Abstract

Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

© 2015 Optical Society of America

1. Introduction

Rapid and accurate identification of bacterial species is crucial for diagnosing infectious diseases or screening for poisoning sources in food. Bacterial infection causes a number of severe diseases and syndromes, e.g. sepsis, meningitis, pneumonia, and gastroenteritis, which all require immediate and appropriate treatment based on the detection and identification of the bacterial species [13]. However, conventional techniques for bacterial identification have significant limitations, mainly due to the long procedural time required for identification. The present gold standard, bacterial blood culture followed by susceptibility testing for drug resistance, requires days for preliminary results and is often negative for fulminant cases. Recently-developed methods based on real-time quantitative polymerase chain reaction (qPCR) followed by sequencing are faster and more robust; however, they still require hours and are often too expensive for resource-limited environments [46]. Consequently, the treatment of many important diseases and syndromes (such as sepsis, of which mortality rates increase by approximately 9% per hour before appropriate antibiotic therapy [7]) typically employs wide-spectrum antibiotic therapy based on clinical experience. This strategy is inefficient compared to accurately species-targeted therapy and carries the potential dangers of severe side effects or the emergence of antibiotic-resistant microorganisms [8, 9].

Various non-invasive optical approaches have been studied to address this issue, as the root cause limiting the speed of the aforementioned biochemical techniques is lengthy and intensive sample processing. Among spectroscopic methods, Fourier transform infrared spectroscopy (FTIR) of bacterial colonies [1012] and Raman scattering (and also surfaced-enhanced Raman scattering) of individual bacteria [1315] were extensively investigated. The FTIR approach simplifies the sample processing compared to biochemical methods, though its speed is still limited, as the colonies should be cultured. The Raman scattering method presents excellent sensitivity of the single bacterium level that enables bypassing the culturing step; however, the signals are too weak for high-throughput investigation. Employing the surface enhancement effect compensates for this shortcoming at the cost of labeling with exogenous agents such as metallic nanostructures [16].

In addition to the spectroscopic methods, angle-resolved light scattering (ALS) based on spatial light information has been investigated as well at three different levels: bacterial suspensions, bacterial colonies, and individual bacteria. ALS of bacterial suspensions was pioneered by Wyatt and colleagues in the 1960’s [1719] and ALS of bacterial colonies has been intensively studied in recent years [2025]. This ALS approach possess a similar advantage and disadvantage with those of FTIR: simplified but still lengthy sample preparation. ALS of individual bacteria has received relatively little research attention [2631], probably because certain characteristics of single-bacterial ALS measurement (extremely small scattering cross section, wide scattering angle range, and significantly high dynamic range) make this method technically challenging [32]. Despite these difficulties, ALS of individual bacteria promises a powerful advantage: label-free identification at the single bacterium level.

Here, we present a novel ALS-based identification of individual bacteria using Fourier transform light scattering (FTLS). Quantitative phase imaging (QPI) of individual bacteria in combination with FTLS technique enables single-shot measurement of single-bacterial two-dimensional (2D) ALS maps covering a broad angular range with unprecedented precision, as recently demonstrated by our group [32]. The measured ALS maps, which essentially reflect cellular and subcellular structures and compositions [33], are then analyzed for statistical classification; the ensembles of ALS maps from multiple bacterial species are systematically analyzed to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. Our experimental results demonstrate that detectable and significant patterns in the 2D light scattering spectra can distinguish individual bacteria belonging to four rod-shaped species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), which are indistinguishable with only cellular shapes, achieving cross-validation accuracy higher than 94%. The single-bacterial and label-free nature of our method suggest wide applicability for rapid point-of-care bacterial diagnosis.

2. Methods and results

2.1. Model problem: four rod-shaped bacterial species

In order to demonstrate the capability of the present approach, we set and solve a virtual clinical case for the proof-of-concept study: the objective is to identify the species of an unidentified bacterial pathogen, i.e. a single specific bacterium isolated from the sample that is known to belong to one of the four rod-shaped bacterial species, Listeria monocytogenes. Escherichia coli, Lactobacillus casei, and Bacillus subtilis. These four species, including both Gram-positive and Gram-negative ones, were chosen for this study as the rod-shaped species are clinically important in general, while they exhibit similar shapes and sizes that make them indistinguishable via simple observation of cellular morphology using conventional bright-field microscopy or phase contrast microcopy. Although this model problem requires a priori knowledge that the target bacterium belongs to one of the four species, the method described throughout this report can be readily extended to a more general approach (see Discussion and Conclusions).

