Abstract

We investigate the impact of stimulated Raman scattering (SRS) and self-steepening (SS) on breather soliton dynamics in octave-spanning Kerr frequency comb generation. SRS and SS can transform chaotic fluctuations in cavity solitons into periodic breathing. Furthermore, with SRS and SS considered, bandwidth of the soliton breathes more than two times stronger. The simultaneous presence of SRS and SS also make the soliton breathe slower and degrades the coherence of the soliton.

© 2015 Optical Society of America

1. Introduction

Kerr frequency combs generated from the parametric process in high-Q microresonators pave a way to obtain on-chip coherent multi-wavelength source [1–4]. It has been demonstrated theoretically and experimentally that the generated comb lines can be phase locked under appropriate conditions, in which a cw pump is converted into an ultrashort pulse train with high repetition rate [5–9]. The mode-locked intra-cavity pulses, often termed as cavity solitons (CSs), can be quite short through dispersion engineering of the microresonators [10–12], exhibiting rich nonlinear phenomena, such as breather solitons [13–15], optical rogue waves [16], and soliton self-frequency shift [17]. Among them, the breather soliton is an important dynamics that affects the formation and noise property of Kerr frequency combs [13, 18]. The excitation of breather solitons [13, 14, 19], and its influence on coherence property for the generated Kerr frequency comb [20] have been extensively explored. However, only a few works have focused on the impact of stimulated Raman scattering (SRS) and self-steepening (SS) on Kerr frequency comb generation [21]. Most of the work on breather solitons excluded SRS and SS, which play a critical role in various nonlinear optical phenomena, especially when the spectrum approaches octave-spanning or the pulse peak power increases, e.g., supercontinuum generation [22] and rogue wave generation in mode-locked fiber lasers [23].

Here, we numerically analyze the impact of SRS and SS on breather soliton dynamics in octave-spanning Kerr frequency comb generation. We show that SRS and SS will induce or enhance breather soliton dynamics. The coherence property of breather solitons is also degraded due to SS and SRS.

2. Modeling of octave-spanning comb generation

We use a generalized Lugiato-Lefever equation with SRS and SS to investigate the intra-cavity pulse dynamics in the octave-spanning Kerr frequency comb generation [16],

[τ0t+αi+θ2jδ0+jLn=2(j)nβnn!nτn]E(t,τ)=θEinL[jγ(1jτKshockτ)E|E|2+jγR(1jτRshockτ)[EτhR(ττ')|E|2dτ']],
note that carrier phase term is defined as exp(-iωt) in deriving Eq. (1). In Eq. (1), E(t,τ) is the intra-cavity electric field and τ0 (5 ps, a resonator with radius of 115 μm) is the roundtrip time, t and τ are the slow and fast time respectively, L is the cavity length, αi, θ are the intrinsic cavity loss and coupling loss respectively, γ is the Kerr nonlinear coefficient of the cavity. It is noteworthy we drop the contribution from the direct current component of Raman spectrum to Kerr effect when calculating γ. βn is the nth-order dispersion coefficient, and τKshock is Kerr shock time. δ0 is the phase detuning of the pump, and the pump power equals to |Ein|2. For simplicity of expression, the pump power and detuning are normalized as X = 8|Ein|2γθL/(θ + αi)3, Δ = 0/(θ + αi) respectively. The last term of Eq. (1) is the effect of SRS, where γR is the Raman nonlinear parameter (0.11 (Wm)−1), hR is the Raman response function [21], τRshock is the Raman shock time (1.8 fs), and SRS is calculated in the frequency domain with a Lorentzian gain spectrum whose bandwidth is 3.44 THz.

To obtain an octave-spanning comb, we consider a low-dispersion microring resonator, with the dispersion coefficients at 1.55 μm as β2 = -12 ps2/km, β3 = -0.033 ps3/km, β4 = -0.0004 ps4/km (higher order dispersion terms not given here), and the dispersion curve is shown in Fig. 1. The Kerr nonlinear coefficient γ and Kerr shock time τKshock are 0.76 (Wm)−1 and 2.0 fs, respectively. The intrinsic loss is 0.2 dB/cm and the coupling ratio is 0.4%. These parameters can be obtained in a low dispersion SiN resonator. We first exclude the effects of SRS and SS, and set the pump wavelength to 1.7 μm i.e., the minimum anomalous dispersion wavelength. A single CS with octave-spanning Kerr frequency comb is generated when increasing Δ from 3 (phase detuning 0.0105) to 30 at X = 90 (1.9 W pump power), shown in Fig. 1.

 figure: Fig. 1

Fig. 1 The generation of octave-spanning Kerr frequency comb at X = 90, Δ = 30. The blue line shows the dispersion of the microresonator.

