Abstract

An analogue of phase-shifted Bragg grating (PSBG) for Bloch surface waves (BSW) propagating along the interface between a one-dimensional photonic crystal and a homogeneous medium is proposed. The studied structure consists of a set of dielectric ridges located on the photonic crystal surface, the height of which is chosen so that they encode the required distribution of the effective refractive index. Rigorous simulation results of the surface wave diffraction on the proposed structure are compared with the plane wave diffraction on a conventional phase-shifted Bragg grating. The simulation results demonstrate the possibility of using the proposed analogue of PSBG for temporal differentiation of picosecond BSW pulses. The obtained results can find application in the design of the prospective on-chip systems for all-optical analog computing.

© 2015 Optical Society of America

1. Introduction

Photonic devices performing required temporal and spatial transformations of optical signals are of great interest for a wide range of applications including all-optical information processing and analog optical computing. Among the important operations of analog processing of optical signals are the operations of temporal and spatial differentiation and integration. Various types of resonant structures performing these operations were previously proposed, such as Bragg gratings [1–8], resonant diffraction gratings [9–11], and micro- and nanoresonators [12–14]. The use of resonant structures for the implementation of these operations is possible due to the fact that the Fano profile describing the reflection or transmission coefficient in the vicinity of the resonance can approximate the transfer function of a differentiating or integrating filter [9].

For spectral filtering and temporal shaping of optical pulses, phase-shifted Bragg gratings (PSBG) are widely used. PSBG consist of two symmetrical Bragg gratings separated by a defect layer and provide zero reflectance (and, hence, unity transmittance) at a required frequency or incidence angle lying in the spectral or angular band gap of the Bragg gratings, respectively [3, 6]. This effect is caused by the excitation of the eigenmodes localized in the defect layer. It is this spectral shape that enables the use of PSBG as spectral filters and elements for pulse transformations, in particular, for temporal differentiation of the pulse envelope in reflection and integration of the pulse envelope in transmission [3–5]. To perform these transformations, the structure has to be designed so that the reflectance vanishes at the central frequency of the pulse.

The use of the PSBG for spatial differentiation and integration of the profile of an optical beam was for the first time considered in our previous works [6–8]. Similarly to temporal transformations, in the case of spatial transformations the angle of incidence of the beam has to coincide with the zero-reflectance angle.

The development and investigation of PSBG analogues for surface electromagnetic waves propagating in metal-dielectric and all-dielectric structures of different kind are of great interest. In particular, this interest is due to the prospects of application of surface waves in on-chip all-optical information processing systems [15].

The most thoroughly studied among surface waves are surface plasmon-polaritons (SPP) and plasmonic modes propagating in various metal-dielectric structures [16]. A common drawback of plasmonic structures are high absorption losses in the metal, which are directly proportional to the mode energy localization. Furthermore, zero reflectance necessary to perform the operations of temporal and spatial differentiation is possible only in resonant structures without absorption and parasitic scattering losses [17]. Therefore, despite the fact that several configurations of Bragg gratings were proposed for SPP [18–20], the implementation of the operations of temporal and spatial differentiation of plasmonic pulses and beams using resonant structures is hardly possible.

At the same time, there exist surface waves that are supported by all-dielectric structures. Such waves are called Bloch surface waves (BSW) or surface states of photonic crystals [21, 22] and propagate along the interfaces between a homogeneous medium and a photonic crystal or between two different photonic crystals (PhC). For all-dielectric structures, the absorption losses upon the surface wave propagation are negligibly small. Transmission of BSW through dielectric ridges deposited on the surface of a photonic crystal was experimentally studied in [23], and the excitation and propagation of Bloch surface waves bounded in two dimensions in such ridges and ridge arrays was experimentally analyzed in [24–27]. The presence of band gaps of Bloch surface waves in dielectric gratings located on the surface of a 1D photonic crystal was also demonstrated in [28, 29].

In our previous paper, phase modulation of BSW propagating along the boundary between one-dimensional PhC and free space was theoretically and numerically studied [30]. The modulation was carried out by changing the geometrical parameters of the microrelief located at the PhC surface. In the present work, this modulation mechanism is applied for the design of the PSBG for Bloch surface waves. The results of rigorous numerical simulations of the BSW diffraction on the proposed PSBG are compared with the plane wave diffraction at a conventional PSBG consisting of a periodic set of plane-parallel layers. The obtained results demonstrate the possibility of using the proposed PSBG for temporal differentiation of the envelope of picosecond BSW pulses.

2. Dispersion relation of Bloch surface waves

For the sake of completeness, let us first present a brief derivation of the dispersion relation of surface electromagnetic waves propagating along the interface between a one-dimensional semi-infinite photonic crystal and a uniform medium (Bloch surface waves) shown in Fig. 1(a).

 

Fig. 1 (a) Geometry of the structure. (b) Effective refractive indices of BSW of two adjacent orders vs. hc (ТЕ-polarization).

