzer (Yokogawa AQ6375), 7 GHz RF spectrum analyzer (Agilent EXA N9010A) coupled with a 16 GHz photodetector (Discovery Semiconductors DSC2-50S), and optical autocorrelator (Femtochrome FR-103XL).

4. Experimental results

In order to obtain the mode-locked operation the resonator was pumped above the threshold and the intracavity polarization state was properly adjusted by the PC. The pulse operation in mode-locked regime was observed when the pump power reached the 220 mW threshold (the optical damage of the SA was observed at the pump power level of 300 mW). The generated optical spectrum at this pump power level was affected by the CW component at 1560 nm and 1530 nm wavelengths. Hence, to eliminate those parasitic components the pump power was reduced to the level of 110 mW. Stable mode-locked operation was observed for the pumping powers ranging from 80 mW to 110 mW. The optical spectrum of the generated pulses measured with the 0.1 nm resolution at the 110 mW pump power is depicted in Fig. 3(a). The pulses were centered at 1545 nm with the FWHM of 48 nm. The average output power and pulse energy at the maximum power level supporting stable mode-locked operation were 1.5 mW and 71 pJ, respectively. Because the generated pulses were chirped, which is typical for stretched-pulse lasers the 145 cm long piece of standard single mode fiber (SMF-28) was used to compress it to 88 fs, assuming a Gaussian pulse shape (the fiber length was chooses experimentally to get the shorthest possible pulses). The measured autocorrelation trace is depicted in Fig. 3(b). The time-bandwidth product (TBP) for such compressed pulses is 0.53. In order to obtain pulses with theoretically limited TBP much more sophisticated compressor need to be used because the higher order dispersion components need to be managed.

 

Fig. 3 a) The optical spectrum with the FWHM of 48 nm, (b) The autocorrelation trace. Both measured at 110 mW pump power level.

Download Full Size | PPT Slide | PDF

The measured radio frequency (RF) spectrum (Fig. 4) is free of any spectral modulations and indicates that the signal to noise ratio (S/N) was better than 65 dB. The repetition frequency, resulting from the length of the resonator was 21.15 MHz. The generated pulse train was stable without any signs of Q-switched mode-locking.

 

Fig. 4 The RF spectrum measured in the 1.5 MHz span with 80 Hz resolution bandwidth (RBW) presenting the repetition frequency of the laser and the S/N ratio. Inset: the broad range of harmonics without spectral modulations measured in the 3 GHz span with 47 kHz RBW.

Download Full Size | PPT Slide | PDF

5. Summary

Summarizing, we have experimentally demonstrated the stretched-pulse mode locked fiber laser based on graphene SA. The laser was capable for ultrashort pulse generation centered at 1545 nm with the FWHM of 48 nm and duration of 88 fs. These are the shortest pulses generated directly from the mode-locked fiber laser based on graphene SA. The reported results twice outperform previously published [9,37] in terms of pulse duration. We have also shown that the modulation depth of multilayer graphene-based SA can reach the 10% level at relatively high damage threshold.

Acknowledgments

The work was supported by: the National Centre for Research and Development (NCBiR, Poland) under the frame of the project “Ultrafast fiber lasers - UltraGraph” (GRAF-TECH/NCBR/04/04/2012), the European Cooperation in Science and Technology (COST Action MP1401) and by the statutory funds of the Faculty of Electronics, Wroclaw University of Technology (grant for young scientists no. B40181).

References and links

1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012). [CrossRef]  

2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]  

3. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009). [CrossRef]   [PubMed]  

4. W. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000). [CrossRef]  

5. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014). [CrossRef]  

6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

7. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993). [CrossRef]   [PubMed]  

8. K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994). [CrossRef]  

9. J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168 fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4(10), 1981–1986 (2014). [CrossRef]  

10. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008). [CrossRef]   [PubMed]  

11. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010). [CrossRef]   [PubMed]  

12. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013). [CrossRef]  

13. P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014). [CrossRef]   [PubMed]  

14. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007). [CrossRef]   [PubMed]  

15. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]  

16. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013). [CrossRef]   [PubMed]  

17. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014). [CrossRef]   [PubMed]  

18. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015). [CrossRef]   [PubMed]  

19. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015). [CrossRef]  

20. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012). [CrossRef]  

21. J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015). [CrossRef]   [PubMed]  

22. H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014). [CrossRef]   [PubMed]  

23. J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014). [CrossRef]   [PubMed]  

24. S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013). [CrossRef]   [PubMed]  

25. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]  

26. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011). [CrossRef]  

27. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef]   [PubMed]  

28. Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010). [CrossRef]  

29. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014). [CrossRef]   [PubMed]  

30. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fiber lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]  

31. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015). [CrossRef]   [PubMed]  

32. G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photonics Res. 3(2), A56–A63 (2015). [CrossRef]  

33. P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012). [CrossRef]   [PubMed]  

34. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013). [CrossRef]   [PubMed]  

35. N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015). [CrossRef]   [PubMed]  

36. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014). [CrossRef]  

37. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [Crossref] [PubMed]
  4. W. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000).
    [Crossref]
  5. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  7. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  8. K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
    [Crossref]
  9. J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168 fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4(10), 1981–1986 (2014).
    [Crossref]
  10. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008).
    [Crossref] [PubMed]
  11. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
    [Crossref] [PubMed]
  12. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  13. P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
    [Crossref] [PubMed]
  14. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [Crossref] [PubMed]
  15. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
    [Crossref]
  16. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
    [Crossref] [PubMed]
  17. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  18. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  19. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
    [Crossref]
  20. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
    [Crossref]
  21. J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
    [Crossref] [PubMed]
  22. H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014).
    [Crossref] [PubMed]
  23. J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
    [Crossref] [PubMed]
  24. S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013).
    [Crossref] [PubMed]
  25. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  26. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
    [Crossref]
  27. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
    [Crossref] [PubMed]
  28. Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
    [Crossref]
  29. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
    [Crossref] [PubMed]
  30. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fiber lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  31. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
    [Crossref] [PubMed]
  32. G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photonics Res. 3(2), A56–A63 (2015).
    [Crossref]
  33. P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012).
    [Crossref] [PubMed]
  34. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
    [Crossref] [PubMed]
  35. N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
    [Crossref] [PubMed]
  36. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
    [Crossref]
  37. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
    [Crossref]

2015 (6)

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photonics Res. 3(2), A56–A63 (2015).
[Crossref]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

2014 (8)

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168 fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4(10), 1981–1986 (2014).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (3)

P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012).
[Crossref] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

2011 (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

2010 (4)

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
[Crossref] [PubMed]

2009 (3)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (2)

2007 (1)

2000 (1)

W. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000).
[Crossref]

1994 (1)

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

1993 (1)

Abramski, K. M.

Agnesi, A.

Ahn, K. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Ahn, Y. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Aksienionek, M.

Bae, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Boguslawski, J.

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Cai, Y.

Cai, Z.

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Chang, Y. M.

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Chen, L.

Chen, S.

Chen, Y.

Cheng, W.-H.

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Cho, W. B.

Choi, S. Y.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Chow, K. K.

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Davide Di Dio Cafiso, S.

Doerr, C. R.

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

Du, G.

Du, J.

Fan, D. Y.

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Fuse, K.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Griebner, U.

Grosse-Wortmann, U.

Guo, Z. N.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartl, I.

Hasan, T.

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Haus, H. A.

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Hong, B. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013).
[Crossref] [PubMed]

Huang, P. L.

Huang, S.-H.

Ippen, E. P.

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Jagiello, J.

Jeong, H.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Judek, J.

Jung, B. H.

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kaino, T.

Kim, H.

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Kim, M. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

Kim, S. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Knox, W.

W. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000).
[Crossref]

Komatsu, K.

Krajewska, A.

Krzempek, K.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kuo, H.-H.

Lee, E. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Lee, J. H.

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Lee, K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Li, L.-J.

Li, P.

Li, Y.

Lin, G.-R.

Lin, S.-C.

Lipinska, L.

Liu, H. H.

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, S.

Lu, S. B.

Ma, D.

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Martinez, A.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Miao, L. L.

Nakazawa, M.

Nelson, L. E.

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Park, J. Y.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Park, J.-K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Park, N. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

Pasternak, I.

Petrov, V.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Pirzio, F.

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Popa, D.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Qi, X.

Reali, G.

Rotermund, F.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013).
[Crossref] [PubMed]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Ruan, S.

Ruehl, A.

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, A.

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shirato, T.

Shohda, F.

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photonics Res. 3(2), A56–A63 (2015).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
[Crossref] [PubMed]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168 fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4(10), 1981–1986 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
[Crossref] [PubMed]

Son, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Song, Y.

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Sotor, J.

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Strupinski, W.

Su, C.-Y.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, Z.

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fiber lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Tamura, K.

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Tang, D.

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Tang, D. Y.

Tarka, J.

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Ugolotti, E.

Wang, F.

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Wang, J.

Wang, Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wen, S.

Wen, S. C.

Xu, B.

Xu, P.

Xu, Q.-H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Yamashita, S.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yeh, C.-Y.

Yeom, D. I.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Yeom, D.-I.

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Yim, W.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Zdrojek, M.

Zhang, H.

Zhang, Z.

Zhao, C.

Zhao, C. J.

Zhao, L. M.

Zheng, J.

Zhou, C.

Zong, W.

Zou, Y.

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Appl. Phys. Lett. (4)

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1273–1278 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6(6), 697–699 (1994).
[Crossref]

Laser Phys. Lett. (2)

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nano Res. (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer Graphene as a Saturable Absorber in a Mode-Locked Laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Nat. Commun. (1)

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J. Y. Park, F. Rotermund, and D. I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fiber lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (11)

F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008).
[Crossref] [PubMed]

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
[Crossref] [PubMed]

N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, and D.-I. Yeom, “Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking,” Opt. Express 23(15), 19806–19812 (2015).
[Crossref] [PubMed]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. Express (1)

Photonics Res. (1)

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited],” Photonics Res. 3(2), A56–A63 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The measured nonlinear transmittance of the prepared SA with the effective modulation depth of 11% and 65% non-saturable losses and 190µJ/cm2 saturation fluence (inset graph: nonlinear transmittance of graphene/PMMA composite containing 20 graphene layers).
Fig. 2
Fig. 2 The setup of the stretched-pulse Er-doped mode-locked fiber laser (EDF – erbium doped fiber, DCF - dispersion compensation fiber, OC – output coupler, GSA – graphene saturable absorber, PC – polarization controller).
Fig. 3
Fig. 3 a) The optical spectrum with the FWHM of 48 nm, (b) The autocorrelation trace. Both measured at 110 mW pump power level.
Fig. 4
Fig. 4 The RF spectrum measured in the 1.5 MHz span with 80 Hz resolution bandwidth (RBW) presenting the repetition frequency of the laser and the S/N ratio. Inset: the broad range of harmonics without spectral modulations measured in the 3 GHz span with 47 kHz RBW.

Metrics