In order to demonstrate that the simple morphological information is not sufficient to identify the bacterial species, we illustrate the size distribution of the individual bacteria (characterized by the lengths of major and minor axes of the rod-shaped bacterial cells) in unsynchronized growth states belonging to the four species in Fig. 1 (see the following sections for the imaging method). The size and aspect ratio of the cells in these species are similar to one another, and this result clearly implies that it is impractical to distinguish these bacterial species using morphological parameters, which is the typical accessible information using conventional bright-field microscopy or phase contrast microscopy.

 

Fig. 1 The size distribution of the four bacterial species, L. monocytogenes, E.coli, L. casei, and B. subtilis (67, 69, 78, and 55 bacterial cells, respectively). The lengths of the major and minor axes of each rod-shaped bacterium [indicated in Fig. 3(a)] in unsynchronized growth states are observed and plotted (see the following sections for the imaging method). It is impractical to identify the species from only cellular shapes, which are observable using conventional optical microscopy.

Download Full Size | PPT Slide | PDF

2.2. Preparation of individual bacteria samples

Four bacterial species, L. monocytogenes, E. coli, L. casei, and B. subtilis, were prepared according to the following procedures.

  • L. monocytogenes strain (10403S) was grown on Brain-Heart Infusion agar plates without antibiotics.
  • E. coli strain (ER 2738) with tetracycline-resistance was grown on Luria-Bertani agar plates with tetracycline (50 mg/mL).
  • L. casei strain (KCTC 2180) was grown on MRS agar plates without antibiotics.
  • B. subtilis strain (KCTC 1023) was grown on nutrient agar plates without antibiotics.

After overnight culturing in a 37°C incubator, a few tips of solid-cultured bacterial colonies were taken and then put into the respective Eppendorf-tubes. A Dulbecco's Phosphate Buffered Saline solution (LB 001-12, Welgene, Republic of Korea) was added in each tube to prepare a bacterial solution. After slight vortex mixing, a small volume (10 μL) of the bacterial solution was sandwiched between standard microscopic cover glasses (C024501, Matsunami Glass Ind., Japan) with a spacer made of double-sided tape with a thickness of 20-30 μm. Imaging was performed after the bacterial cells settled down to the bottom, but no later than 15-20 minutes after preparation. The aforementioned dilution step was performed until the bacterial cells were spread into a single layer when being imaged.

2.3. Quantitative phase imaging of individual bacteria

In order to precisely measure the 2D light scattering maps from individual bacteria, we employed QPI and FTLS techniques [32, 3437]. For the first step, the optical field maps (both amplitude and phase maps of the transmitting light field) of isolated individual bacteria are precisely measured using QPI [34, 35]:

E(r)=A(r)exp[iΔϕ(r)],
where A(r) and Δϕ(r) are the amplitude and phase delay maps at position r, respectively. The phase delay Δϕ(r) results from the relative optical path length, the line integral of the refractive index (RI) through the sample, at each lateral position. At room temperature, we imaged 67, 69, 78, and 55 individual bacterial cells for L. monocytogenes, E.coli, L. casei, and B. subtilis, respectively, which were prepared as described in the previous section as unsynchronized growth states.