Download Full Size | PPT Slide | PDF

The electromagnetic field of such surface wave decays exponentially away from the interface. In the uniform medium over the PhC, the field is represented by an evanescent plane wave. On the other side of the interface, the field corresponds to a decaying eigenmode of the PhC. Thus, to derive the BSW dispersion relation, it is necessary to obtain a general representation of the PhC eigenmode.

In what follows, we consider the TE-polarization case, when E=(0,Ey,0) and H=(Hx,0,Hz). As shown in Fig. 1(a), the PhC period consists of two homogeneous plane-parallel layers with thicknesses h1 and h2 (d=h1+h2) and dielectric permittivities ε1 and ε2. Electric field in each of the crystal layers at dz<0 can be represented as a superposition of two plane waves:

Ey,1(x,z)=exp(ikx,0x){C1+exp[ikz,1(z+h1)]+C1exp(ikz,1z)},h1z<0,Ey,2(x,z)=exp(ikx,0x){C2+exp[ikz,2(z+d)]+C2exp[ikz,2(z+h1)]},dz<h1,
where Ci± (i=1,2) are the coefficients defining the plane wave amplitudes, kz,i=k02εikx,02, k0=2π/λ is the wavenumber, λ is the free-space wavelength. Using the conditions of continuity of tangential field components Ey,i, Hx,iEy,i/z (i=1,2) at z=h1 and the quasiperiodicity conditions Ey,2(x,d)=Ey,1(x,0)exp(ik˜d), Hx,2(x,d)=Hx,1(x,0)exp(ik˜d), where k˜ is the PhC eigenmode wavenumber, one can obtain the following dispersion relation of PhC eigenmodes [21, 22]:
cos(k˜d)=cos(kz,1h1)cos(kz,2h2)kz,12+kz,222kz,1kz,2sin(kz,1h1)sin(kz,2h2).
The condition |cos(k˜d)|>1 defines the PhC band gap. If this condition is fulfilled, the PhC eigenmode is decaying in the direction perpendicular to the PhC layers. Note that in the TM-polarization case, the dispersion relation has almost the same form, the only difference being the kz,i values in the rational function in the right-hand side of Eq. (2) replaced by kz,i/εi.

Now that we have obtained the field representation and dispersion relation of the PhC eigenmodes, let us write the required dispersion relation of a BSW propagating along the interface between the considered PhC and a uniform semi-infinite medium with dielectric permittivity εd. The BSW propagation constant kx,0 depends on the thickness of the first (upper) layer of the photonic crystal [21, 22]. We assume that the upper interface of this layer is the plane z=hc (hc>h1), so the thickness of the first layer amounts to h1+hc. The electric field over the interface corresponds to an evanescent plane wave:

Ey,d(x,z)=exp(ikx,0x)exp[ikz,d(zhc)],
where kz,d=k02εdkx,02. Using the condition of continuity of the tangential components of the electromagnetic field at z=hc, we arrive at the following BSW dispersion relation [30]:
exp(2ikz,1hc)=exp(ikz,1h1)Сkz,d+kz,1kz,dkz,1,
where С=C1/C1+. Similarly to Eq. (2), the BSW dispersion relation for TM-polarization can be obtained from Eq. (4) by replacing kz,i,i=1,d values in the rational function in the right-hand side by the corresponding kz,i/εi values. For a given PhC and a fixed wavelength λ the dispersion relation (4) implicitly defines the BSW propagation constant kx,0 as a function of hc. Let us once again note that to ensure the BSW field decay along the z axis away from the propagation surface z=hc, two inequalities must hold: the band gap condition |cos(k˜d)|>1 (providing the PhC eigenmode decay) and the condition kx,0>k0εd (providing the decay of the plane wave in the homogeneous medium). The function exp(2ikz,1hc) in the left-hand side of Eq. (4) is periodic with respect to hc and has period π/kz,1. The periodicity causes the existence of surface waves having the same effective refractive indices neff=kx,0/k0 at different values of hc. Similarly to the modes of planar dielectric waveguides, we can call such waves BSW of different orders. Note that at some hc values there also exist several BSW of different orders having different effective refractive indices as shown in Fig. 1(b).

Figure 1(b) shows the BSW dispersion curves (effective refractive index neff vs. hc[120,120]nm) for two modes of adjacent orders at the following parameters: λ=800nm, εd=1, ε1=7 (which is close to the dielectric permittivity of several high-index materials such as TiO2 or SiC), ε2=2.25, h1=120nm, h2=200nm. These parameters match those of the example considered in the authors’ previous work [30]. Horizontal dotted lines in Fig. 1(b) depict the boundaries of the photonic band gaps of the PhC (outside the band gaps, the PhC eigenmodes are not decaying in the crystal and BSW does not exist). Vertical dashed lines show the hc values corresponding to the band gap boundaries (0 nm and 17 nm), as well as the value hc=32nmcorresponding to the beginning of two-mode regime, in which two BSW with different propagation constants exist at a fixed hc.