Download Full Size | PPT Slide | PDF

3. SRS and SS induced breather soliton

When pump power increases, the CS could develop Hopf bifurcations and breather instability [14, 21, 24]. Breather soliton can also be understood as a result from phase-mismatching in cascaded for-wave-mixing [15]. Here, when increasing X to 240, the CS becomes unstable, shown in Fig. 2(a), with the soliton peak power changing randomly. SRS and SS can change the power distribution of the comb spectrum, thus the phase-mismatching condition and soliton stability. In addition, gain from SRS could counterbalance the cavity loss, causing strong perturbations on the CS, and induce soliton breathing [21]. If we add the SRS term to our model, while still leaving SS out, the random fluctuation of the spectrum in Fig. 2(a) will change to a quasi-periodic pattern in Fig. 2(b). However, breather soliton is not excited yet, as the peak power doesn’t change periodically. If we add SS instead of SRS, the random fluctuation of the spectrum will be stabilized (Fig. 2(c)). When we add both SRS and SS, breather soliton is excited, and its spectrum breathes deeply with the 20-dB comb bandwidth changing from 35 to 116 THz in a breathing period of 0.5 ns, as seen in Fig. 2(d). To describe the breathing strength quantitatively, we define the breathing contrast of the peak power as (Pmax-Pmin)/(Pmax + Pmin), where Pmax and Pmin are the maximum and minimum peak power, respectively. The breathing contrast in Fig. 2(d) is as high as 0.73. From Fig. 2, it is obvious that SRS and SS significantly affect the soliton stability for an octave-spanning comb. SRS tends to trigger soliton breathing, which can be greatly enhanced by the presence of SS, although SS alone suppresses the soliton breathing in this case. SRS and SS makes it easier to excite breather solitons, transforming random fluctuation into periodic oscillation.

 figure: Fig. 2

Fig. 2 The spectrum and peak power evolution of the soliton at X = 240, Δ = 30, (a) without SRS or SS, (b) with SRS alone, (c) with SS alone. (d) with both SRS and SS.

Download Full Size | PPT Slide | PDF

To show this impact is not limited to a specific pump condition, we vary the pump power and detuning to test the soliton’s stability. Breather soliton is found to exist in a wider parameter space with SRS and SS considered. We summarize the breathing of the peak power and 20-dB bandwidth (Δω) in Fig. 3. Pmax increases with the pump power, whereas Pmin decreases. Thus, the breathing contrast increases from 0.40 to 0.75, when the pump strength X increases from 140 to 260. The 20-dB bandwidth (Δω) changes in a similar manner with peak power. Further increasing the pump power will cause the breathing to become chaotic [14]. On the other hand, the breathing contrast decreases from 0.80 to 0.09 when detuning Δ increases from 20 to 34. With a larger detuning, breathing ceases, and the CS is stabilized again. Figure 3 shows that the breathing is stronger at a large pump power and small detuning. Such a general trend is similar to the situation where SRS and SS are not considered [14].

 figure: Fig. 3

Fig. 3 The dependence of the peak power and 20-dB bandwidth breathing on the pump condition with SRS and SS included, (a) on pump power, Δ fixed as 30, (b) on pump detuning, X fixed as 160.

Download Full Size | PPT Slide | PDF

In addition, the breathing contrast is enhanced with SRS and SS included for pump conditions, under which breather soliton can be excited regardless of considering SRS and SS or not. For instance, at X = 160, Δ = 20, comparing Figs. 4(a)-4(b), we see that the CS breathes slower and stronger, due to SRS and SS. Such an enhancement of the breathing dynamics can also be found in Fig. 4(c), which shows the breathing of the 20-dB bandwidth is nearly two times stronger with SRS and SS considered. This can be understood as SRS (Raman gain on red-side) and SS (larger Kerr nonlinear coefficient on blue-side) lead to higher gain at the wings of the spectrum, pushing the spectrum away from the center.

 figure: Fig. 4

Fig. 4 The enhancement of the breathing dynamics due to SRS and SS at X = 160, Δ = 20. Spectrum evolution (a) without, (b) with SRS and SS, (c) change of the 20-dB bandwidth with (black line) and without (red line) SRS and SS.