Here we employed diffraction phase microscopy (DPM), one of the QPI techniques, for optical field imaging [38, 39] (Fig. 2 ). DPM is a common-path interferometry with off-axis spatial modulation, and it provides single-shot full-field imaging capability and high sensitivity for phase measurement. Briefly, a diode-pumped solid state laser (λ = 532.1 nm, Cobolt Samba, Sweden) was used as the illumination source. An inverted microscope (IX71, Olympus American Inc., USA), equipped with a high numerical aperture (NA) objective lens (UPLFLN 60X, 1.42 NA, oil-immersion, Olympus American Inc.), was modified with additional optics to be used for a DPM setup. With the additional relay optics, the overall magnification of the system was × 200. A CMOS camera (Neo sCMOS, Andor, UK) was used to record the holograms of the samples. The optical field images were reconstructed from the recorded holograms using a custom-built field retrieval algorithm implemented in MatLab [40]. Each bacterial cell in a field-of-view can be isolated by generating image windows based on phase values for subsequent single-bacterial analyses. More details on the setup and principles of DPM can be found elsewhere [38, 39]. Alternatively other QPI techniques [34, 35] or digital holographic microscopy techniques [41, 42] can also be used for measuring light field images of individual bacteria. In particular, the use of compact modules for light field imaging can further facilitate miniaturization and clinical translation of the present method [43, 44].

 

Fig. 2 Experimental setup of DPM. The DPM setup is a laser-interferometric microscope in a common-path geometry. A sample is positioned between the condenser and objective lenses. OL: objective lens; CL: condenser lens; M1-2: mirrors; L1-6: lenses.

Download Full Size | PPT Slide | PDF

The representative amplitude A(r) and phase Δϕ(r) images of an individual L. moncytogenes bacterium are illustrated in Figs. 3(a) and 3(b), respectively. The images of bacteria in E. coli, L. casei, and B. subtilis are compatible with the case of L. monocytogenes [32]. The importance of simultaneous measurements of both maps are described in the following sections.

 

Fig. 3 QPI and FTLS of individual bacterium. (a) Amplitude and (b) phase images of an isolated L. monocytogenes bacterium observed using QPI. (c) The corresponding 2D light scattering map generated by FTLS using the full optical field information from (a) and (b). The pseudo-FTLS maps by numerical propagation (d) without amplitude information, and (e) without phase information. The results indicate that phase information, a unique feature of QPI, is central to single-bacterial characterization rather than easily accessible amplitude information.

Download Full Size | PPT Slide | PDF

2.4. Fourier transform light scattering of individual bacteria

The measured optical field maps of individual bacteria E(r) are utilized to calculate the single-bacterial ALS maps using FTLS technique [36, 37]. FTLS is based on the numerical propagation of the optical field in the sample plane by simply Fourier transforming it to generate the far-field light scattering map:

I(u)=12π|E(r)exp(2πiur)d2r|2,
where u is the lateral spatial frequency vector.

A single QPI measurement enables us to attain the corresponding 2D light scattering map at a broad angular range [36, 37]. FTLS is the spatial analogy of FTIR, so it provides an unprecedented signal-to-noise ratio due to Fellgett's advantage [45]. The upper limit of detectable light scattering angle is determined by the NA of the objective lens; our system effectively covers the scattering angle ranging from −70° to 70° [32]. It is also worth noting that the measured optical field maps of isolated individual bacteria are numerically centered, rotated, and zero-padded prior to Fourier transformation; this process ensures species identification based on light-cell interaction, independent of the orientation of cells. The scale of zero padding should be appropriately chosen for sufficient but not excessive (a large number of pixels is computationally expensive for the following image analyses) angular resolution of the FTLS maps.

Figure 3(c) illustrates the measured light scattering map of the isolated individual bacterium presented in Figs. 3(a)-3(b). The unique FTLS map of each bacterium essentially results from its cellular and subcellular structures and compositions because the light scattering behavior is determined by the 3-D spatial distribution of RI of the cell. The high sensitivity of RI to the biochemical compositions and their local concentrations is central to the effectiveness of FTLS for the study of pathophysiology of cells and tissues [3437, 4648].

To re-emphasize that the FTLS maps are not merely determined by the cellular morphology, which can also be obtained with conventional bright-field microscopy or phase contrast microscopy, we calculated the pseudo-FTLS maps of the individual bacterium, as shown in Figs. 3(d)-3(e). The numerical light field propagations were performed without amplitude information, A(r)=1, and without phase information, Δϕ(r)=0, as illustrated in Figs. 3(d) and 3(e), respectively. This result clearly demonstrates that the optical phase information, which is the unique advantage of QPI, is crucial for obtaining the correct ALS spectra.