3. Phase-shifted Bragg gratings for BSW

A conventional PSBG for plane electromagnetic waves consists of two symmetric Bragg gratings separated by a defect layer and is shown in Fig. 2(a). For illustrative purposes, only two periods of each of the Bragg gratings are depicted in Fig. 2.

 

Fig. 2 (a) Geometry of a PSBG for plane electromagnetic waves. (b) the refractive index profile of the considered PSBG. (c) Analogue of PSBG for BSW. The length scales in (c) correspond to the considered example, except the ridge height increased by 3 times for clarity.

Download Full Size | PPT Slide | PDF

In the simplest case, the period of a Bragg grating consists of two homogeneous layers with equal optical thickness:

n˜1l1=n˜2l2=λB/4,
where n˜i=ni2nsup2sin2θ0, i=1,2, ni,li are the refractive indices and the thicknesses of the Bragg grating layers, λB is the Bragg wavelength, and nsup is the refractive index of the superstrate. A typical profile of the refractive index of such structure is shown in Fig. 2(b) and corresponds to the example considered below. If the defect layer has optical thickness n˜ldef=λB/2 (n˜=ndef2nsup2sin2θ0, ndef being the refractive index of the defect layer), the reflectivity of the PSBG vanishes at the wavelength λB and angle of incidence θ0 [3, 6]. This effect has resonant nature and is associated with the excitation of an eigenmode localized in the defect layer. Note that the wavelength λB corresponds to the center of the first photonic band gap of the Bragg grating.

The proposed PSBG for Bloch surface waves consists of a set of dielectric ridges located on the PhC surface and is shown in Fig. 2(c). We assume the ridges to have the same dielectric permittivity as the upper crystal layer. Let us note that the approach based on the change of the local height of the PC upper layer is not limited to the binary structures shown in Fig. 2(c). However, in the present work we restrict our consideration to such structures to enable an easy comparison with realistic PSBG for plane electromagnetic waves. According to Fig. 1(b), the effective refractive index of the BSW depends on the PhC upper layer thickness hc. Let us choose the heights hgr,1 and hgr,2 so that the BSW effective refractive indices in the ridge and groove regions are equal to the corresponding refractive indices n1 and n2 of the conventional Bragg grating. The ridge and groove lengths are equal to the thicknesses l1, l2 of the layers of the corresponding conventional Bragg grating as shown in Fig. 2.

Let us study the performance of such PSBG with the parameters λB=800nm, θ0=0, n1=ndef=1.6, nsup=n2=1.44. For the chosen values of n1 and n2, l1=125nm, l2=139nm, and ldef=250nm. The parameters of the used photonic crystal are given above in Section 2. It follows from Fig. 1(b) that the BSW refractive index takes the values n1 and n2 at hc,1=66nm and hc,2=83nm, respectively. In this case, the upper layer thickness values in the ridge and groove regions amount to hgr,1=h1+hc,1=54nm and hgr,2=h1+hc,2=37nm. Outside the PSBG, hc=hc,2=83nm. Hence, the effective refractive index of the incident BSW is equal to neff,inc=n2=1.44. Let us note that the values hc,1, hc,2 correspond to the single-mode regime. It is the case when the BSW diffraction is expected to be close to the plane wave diffraction [30].

We consider the PSBG consisting of two Bragg gratings with the number of periods Nper=4 and Nper=5. The total number of layers in the structure amounts to 17 and 21, respectively.

Dashed lines in Fig. 3 show the absolute values and phases (arguments) of the complex reflection coefficient vs. frequency for the conventional (plane-wave) PSBG at Nper=4 (red curves) and Nper=5 (green curves). For this structure, the reflection coefficient vanishes at angular frequency ωB=2.35461015s1 corresponding to the wavelength λB=800nm. At the same time, the phase of the reflected wave abruptly changes by π due to the change of sign of the reflection coefficient. Note that the increase in the number of periods of the Bragg gratings leads to an increase in the quality factor of the resonance and, consequently, to the decrease of the width of the reflection dip.

 

Fig. 3 Absolute values (left vertical axis) and phases (right vertical axis) of the PSBG complex reflection coefficient vs. angular frequency. Solid lines show the values for a BSW grating at Nper=4 (red curves) and Nper=5 (green curves). Dashed lines show the corresponding values for a conventional PSBG for plane electromagnetic waves.

Download Full Size | PPT Slide | PDF

Solid lines in Fig. 3 show the absolute values and phases of the complex reflection coefficient of the PSBG for BSW, calculated using an in-house implementation of the aperiodic rigorous coupled-wave analysis technique [31] at Nper=4 (red curves) and Nper=5 (green curves).