Download Full Size | PPT Slide | PDF

4. Degradation of the coherence

It has been shown in mode-locked fiber lasers pulse dynamics affects the comb linewidth [25] and SRS can degrade the coherence of the pulse train [23]. Therefore, it is important to examine how SRS and SS affect the coherence property of breather solitons. We evaluate the first order coherence property as [20]:

|g12(ν,t1t2)|=|E˜*(ν,t1)E˜(ν,t2)|S(ν)
where E˜ is the complex spectrum of the intracavity pulses, S(ν)=E˜*(ν)E˜(ν) is the mean intensity spectrum, t1-t2 stands for the time delay between the pulses.

In Figs. 5(a)-5(b), we show the coherence property of the generated combs in Figs. 4(a)-4(b) respectively. For the breather soliton without SRS and SS, the coherence changes periodically, similar to [20]. When SRS and SS are included, the coherence property still breathes periodically, but is significantly deteriorated in general, shown in Fig. 5(b).

 figure: Fig. 5

Fig. 5 Coherence property of the breather soliton (a) without, (b) with SRS and SS. The spectrum of a pulse train with 3001 pulses, the inset shows the detail of the −32 nd comb line away from the pump (c) without, (d) with SRS and SS.

Download Full Size | PPT Slide | PDF

To show the deteriorated coherence due to breathing dynamics more clearly, we pad 3001 successive pulses into a pulse train and take the Fast Fourier Transform (FFT) of the pulse train. The generated combs in these two cases are shown in Figs. 5(c)-5(d). There are ripples in the spectrum in Fig. 5(c), because the output pulse train is truncated in a limited time window, and thus the spectrum is a convolution of the comb spectrum with a sinc function. If we add enough zero to the padded pulse train and extend the time window, we can remove the ripples, obtaining an envelope of the black line in Fig. 5(c). The comb with SRS and SS considered exhibits a stronger dispersive wave emission at the high frequency side. Also, the central peak of the soliton spectrum is shifted away from the pump to the lower frequency side [17], while staying at the pump wavelength 1.7 μm for the case without SRS and SS. In Fig. 5(d), a spike can be observed near 150 THz, due to the good coherence of that narrow band (Fig. 5(b)).

By padding pulses, we have a finer spectral resolution. Details of the comb line around 169.96 THz are shown in the insets of Figs. 5(c)-5(d) respectively. Without SRS and SS, the comb line has multiple discrete sub-teeth, since the spectral breathing can be regarded as a periodic modulation on the spectrum. In contrast, with SRS and SS included, more sub-teeth appear inside the comb line, as it breathes slower (see Fig. 4(b)). The sub-teeth arising from the breathing modulation of the spectrum have comparable intensity to the main comb line and can be detrimental to many frequency comb applications (e.g., frequency metrology).

5. Breather soliton at different pump wavelengths

It is desirable to prove the impact of SRS and SS on breather solitons is generic to a wide parameter space. The complicated expressions of SRS and SS hinder us from proving it analytically. Here, we scan the pump wavelength, which changes the dispersion and nonlinearity profile (see Fig. 1), to examine the universality of our observation. Scanning the pump wavelength also keeps the overall dispersion low, allowing the generation of octave-spanning comb. We see similar results, when scanning across the whole anomalous dispersion regime. Here, we choose 1.55 and 1.3 μm (the dotted and dashed lines in Fig. 1) as two examples to prove the universality of the impact of SRS and SS on soliton dynamics. For 1.55 μm, at X = 160, Δ = 20, a breather soliton is excited regardless of considering SRS and SS or not. Nevertheless, the CS breathes slower and deeper with SRS and SS taken into account (Figs. 6(a)-6(b)), similar to the results in Fig. 4. The breathing contrast for the peak power increases from 0.71 to 0.85, with SRS and SS included. For 1.3 μm, at X = 160, Δ = 34, the CS with octave-spanning spectrum is stable without SRS and SS, shown in Fig. 6(c). However, with SRS and SS considered, a breather soliton is excited. From Fig. 6, the impact of SRS and SS on breather soliton dynamics is generic to various microresonator parameter combinations.

 figure: Fig. 6

Fig. 6 At 1.55 μm and pump condition as X = 160, Δ = 20, spectrum evolution of breather soliton (a) without, (b) with SRS and SS. At 1.3 μm, and pump condition as X = 160, Δ = 34 (c) stable CS without SRS and SS, (d) breather soliton with SRS and SS.