2.5. Statistical classification of FTLS maps: Overall procedure

The measured FTLS maps were then systematically analyzed in order to extract the unique fingerprint patterns for each bacterial species so that a new unidentified bacterium can be identified by a single FTLS measurement. This training-and-identification strategy is called statistical classification, or supervised machine learning, which is one of the most rapidly evolving fields in computer science with diverse applications including bioinformatics [49]. Statistical classification has been previously exploited in various forms in most of the optical methods for bacterial identification briefly reviewed in the Introduction [1016, 2022, 25, 2731]. Applications of statistical classification using digital holography have been extensively investigated, in which the light field images were analyzed in the image plane [5062].

The overall procedure for the proposed identification scheme is summarized in Fig. 4 . After the FTLS measurement, as described in previous sections, the training step is performed as follows. First, the variables describing each FTLS map, which are called features, are extracted by principal component analysis (PCA). The extracted features are then selected and optimized to construct a statistical classification model (classifier) based on linear discriminant analysis (LDA). This PCA-LDA method has been widely utilized in several statistical classification problems [63]. Here, this PCA-LDA process is conducted for species classification; the unique fingerprint patterns from light scattering spectra are efficiently extracted by selecting the species-dependent features and excluding the features with high relevance to the cell-to-cell shape variations within each species that arise from cell growth and division. After completion of the training step, a new unidentified bacterium can be instantly identified by a single FTLS measurement. We assess the identification accuracy via cross-validation. The following sections describe each step of this process in detail.

 

Fig. 4 Overall procedure for single-bacterial identification. 2D ALS maps of isolated individual bacteria are measured using FTLS. The measured FTLS maps are then systematically analyzed in order to extract the unique fingerprint patterns for each species (classifiers) so that a new unidentified bacterium can be identified by a single light scattering measurement.

Download Full Size | PPT Slide | PDF

2.6. Feature extraction from light scattering spectra

In order to effectively extract the features from light scattering spectra, the region of interest (ROI) containing the bandwidth limited information (i.e. scattered light collected by the objective lens with specific NA) in the measured 2-D FTLS maps is selected. As illustrated in Fig. 3(c), the ROI is defined as a circle whose diameter corresponds to the maximum spatial frequency, which corresponds to NA/λ where λ is the wavelength of the illumination. For the QPI system used in this study, a typical ROI is composed of approximately 104 pixels. This high dimensionality of the ROI is computationally expensive, and the analysis would suffer from the ‘curse of dimensionality’, meaning that the predictive power of classifiers decreases as the dimensionality increases [64]. Thus, the number of variables describing the ROI must be adequately reduced in the following feature extraction procedure.

In order to represent a FTLS map as a linear combination of a small but sufficient number of uncorrelated principal patterns, we employed PCA [65]. In principle, the number of principal patterns used to express the scattering spectra is the same as the pixel numbers in the ROI, because PCA is essentially an orthogonal basis transformation. However, because most information or variance of the original pattern is contained in the first few principal patterns after the PCA, we can significantly reduce the dimensionality to manageable numbers for statistical classification. For this study, we performed PCA on the single-bacterial FTLS maps composed of 5,525 pixels each to generate 250 principal patterns and the corresponding principal pattern coefficients, preserving 99.9% of the original variance or information. The first 16 principal patterns are presented in Fig. 5(a) , and the full spectra of the principal pattern coefficients for all investigated individual bacteria are illustrated in Fig. 5(b). Well-established mathematical details of PCA and its applications for biological image analysis can be found elsewhere [6567].

 

Fig. 5 PCA of the FTLS patterns to extract the features for training the classifiers. (a) The first 16 principal patterns generated by PCA of all measured FTLS patterns. Each principal pattern is scaled into [–1, 1] for visualization purposes. (b) The full spectra of the principal pattern coefficients up to the 250th coefficient. Each row represents an individual bacterium, whereas each column represents a principal pattern. The principal patterns included here contain 99.9% of the original variance or information.