According to Fig. 3, the reflection spectra of a conventional PSBG and a PSBG for Bloch surface waves are in good agreement: the Pearson correlation coefficient between two spectra exceeds 0.99. At the same time, the spectra are shifted with respect to each other. The reflection coefficient of the PSBG for Bloch surface waves reaches its minimum not at the angular frequency ωB=2.35461015s1 corresponding to the design wavelength λB=800nm, but at the value ω˜B=2.35871015s1 (λ˜B=798.6nm). Moreover, the minimal reflection coefficient value is not strictly zero and amounts to 0.0013 and 0.0021 at Nper=4 and Nper=5, respectively. Note that the energy fraction contained in the reflected BSW is defined as the squared modulus of the reflection coefficient and for the considered examples is of about 106. The observed differences in the reflection spectra are caused by the parasitic scattering of the BSW. Indeed, upon the BSW diffraction at the PSBG the propagating PhC eigenmodes and the modes of the dielectric medium over the crystal are generated along with the reflected and transmitted surface waves. At Nper=4 and λ˜B=798.6nm, the squared absolute values of the reflection and transmission coefficients characterizing the energy fractions in the corresponding surface waves amount to |R|2=1.69106 and |T|2=0.984. Thus, the scattering losses S=1(|R|2+|T|2) in the considered example are relatively low (less than 1.6%). With the increase in the number of grating periods, the scattering losses and the minimum reflectance increase as well.

Figure 4(a) shows the calculated field distribution |Ey(x,z)| generated upon the BSW diffraction at the considered PSBG at Nper=4 and λ˜B=798.6nm. The propagation direction of the incident BSW is shown with a white arrow. It is evident from Fig. 4 that in the BSW incidence region (to the left of the grating) there is no typical interference pattern of the incident and reflected BSW since the reflection coefficient is close to zero. The transmission coefficient is almost unity, and the field of the transmitted BSW (to the right of the grating) is visually identical to the field of the incident BSW. In the grating area, the field is typical for a mode localized around the defect layer. This confirms the resonant nature of the reflectance minimum. For comparison, Fig. 4(b) shows a similar field distribution generated at a Bragg grating without a defect layer consisting of 9 periods. In this case, |R|2=0.543, |T|2=0.445 and the interference pattern formed by the incident and reflected surface waves is clearly visible.

 

Fig. 4 The field distribution |Ey(x,z)| generated upon BSW diffraction at a PSBG (Nper=4) (a) and at a Bragg grating without defect having 9 periods (b). Grating ridge height is shown tripled (51 nm instead of 17 nm) for visual purposes.

Download Full Size | PPT Slide | PDF

4. Temporal differentiation of BSW pulses

One of the promising applications of the conventional PSBG consists in temporal transformations of the optical signals. In particular, it was previously demonstrated that a conventional PSBG can perform temporal differentiation of the envelope of the incident optical pulse in reflection [3]. In the present section, we consider the application of the designed PSBG for the differentiation of BSW pulses.

The transformation of the envelope P(t) of the incident pulse performed by the grating can be described in terms of transformation of the signal P(t) by a linear system with the transfer function (TF) [3, 9, 10]

H(ω)=R(ω+ω0),
where ω0 is the central angular frequency of the pulse. In the vicinity of the reflectance zero (at frequency values close to the Bragg frequency ωB) the transfer function of a PSBG is, in the first approximation, a linear function of the angular frequency and is thus proportional to the TF of the perfect differentiator Hdiff(ω)=iω.

Let us now show that the TF (6) also describes the transformation of the BSW pulse envelope. The field of a monochromatic BSW propagating in the x direction can be written as

B(x,z,t;ω)=P(z,ω)exp[iωcneff(ω)x]exp(iωt),
where the function B(x,z,t;ω) corresponds to the y-component of the electric (Ey) or magnetic (Hy) field depending on the BSW polarization, P(z,ω) is the BSW transverse field profile, and neff(ω) is the frequency-dependent effective refractive index of the BSW. Without loss of generality, we can assume that the BSW propagation surface is the plane z=0, and P(0,ω)1. Let us represent the BSW pulse with central frequency ω0 as a superposition of surface waves of different frequencies:
uinc(x,z,t)=exp[iω0cneff(ω0)xiω0t]Pinc(x,z,t)=G(ωω0)B(x,z,t;ω)dω,
where Pinc(x,z,t) is the pulse envelope. It follows from Eq. (8) that G(ω) is the envelope spectrum at z=0 and x=0:

Pinc(0,0,t)=G(ω)exp(iωt)dω.

If the PSBG is located at 0xL, where L is the total PSBG length, the field of the reflected BSW pulse corresponding to the incident pulse in Eq. (8) can be written as

urefl(x,z,t)=exp[iω0cneff(ω0)xiω0t]Prefl(x,z,t)=G(ωω0)B(x,z,t;ω)R(ω)dω,
where R(ω) is the PSBG reflection coefficient. Similarly to Eq. (9), the reflected pulse envelope at z=0 and x=0 can be obtained from Eq. (10) as

Prefl(0,0,t)=G(ω)R(ω+ω0)exp(iωt)dω.