Download Full Size | PPT Slide | PDF

6. Conclusion

In conclusion, SRS and SS make breather soliton exist in a wider parameter space and enhance soliton’s breathing dynamics in octave-spanning comb generation. Such a conclusion remains applicable when parameters of a microresonator change. The coherence of breather soliton will be deteriorated due to SRS and SS, which implies exploiting breathing dynamics to scale the comb bandwidth may not be feasible for applications requiring a stabilized comb.

Acknowledgment

C. Bao and C. Yang acknowledge support from Natural Science Foundation of China (61177046, 61377039).

References and links

1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef]   [PubMed]  

2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef]   [PubMed]  

3. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]  

4. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]  

5. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011). [CrossRef]   [PubMed]  

6. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013). [CrossRef]   [PubMed]  

7. T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013). [CrossRef]  

8. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013). [CrossRef]   [PubMed]  

9. S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015). [CrossRef]   [PubMed]  

10. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38(11), 1790–1792 (2013). [CrossRef]   [PubMed]  

11. L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator,” Opt. Lett. 38(23), 5122–5125 (2013). [CrossRef]   [PubMed]  

12. V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598 (2014).

13. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012). [CrossRef]   [PubMed]  

14. F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21(7), 9180–9191 (2013). [CrossRef]   [PubMed]  

15. C. Bao and C. Yang, “Mode-pulling and phase-matching in broadband Kerr frequency comb generation,” J. Opt. Soc. Am. B 31(12), 3074–3080 (2014). [CrossRef]  

16. A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014). [CrossRef]  

17. L. Zhang, Q. Lin, L. C. Kimerling, and J. Michel, “Self-frequency shift of cavity soliton in Kerr frequency comb,” arXiv: 1404.1137 (2014).

18. T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012). [CrossRef]  

19. P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014). [CrossRef]   [PubMed]  

20. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014). [CrossRef]   [PubMed]  

21. C. Milián, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects,” arXiv: 1503.00672 (2015).

22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

23. A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014). [CrossRef]   [PubMed]  

24. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014). [CrossRef]  

25. C. Bao, A. C. Funk, C. Yang, and S. T. Cundiff, “Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty,” Opt. Lett. 39(11), 3266–3269 (2014). [CrossRef]   [PubMed]  

References

  • View by:

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  3. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  4. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [Crossref]
  5. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
    [Crossref] [PubMed]
  6. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
    [Crossref] [PubMed]
  7. T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
    [Crossref]
  8. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
    [Crossref] [PubMed]
  9. S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
    [Crossref] [PubMed]
  10. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38(11), 1790–1792 (2013).
    [Crossref] [PubMed]
  11. L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator,” Opt. Lett. 38(23), 5122–5125 (2013).
    [Crossref] [PubMed]
  12. V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598 (2014).
  13. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012).
    [Crossref] [PubMed]
  14. F. Leo, L. Gelens, P. Emplit, M. Haelterman, and S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21(7), 9180–9191 (2013).
    [Crossref] [PubMed]
  15. C. Bao and C. Yang, “Mode-pulling and phase-matching in broadband Kerr frequency comb generation,” J. Opt. Soc. Am. B 31(12), 3074–3080 (2014).
    [Crossref]
  16. A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
    [Crossref]
  17. L. Zhang, Q. Lin, L. C. Kimerling, and J. Michel, “Self-frequency shift of cavity soliton in Kerr frequency comb,” arXiv: 1404.1137 (2014).
  18. T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  19. P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
    [Crossref] [PubMed]
  20. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
    [Crossref] [PubMed]
  21. C. Milián, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects,” arXiv: 1503.00672 (2015).
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  23. A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
    [Crossref] [PubMed]
  24. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
    [Crossref]
  25. C. Bao, A. C. Funk, C. Yang, and S. T. Cundiff, “Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty,” Opt. Lett. 39(11), 3266–3269 (2014).
    [Crossref] [PubMed]

2015 (1)

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

2014 (7)

2013 (6)

2012 (2)

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

2011 (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
[Crossref] [PubMed]

2010 (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Agarwal, A. M.