Download Full Size | PPT Slide | PDF

2.7. Training classifiers with optimized features

Our final goal is to construct the classification model (classifier) using the extracted features from the FTLS maps. Here we employed LDA, one of the most traditional and robust linear classifiers [68, 69]. LDA draws linear discriminant hyperplanes as optimal boundaries between the bacterial species when each individual bacteria is expressed as a point in the feature space. The features exploited for LDA should be carefully selected and optimized to maximize the accuracy of identification as described below. Since LDA is a linear classifier, the computation is sufficiently fast to enable the iterative construction of the classification models with various subsets of features and samples.

After constructing a classification model, we can assess the accuracy of single-bacterial identification via leave-one-out cross-validation [70]. We construct the classifier using the data from all bacterial cells except one and then apply the classifier to check if it identifies the excluded bacterium correctly. Through repeating this process for all individual bacteria, we can measure the identification accuracy. It is mathematically proven that leave-one-out cross-validation is a precise estimation of the real accuracy to identify independently measured data [49].

For the first step for feature selection, we rank the principal patterns according to their usefulness for statistical classification. Because principal patterns are linearly uncorrelated, we can independently investigate each principal pattern, as shown in each column of Fig. 5(b). We employed the analysis of variances (ANOVA), which is a generalization of the Student’s t-test into more than two groups, to measure the species-distinguishing capability of each principal pattern [71]. Since the values in each column of Fig. 5(b) belong to one of the four species, we can calculate the p-value between the species for each column that estimates the discriminating power of each principal pattern. In Fig. 6(a) , we sorted the principal patterns in the order of ascending p-values. The principal patterns with p-values close to zero are more informative for classification, whereas the principal patterns with p-values close to one are noisy (i.e. these patterns may result in overtraining that lowers accuracy [49]), as illustrated in Figs. 6(b) and 6(c), respectively. This result establishes a heuristic strategy for feature selection [49]: if the principal patterns are added in a consecutive or accumulative manner, from a low principal pattern index to a high principal pattern index (sorted by p-values), as features for statistical classification, the accuracy of the identification based on each classification model will be maximized at a certain optimal point in the middle. This expected tendency was observed in our data, as shown in Fig. 6(d).

 

Fig. 6 Feature selection and optimization for training the classifiers. (a) The p-value of each principal pattern coefficient as a measure of species-distinguishing capability is calculated using ANOVA and then the principal patterns are sorted in the order of ascending p-values. The principal pattern coefficients are presented in box plots for (b) the most distinguishable (index = 1) and (c) the most indistinguishable (index = 255) principal patterns. The first principal patterns with p-values close to zero are informative for classification, while the last principal patterns with p-values close to one are noisy. Thus, we select the principal patterns in a consecutive or accumulative manner, from left to right, as the features for statistical classification. The cross-validation accuracy for the classifiers trained in this manner is plotted in (d), where the optimal classification is achieved in the middle as expected.

Download Full Size | PPT Slide | PDF

The coarse-grained cross-validation accuracy consists of eight detailed parameters (two parameters per species) of identification accuracy: sensitivity (true positive results over all positive inputs) and specificity (true negative results over all negative inputs) for each species. Selecting a classification model with high values of some parameters may give low values for other parameters, and vice versa. Thus, the final selection of the classifier (or feature optimization for classifier training) should consider the specific purpose of application. For example, we might be interested simply in whether a given bacterium is pathogenic L. monocytogenes or not (see Discussions and Conclusions).

The identification results are illustrated in Fig. 7 and Table 1 . Here, we selected a classification model with homogeneously high values of the accuracy parameters. The overall cross-validation accuracy was 94.05%, with sensitivities of 95.52%, 95.65%, 88.46%, and 98.18% and specificities of 99.51%, 96.50%, 97.91%, and 98.13% for L. monocytogenes, E. coli, L. casei, and B. subtilis, respectively.