It follows from Eqs. (9) and (11) that the transformation of the incident pulse envelope Pinc(0,0,t) to the reflected pulse envelope Prefl(0,0,t) corresponds to the transformation by a linear system with the TF described by Eq. (6).

It is evident from the reflection spectra of the conventional PSBG (dashed curves) and the PSBG for Bloch surface waves (solid curves) in Fig. 3 that the reflection coefficients in the vicinity of the angular frequencies ωB and ω˜B are close to the transfer functions of a differentiating filter up to a linear phase. This linear phase difference causes the delay of the reflected pulse and does not affect the differentiation quality.

We now consider the performance of the PSBG for an incident BSW pulse with Gaussian envelope. In this case, Pinc(0,0,t)=exp(t2/σ2) and G(ω)~exp(σ2ω2/4). As the central frequency of the pulse, we choose the value ω˜B=2.35871015s1 (λ˜B=798.6nm) at which the absolute value of the reflection coefficient reaches its minimum. Figure 5(a) shows the absolute value and phase of the TF described by Eq. (6) and corresponding to the reflection coefficient of the surface-wave PSBG at Nper=4. This TF was obtained from the reflection spectrum shown in Fig. 3 with solid red curves. Black dotted curve in Fig. 5(a) depicts the normalized spectrum G(ω) of the incident pulse envelope at 2σ=0.2ps. For this pulse, the 1/e2 widths of the incident pulse envelope Pinc(0,0,t) and spectrum G(ω) amount to T=2σ=0.2ps and 2Ω=0.81014s1, respectively. According to Fig. 5(a), both the amplitude and phase of the transfer function of the PSBG are almost linear at |ω|Ω. Thus, in the considered case high-quality differentiation can be expected. Figure 5(b) shows the incident pulse envelope and the absolute values of the envelope of the reflected pulse calculated using Eq. (11) and the analytically calculated derivative of the Gaussian function. It is evident from Fig. 5(b) that the studied structure enables high-quality differentiation of an optical pulse. For the considered example, the Pearson correlation coefficient between the reflected pulse envelope and the exact derivative exceeds 0.999. The maximal amplitude of the reflected pulse in this case amounts to 0.285. Note that the 20 fs shift between the optically computed and exact derivatives can be interpreted as the time at which the differentiation operation is performed.

 

Fig. 5 (а) Normalized spectrum of the incident BSW pulse (dotted black curve); amplitude and phase of the PSBG transfer function at Nper=4 (solid red curves). (b) Envelope of the incident BSW pulse (solid black curve, right vertical axis), absolute value of the envelope of the reflected pulse (solid blue curve, left vertical axis), and absolute value of the analytically computed derivative of the Gaussian function (dashed green curve, left vertical axis). The exact derivative is normalized so that its amplitude is equal to the amplitude of the reflected pulse.

Download Full Size | PPT Slide | PDF

Let us note that the increase in the number of periods of the Bragg gratings constituting the PSBG leads to the increase in the resonance quality factor, and, as a consequence, to the decrease in the TF linearity range. Figure 6 depicts the same quantities as in Fig. 5(b), but at Nper=5. In this case, the differentiation quality decreases insignificantly: the correlation coefficient between the optically computed and exact derivative is 0.997. At the same time, maximal amplitude of the reflected pulse increases to 0.42. Thus, the choice of the number of periods Nper provides a way to achieve a required trade-off between the differentiation quality and the reflected pulse energy.

 

Fig. 6 Envelope of the incident BSW pulse (solid black curve, right vertical axis), absolute value of the envelope of the reflected BSW pulse (solid blue curve, left vertical axis) at Nper=5, and absolute value of the analytically computed derivative of the Gaussian function (dashed green curve, left vertical axis).

Download Full Size | PPT Slide | PDF

In Table 1, the values of correlation coefficient and maximal amplitude of the reflected pulse calculated for different durations of the incident pulse are presented. As previously, two cases are considered: Nper=4 and Nper=5. It follows from Table 1 that the proposed PSBG are able to perform the temporal differentiation of BSW pulses with durations from 0.1 ps to 3 ps. The correlation coefficient for the considered cases exceeds 0.98. Note that with the increase in the pulse duration (and decrease in the spectral width) the correlation coefficient first increases but then begins to decrease again (two last rows of Table 1). This is due to the fact that the PSBG transfer function does not vanish at ω=0 as the TF of the exact differentiator does. Thus, with the narrowing of the spectrum in the vicinity of ω=0 the differentiation quality deteriorates.

Tables Icon

Table 1. Pearson correlation coefficient r between exact and optically computed derivatives and maximal amplitude of the reflected pulse Pmax for incident pulses with different durations T.

5. Conclusion

In the present work, we proposed an analogue of the phase-shifted Bragg grating for Bloch surface waves propagating along the interface between a one-dimensional photonic crystal and a homogeneous dielectric medium. It was shown using rigorous electromagnetic simulations that the reflection spectrum of the investigated structure is in good agreement with the reflection spectrum of a conventional PSBG for plane electromagnetic waves. For the considered example, the correlation coefficient between the spectra exceeds 0.99. The proposed structure was found to be able to perform high-quality temporal differentiation of BSW pulses of picosecond and subpicosecond duration.