Aguergaray, C.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Balakireva, I. V.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Bao, C.

Brasch, V.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Broderick, N. G.

Chembo, Y. K.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Coen, S.

Coillet, A.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

Cundiff, S. T.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Dudley, J.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Emplit, P.

Erkintalo, M.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Foster, M. A.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Funk, A. C.

Gaeta, A. L.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Gelens, L.

Genty, G.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Godey, C.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Gomila, D.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gorodetsky, M.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Haelterman, M.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Huang, S. W.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Ilchenko, V. S.

Johnson, A. R.

Jost, J.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Kimerling, L. C.

Kippenberg, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kondratiev, N.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Kwong, D. L.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Lamont, M. R. E.

Larger, L.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

Leo, F.

Levy, J. S.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Liang, W.

Lipson, M.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Maleki, L.

Matsko, A.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Matsko, A. B.

McMillan, J. F.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Michel, J.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Mu, J.

Okawachi, Y.

Parra-Rivas, P.

Randle, H. G.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Runge, A. F.

Saha, K.

Salem, R.

Savchenkov, A. A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Seidel, D.

Shim, B.

Singh, V.

Sylvestre, T.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Wang, C.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wong, C. W.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Yang, C.

Yang, J.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Yu, M.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Zhang, L.

Zhou, H.

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2013).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (9)

A. F. Runge, C. Aguergaray, N. G. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39(2), 319–322 (2014).
[Crossref] [PubMed]

C. Bao, A. C. Funk, C. Yang, and S. T. Cundiff, “Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty,” Opt. Lett. 39(11), 3266–3269 (2014).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012).
[Crossref] [PubMed]

P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens, “Third-order chromatic dispersion stabilizes Kerr frequency combs,” Opt. Lett. 39(10), 2971–2974 (2014).
[Crossref] [PubMed]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
[Crossref] [PubMed]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref] [PubMed]

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38(11), 1790–1792 (2013).
[Crossref] [PubMed]

L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator,” Opt. Lett. 38(23), 5122–5125 (2013).
[Crossref] [PubMed]

Phys. Rev. A (2)

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89(1), 013835 (2014).
[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Phys. Rev. Lett. (1)

S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114(5), 053901 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (3)

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598 (2014).

L. Zhang, Q. Lin, L. C. Kimerling, and J. Michel, “Self-frequency shift of cavity soliton in Kerr frequency comb,” arXiv: 1404.1137 (2014).

C. Milián, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects,” arXiv: 1503.00672 (2015).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The generation of octave-spanning Kerr frequency comb at X = 90, Δ = 30. The blue line shows the dispersion of the microresonator.
Fig. 2
Fig. 2 The spectrum and peak power evolution of the soliton at X = 240, Δ = 30, (a) without SRS or SS, (b) with SRS alone, (c) with SS alone. (d) with both SRS and SS.
Fig. 3
Fig. 3 The dependence of the peak power and 20-dB bandwidth breathing on the pump condition with SRS and SS included, (a) on pump power, Δ fixed as 30, (b) on pump detuning, X fixed as 160.
Fig. 4
Fig. 4 The enhancement of the breathing dynamics due to SRS and SS at X = 160, Δ = 20. Spectrum evolution (a) without, (b) with SRS and SS, (c) change of the 20-dB bandwidth with (black line) and without (red line) SRS and SS.
Fig. 5
Fig. 5 Coherence property of the breather soliton (a) without, (b) with SRS and SS. The spectrum of a pulse train with 3001 pulses, the inset shows the detail of the −32 nd comb line away from the pump (c) without, (d) with SRS and SS.
Fig. 6
Fig. 6 At 1.55 μm and pump condition as X = 160, Δ = 20, spectrum evolution of breather soliton (a) without, (b) with SRS and SS. At 1.3 μm, and pump condition as X = 160, Δ = 34 (c) stable CS without SRS and SS, (d) breather soliton with SRS and SS.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ τ 0 t + α i +θ 2 j δ 0 +jL n=2 (j) n β n n! n τ n ]E(t,τ)= θ E in L[jγ(1j τ Kshock τ )E | E | 2 +j γ R (1j τ Rshock τ )[E τ h R (ττ') | E | 2 d τ']],
| g 12 (ν, t 1 t 2 ) |= | E ˜ * (ν, t 1 ) E ˜ (ν, t 2 ) | S(ν)

Metrics