 

Fig. 7 Single-bacterial identification with the optimized classifier. The proportion of each output species for a certain input species, where leave-one-out cross-validation is utilized to precisely mimic the independently measured data, is plotted. The overall accuracy was 94.05%, with sensitivities of 95.52%, 95.65%, 88.46%, and 98.18% and specificities of 99.51%, 96.50%, 97.91%, and 98.13% for L. monocytogenes, E. coli, L. casei, and B. subtilis, respectively.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Identification performance of the optimized classifier

3. Discussions and conclusions

We have presented a novel optical method for label-free species identification of individual bacteria using FTLS and statistical classification. Four rod-shaped bacterial species (L. monocytogenes, E. coli, L. casei, and B. subtilis) were indistinguishable using only their cellular shapes due to the limited information in intensity images and the cell-to-cell variations arising from cell growth and division. To address this difficulty in species classification, we have exploited the single-bacterial 2D ALS maps measured by FTLS to systematically extract the unique fingerprint patterns for each species, or the optimized LDA classifier. Then, a new unidentified bacterium can be identified by a single light scattering measurement followed by application of the classifier with accuracy higher than 94% as assessed by cross-validation.

Furthermore, we also confirmed that the application of statistical classification methods to simple morphological parameters or phase images do not provide the capability for species classification as good as we demonstrated with FTLS signals (higher than 94%); the overall accuracies were below 63% and 85% for the simple morphological parameters (major axis length, minor axis length, aspect ratio, and area) and the phase images, respectively (data not shown).

Although FTLS for obtaining single-bacterial 2D ALS maps has been reported previously [32], it had failed to classify bacterial species with reasonably small inter-species overlap when simple parameters describing FTLS maps were used. The current approach − the employment of statistical classification and the full utilization of FTLS signals − not only overcomes the issues in the previous approach, but also offers a platform technology for bacterial species classification that can be easily applied to the clinic.

The single-bacterial and label-free nature of our method implies wide applicability for rapid point-of-care bacterial diagnosis. As briefly reviewed in the Introduction, the ALS of individual bacteria has significant advantages for rapid and label-free identification of bacteria, as compared to other existing optical or biochemical approaches. Though several groups have demonstrated similar identification schemes based on single-bacterial ALS measurement and statistical classification [2730], the present approach provides ALS measurements in a wide angular range with unprecedented precision [32]. The importance of broad angular range (especially high scattering angle) for bacterial species characterization lies in the capability of accessing the light interacting with small subcellular organelles, which is analogous to side light scattering in flow cytometry analysis. In addition, the present method is based on a single-shot measurement; after the statistical classification for the target species, only a single-shot FTLS measurement per bacterium is required for species identification. Simply attaching a compact QPI unit to a conventional high-speed imaging flow cytometry will enable high-throughput analysis for immediate and efficient therapy [43, 44]. This system can be even miniaturized for point-of-care diagnosis [72].

In particular, the present single bacterium approach can be exploited for identifying unculturable bacteria and avoiding inter-species competition while culturing heterogeneous populations. Furthermore, our concepts can be readily extended to other morphologies such as spherical and spiral bacterial species and will hopefully lead to the addition of other types of microbes or general pathogens to the optical identification regime. Moreover, the non-invasive nature of the proposed method enables parallel investigations for more detailed single bacterium profiling. For instance, the use of various QPI modalities, such as spectral [73, 74], polarimetric [75], synthetic [76], tomographic [7779], and reflection [80] QPI, will further improve the accuracy and applicability of the proposed method. In addition, the combination with optical tweezers technique, one can identify the species of individual bacteria and optically manipulate a specific bacterium [81]. For more efficient therapy, our method might be co-administered with more robust genotype-oriented identification methods [82] or species-independent bacterial filtering therapy [83].

There are several limitations of the present method to be addressed in future works. As is common for all single cell approaches, the purification of samples is required to avoid interference by non-bacterial or abiotic components. We expect that droplet microfluidics on a chip might be a solution compatible with the aforementioned point-of-care scheme [84]. In addition, while differentiating viable bacterial cells from dead ones is important for clinical setting, both optical and biochemical methods have limitations.