The application area of the studied PSBG is not limited to temporal differentiation of the envelope of BSW pulses. The authors believe that the structure can also be used for temporal integration of BSW pulses as well as for spatial differentiation and integration of BSW beams. The proposed approach can most likely be extended to the modes of other planar structures such as silicon-on-insulator slab waveguides.

The presented results can be applied for the design of the prospective on-chip systems for all-optical analog computing.

Acknowledgment

This work was funded by the Russian Science Foundation grants 14-31-00014 (results presented in Sections 2, 3 and dedicated to the design of the BSW PSBG) and 14-19-00796 (results presented in Section 4 and dedicated to the application of the BSW PSBG for on-chip temporal differentiation).

References and links

1. R. Slavík, Y. Park, M. Kulishov, and J. Azaña, “Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings,” Opt. Lett. 34(20), 3116–3118 (2009). [CrossRef]   [PubMed]  

2. L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. Larochelle, A. Carballar, and J. Azaña, “Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators,” Opt. Lett. 34(12), 1792–1794 (2009). [CrossRef]   [PubMed]  

3. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007). [CrossRef]   [PubMed]  

4. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15(10), 6152–6166 (2007). [CrossRef]   [PubMed]  

5. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef]   [PubMed]  

6. L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014). [CrossRef]   [PubMed]  

7. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015). [CrossRef]  

8. D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014). [CrossRef]   [PubMed]  

9. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36(17), 3509–3511 (2011). [CrossRef]   [PubMed]  

10. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals,” J. Opt. Soc. Am. A 29(8), 1734–1740 (2012). [CrossRef]   [PubMed]  

11. N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014). [CrossRef]  

12. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011). [CrossRef]   [PubMed]  

13. N. L. Kazanskiy, P. G. Serafimovich, and S. N. Khonina, “Use of photonic crystal cavities for temporal differentiation of optical signals,” Opt. Lett. 38(7), 1149–1151 (2013). [CrossRef]   [PubMed]  

14. N. L. Kazanskiy and P. G. Serafimovich, “Coupled-resonator optical waveguides for temporal integration of optical signals,” Opt. Express 22(11), 14004–14013 (2014). [CrossRef]   [PubMed]  

15. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014). [CrossRef]   [PubMed]  

16. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]  

17. N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005). [CrossRef]  

18. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005). [CrossRef]   [PubMed]  

19. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006). [CrossRef]  

20. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010). [CrossRef]   [PubMed]  

21. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010). [CrossRef]  

22. C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33(19), 2260–2262 (2008). [CrossRef]   [PubMed]  

23. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010). [CrossRef]  

24. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010). [CrossRef]   [PubMed]  

25. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010). [CrossRef]  

26. L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014). [CrossRef]  

27. X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014). [CrossRef]  

28. T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008). [CrossRef]  

29. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008). [CrossRef]   [PubMed]  

30. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014). [CrossRef]  

31. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. R. Slavík, Y. Park, M. Kulishov, and J. Azaña, “Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings,” Opt. Lett. 34(20), 3116–3118 (2009).
    [Crossref] [PubMed]
  2. L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. Larochelle, A. Carballar, and J. Azaña, “Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators,” Opt. Lett. 34(12), 1792–1794 (2009).
    [Crossref] [PubMed]
  3. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
    [Crossref] [PubMed]
  4. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15(10), 6152–6166 (2007).
    [Crossref] [PubMed]
  5. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
    [Crossref] [PubMed]
  6. L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
    [Crossref] [PubMed]
  7. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
    [Crossref]
  8. D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
    [Crossref] [PubMed]
  9. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36(17), 3509–3511 (2011).
    [Crossref] [PubMed]
  10. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals,” J. Opt. Soc. Am. A 29(8), 1734–1740 (2012).
    [Crossref] [PubMed]
  11. N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
    [Crossref]
  12. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
    [Crossref] [PubMed]
  13. N. L. Kazanskiy, P. G. Serafimovich, and S. N. Khonina, “Use of photonic crystal cavities for temporal differentiation of optical signals,” Opt. Lett. 38(7), 1149–1151 (2013).
    [Crossref] [PubMed]
  14. N. L. Kazanskiy and P. G. Serafimovich, “Coupled-resonator optical waveguides for temporal integration of optical signals,” Opt. Express 22(11), 14004–14013 (2014).
    [Crossref] [PubMed]
  15. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
    [Crossref] [PubMed]
  16. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  17. N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
    [Crossref]
  18. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
    [Crossref] [PubMed]
  19. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006).
    [Crossref]
  20. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
    [Crossref] [PubMed]
  21. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
    [Crossref]
  22. C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33(19), 2260–2262 (2008).
    [Crossref] [PubMed]
  23. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
    [Crossref]
  24. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
    [Crossref] [PubMed]
  25. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
    [Crossref]
  26. L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
    [Crossref]
  27. X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
    [Crossref]
  28. T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
    [Crossref]
  29. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
    [Crossref] [PubMed]
  30. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
    [Crossref]
  31. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001).
    [Crossref] [PubMed]

2015 (1)

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

2014 (8)

D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
[Crossref] [PubMed]

L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
[Crossref] [PubMed]

N. L. Kazanskiy and P. G. Serafimovich, “Coupled-resonator optical waveguides for temporal integration of optical signals,” Opt. Express 22(11), 14004–14013 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
[Crossref]

L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

2010 (5)

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[Crossref] [PubMed]

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

2009 (2)

2008 (4)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33(19), 2260–2262 (2008).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

2005 (2)

N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
[Crossref]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

2001 (1)

Alù, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Azaña, J.

Barakat, E.

L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

Berger, N. K.

Berini, P.

Bezus, E. A.

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
[Crossref] [PubMed]

L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
[Crossref] [PubMed]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Boltasseva, A.

Boudreau, S.

Bozhevolnyi, S. I.

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

Bykov, D. A.

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
[Crossref] [PubMed]

D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
[Crossref] [PubMed]

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals,” J. Opt. Soc. Am. A 29(8), 1734–1740 (2012).
[Crossref] [PubMed]

D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36(17), 3509–3511 (2011).
[Crossref] [PubMed]

Cao, Q.

Carballar, A.

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Charbonneau, R.

Chu, S. T.

Descrovi, E.

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

Dominici, L.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

Doskolovich, L. L.

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
[Crossref] [PubMed]

D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
[Crossref] [PubMed]

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals,” J. Opt. Soc. Am. A 29(8), 1734–1740 (2012).
[Crossref] [PubMed]

D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36(17), 3509–3511 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Engheta, N.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Enoch, S.

Ferrera, M.

Fischer, B.

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Giorgis, F.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

Gippius, N. A.

N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
[Crossref]

Golovastikov, N. V.

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
[Crossref]

González, M. U.

Herzig, H. P.

L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

Hugonin, J.-P.

Ishihara, T.

N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
[Crossref]

Jetté-Charbonneau, S.

Kazanskiy, N. L.

Khonina, S. N.

Kulishov, M.

Lahoud, N.

Lalanne, P.

Larochelle, S.

Leosson, K.

Levit, B.

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

Little, B. E.

Martin, O. J. F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

Mattiussi, G.

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

Michelotti, F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

Monticone, F.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Morandotti, R.

Moss, D. J.

Nakagawa, W.

L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

Nikolajsen, T.

Park, Y.

Plant, D. V.

Quaglio, M.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Quidant, R.

Quoc Ngo, N.

Randhawa, S.

Razzari, L.

Renger, J.

Rivas, L. M.

Serafimovich, P. G.

Sfez, T.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

Silberstein, E.

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Slavík, R.

Soifer, V. A.

Sun, L.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

Tan, Q.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

Tikhodeev, S. G.

N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
[Crossref]

Vandenbem, C.

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

Wang, J.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

Wu, X.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

Yu, L.

L. Yu, E. Barakat, W. Nakagawa, and H. P. Herzig, “Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform,” J. Opt. Soc. Am. B 31(12), 2996–3000 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27(8), 1617–1625 (2010).
[Crossref]

Appl. Phys. Lett. (2)

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal,” Appl. Phys. Lett. 93(6), 061108 (2008).
[Crossref]

J. Europ. Opt. Soc. Rapid Publ. (1)

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” J. Europ. Opt. Soc. Rapid Publ. 9, 14049 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, and E. A. Bezus, “Spatial optical integrator based on phase-shifted Bragg gratings,” Opt. Commun. 338, 457–460 (2015).
[Crossref]

Opt. Express (7)

D. A. Bykov, L. L. Doskolovich, E. A. Bezus, and V. A. Soifer, “Optical computation of the Laplace operator using phase-shifted Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
[Crossref] [PubMed]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
[Crossref] [PubMed]

M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15(10), 6152–6166 (2007).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

N. L. Kazanskiy and P. G. Serafimovich, “Coupled-resonator optical waveguides for temporal integration of optical signals,” Opt. Express 22(11), 14004–14013 (2014).
[Crossref] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[Crossref] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

Opt. Lett. (8)

C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33(19), 2260–2262 (2008).
[Crossref] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

N. L. Kazanskiy, P. G. Serafimovich, and S. N. Khonina, “Use of photonic crystal cavities for temporal differentiation of optical signals,” Opt. Lett. 38(7), 1149–1151 (2013).
[Crossref] [PubMed]

N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
[Crossref] [PubMed]

L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and V. A. Soifer, “Spatial differentiation of optical beams using phase-shifted Bragg grating,” Opt. Lett. 39(5), 1278–1281 (2014).
[Crossref] [PubMed]

D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36(17), 3509–3511 (2011).
[Crossref] [PubMed]

R. Slavík, Y. Park, M. Kulishov, and J. Azaña, “Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings,” Opt. Lett. 34(20), 3116–3118 (2009).
[Crossref] [PubMed]

L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. Larochelle, A. Carballar, and J. Azaña, “Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators,” Opt. Lett. 34(12), 1792–1794 (2009).
[Crossref] [PubMed]

Phys. Rev. B (1)

N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72(4), 045138 (2005).
[Crossref]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Phys. Usp. (1)

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys. Usp. 53(3), 243–256 (2010).
[Crossref]

Quantum Electron. (1)

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Resonant diffraction gratings for spatial differentiation of optical beams,” Quantum Electron. 44(10), 984–988 (2014).
[Crossref]

Science (1)

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Geometry of the structure. (b) Effective refractive indices of BSW of two adjacent orders vs. h c (ТЕ-polarization).
Fig. 2
Fig. 2 (a) Geometry of a PSBG for plane electromagnetic waves. (b) the refractive index profile of the considered PSBG. (c) Analogue of PSBG for BSW. The length scales in (c) correspond to the considered example, except the ridge height increased by 3 times for clarity.
Fig. 3
Fig. 3 Absolute values (left vertical axis) and phases (right vertical axis) of the PSBG complex reflection coefficient vs. angular frequency. Solid lines show the values for a BSW grating at N per = 4 (red curves) and N per = 5 (green curves). Dashed lines show the corresponding values for a conventional PSBG for plane electromagnetic waves.
Fig. 4
Fig. 4 The field distribution | E y ( x , z ) | generated upon BSW diffraction at a PSBG ( N per = 4 ) (a) and at a Bragg grating without defect having 9 periods (b). Grating ridge height is shown tripled (51 nm instead of 17 nm) for visual purposes.
Fig. 5
Fig. 5 (а) Normalized spectrum of the incident BSW pulse (dotted black curve); amplitude and phase of the PSBG transfer function at N per = 4 (solid red curves). (b) Envelope of the incident BSW pulse (solid black curve, right vertical axis), absolute value of the envelope of the reflected pulse (solid blue curve, left vertical axis), and absolute value of the analytically computed derivative of the Gaussian function (dashed green curve, left vertical axis). The exact derivative is normalized so that its amplitude is equal to the amplitude of the reflected pulse.
Fig. 6
Fig. 6 Envelope of the incident BSW pulse (solid black curve, right vertical axis), absolute value of the envelope of the reflected BSW pulse (solid blue curve, left vertical axis) at N per = 5 , and absolute value of the analytically computed derivative of the Gaussian function (dashed green curve, left vertical axis).

Tables (1)

Tables Icon

Table 1 Pearson correlation coefficient r between exact and optically computed derivatives and maximal amplitude of the reflected pulse P max for incident pulses with different durations T .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E y , 1 ( x , z ) = exp ( i k x , 0 x ) { C 1 + exp [ i k z , 1 ( z + h 1 ) ] + C 1 exp ( i k z , 1 z ) } , h 1 z < 0 , E y , 2 ( x , z ) = exp ( i k x , 0 x ) { C 2 + exp [ i k z , 2 ( z + d ) ] + C 2 exp [ i k z , 2 ( z + h 1 ) ] } , d z < h 1 ,
cos ( k ˜ d ) = cos ( k z , 1 h 1 ) cos ( k z , 2 h 2 ) k z , 1 2 + k z , 2 2 2 k z , 1 k z , 2 sin ( k z , 1 h 1 ) sin ( k z , 2 h 2 ) .
E y , d ( x , z ) = exp ( i k x , 0 x ) exp [ i k z , d ( z h c ) ] ,
exp ( 2 i k z , 1 h c ) = exp ( i k z , 1 h 1 ) С k z , d + k z , 1 k z , d k z , 1 ,
n ˜ 1 l 1 = n ˜ 2 l 2 = λ B / 4 ,
H ( ω ) = R ( ω + ω 0 ) ,
B ( x , z , t ; ω ) = P ( z , ω ) exp [ i ω c n eff ( ω ) x ] exp ( i ω t ) ,
u inc ( x , z , t ) = exp [ i ω 0 c n eff ( ω 0 ) x i ω 0 t ] P inc ( x , z , t ) = G ( ω ω 0 ) B ( x , z , t ; ω ) d ω ,
P inc ( 0 , 0 , t ) = G ( ω ) exp ( i ω t ) d ω .
u refl ( x , z , t ) = exp [ i ω 0 c n eff ( ω 0 ) x i ω 0 t ] P refl ( x , z , t ) = G ( ω ω 0 ) B ( x , z , t ; ω ) R ( ω ) d ω ,
P refl ( 0 , 0 , t ) = G ( ω ) R ( ω + ω 0 ) exp ( i ω t ) d ω .

Metrics