In addition to the technical issues, there are several points to be improved for constructing a more robust bacterial ALS fingerprint database for the practical implementation of our method. Here, we demonstrated the systematic extraction of species-dependent information through overcoming the cell-to-cell shape variations, which are ‘noise’ to identification. However, the following noises also exist and must also be overcome: cell strains within species and environmental factors that alter phenotypes or gene expression including temperature [85], pH [86], osmolality [87], and host-pathogen interactions [88]. Experiments with diverse cell strains under various physiological conditions should be performed in order to suppress these noises and to construct a robust fingerprint database prior to practical implementation of the present method. Since many noise sources contribute simultaneously, employing nonlinear classifiers, such as artificial neural networks [89] or nonlinear support vector machines [90], can be employed to improve the accuracy of identification. Furthermore, the current requirement of a priori knowledge of the species range also needs to be overcome. One strategy is to focus on several pathogenic species that cause major diseases. Another strategy is tree-structured phenotype classification: constructing a classifier for bacteria or non-bacteria, a classifier for morphological categories, a classifier for Gram-positive or Gram-negative bacteria, a classifier for genus, and so on. Tree-structured classification strategy is known to be effective for multiclass classification problems [63]. All of these routine tasks can be conducted in a specialized lab and can be uploaded on the web for wide usage of light scattering spectra for bacterial identification.

Acknowledgments

The authors thank Ms. Minryung Song (Department of Bio and Brain Engineering, KAIST) for her kind advice on machine learning algorithms. This work was supported by KAIST Undergraduate Research Participation (URP) program, the Korean Ministry of Education, Science and Technology (MEST), and the National Research Foundation (2012R1A1A1009082, 2013M3C1A3063046, 2012-M3C1A1-048860, 2013K1A3A1A09076135, NRF-2012M3A9B4027955, NRF-2011-0020334, NRF-2010-0009042). Y.J. acknowledges support from KAIST Presidential Fellowship and SPIE Optics & Photonics Education Scholarship.

References and links

1. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003). [CrossRef]   [PubMed]  

2. A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Crit. Care Nurs. Clin. North Am. 23(1), 79–97 (2011). [CrossRef]   [PubMed]  

3. M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness Jr, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993). [CrossRef]   [PubMed]  

4. P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009). [CrossRef]   [PubMed]  

5. N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012). [CrossRef]   [PubMed]  

6. A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011). [CrossRef]   [PubMed]  

7. J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006). [CrossRef]   [PubMed]  

8. W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985). [CrossRef]   [PubMed]  

9. T. F. O’Brien, “Global surveillance of antibiotic resistance,” N. Engl. J. Med. 326(5), 339–340 (1992). [CrossRef]   [PubMed]  

10. D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991). [CrossRef]   [PubMed]  

11. L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001). [CrossRef]  

12. C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006). [CrossRef]   [PubMed]  

13. K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000). [CrossRef]   [PubMed]  

14. C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005). [CrossRef]   [PubMed]  

15. P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005). [CrossRef]   [PubMed]  

16. R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008). [CrossRef]   [PubMed]  

17. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7(10), 1879–1896 (1968). [CrossRef]   [PubMed]  

18. P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221(5187), 1257–1258 (1969). [CrossRef]   [PubMed]  

19. P. J. Wyatt, “Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus),” Nature 226(5242), 277–279 (1970). [CrossRef]   [PubMed]  

20. B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006). [CrossRef]   [PubMed]  

21. P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007). [CrossRef]   [PubMed]  

22. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009). [CrossRef]   [PubMed]  

23. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010). [CrossRef]   [PubMed]  

24. I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express 19(22), 21768–21785 (2011). [CrossRef]   [PubMed]  

25. A. Suchwalko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express 21(9), 11322–11337 (2013). [CrossRef]   [PubMed]  

26. P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972). [CrossRef]   [PubMed]  

27. B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008). [CrossRef]   [PubMed]  

28. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008). [CrossRef]   [PubMed]  

29. Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011). [CrossRef]   [PubMed]  

30. G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013). [CrossRef]  

31. B. K. Wilson and G. D. Vigil, “Automated bacterial identification by angle resolved dark-field imaging,” Biomed. Opt. Express 4(9), 1692–1701 (2013). [PubMed]  

32. Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014). [CrossRef]   [PubMed]  

33. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010). [CrossRef]   [PubMed]  

34. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013). [CrossRef]   [PubMed]  

35. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

36. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef]   [PubMed]  

37. H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010). [CrossRef]  

38. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef]   [PubMed]  

39. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006). [CrossRef]   [PubMed]  

40. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011). [CrossRef]   [PubMed]  

41. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

42. K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012). [CrossRef]   [PubMed]  

43. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014). [CrossRef]   [PubMed]  

44. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014). [CrossRef]   [PubMed]  

45. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949). [CrossRef]   [PubMed]  

46. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010). [CrossRef]   [PubMed]  

47. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011). [CrossRef]   [PubMed]  

48. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012). [CrossRef]   [PubMed]  

49. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006), Vol. 1.

50. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005). [CrossRef]   [PubMed]  

51. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005). [CrossRef]   [PubMed]  

52. I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006). [CrossRef]   [PubMed]  

53. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007). [CrossRef]   [PubMed]  

54. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007). [CrossRef]   [PubMed]  

55. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008). [CrossRef]   [PubMed]  

56. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009). [CrossRef]  

57. B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010). [CrossRef]  

58. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010). [CrossRef]   [PubMed]  

59. I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011). [CrossRef]  

60. R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011). [CrossRef]   [PubMed]  

61. A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012). [CrossRef]  

62. I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013). [CrossRef]  

63. W. Zhao, A. Krishnaswamy, R. Chellappa, D. L. Swets, and J. Weng, “Discriminant analysis of principal components for face recognition,” in Face Recognition (Springer, 1998), pp. 73–85.

64. G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory 14(1), 55–63 (1968). [CrossRef]  

65. I. Jolliffe, Principal Component Analysis (Wiley Online Library, 2005).

66. D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012). [CrossRef]   [PubMed]  

67. A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007). [CrossRef]   [PubMed]  

68. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7(2), 179–188 (1936). [CrossRef]  

69. G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition (John Wiley & Sons, 2004), Vol. 544.

70. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.

71. R. Walpole, R. Myers, S. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists (Prentice Hall, 2004).

72. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009). [CrossRef]   [PubMed]  

73. J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014). [CrossRef]   [PubMed]  

74. J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014). [CrossRef]   [PubMed]  

75. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012). [CrossRef]   [PubMed]  

76. K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013). [CrossRef]   [PubMed]  

77. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014). [CrossRef]   [PubMed]  

78. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014). [CrossRef]   [PubMed]  

79. M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014). [CrossRef]   [PubMed]  

80. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005). [CrossRef]   [PubMed]  

81. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).

82. H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013). [CrossRef]   [PubMed]  

83. J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014). [CrossRef]   [PubMed]  

84. D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014). [CrossRef]   [PubMed]  

85. L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001). [CrossRef]  

86. S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984). [CrossRef]  

87. J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994). [PubMed]  

88. D. G. Remick, “Pathophysiology of sepsis,” Am. J. Pathol. 170(5), 1435–1444 (2007). [CrossRef]   [PubMed]  

89. B. Yegnanarayana, Artificial Neural Networks (PHI Learning Pvt. Ltd., 2009).

90. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2(2), 121–167 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003).
    [Crossref] [PubMed]
  2. A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Crit. Care Nurs. Clin. North Am. 23(1), 79–97 (2011).
    [Crossref] [PubMed]
  3. M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
    [Crossref] [PubMed]
  4. P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
    [Crossref] [PubMed]
  5. N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
    [Crossref] [PubMed]
  6. A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
    [Crossref] [PubMed]
  7. J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
    [Crossref] [PubMed]
  8. W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
    [Crossref] [PubMed]
  9. T. F. O’Brien, “Global surveillance of antibiotic resistance,” N. Engl. J. Med. 326(5), 339–340 (1992).
    [Crossref] [PubMed]
  10. D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
    [Crossref] [PubMed]
  11. L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
    [Crossref]
  12. C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
    [Crossref] [PubMed]
  13. K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
    [Crossref] [PubMed]
  14. C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
    [Crossref] [PubMed]
  15. P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
    [Crossref] [PubMed]
  16. R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
    [Crossref] [PubMed]
  17. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7(10), 1879–1896 (1968).
    [Crossref] [PubMed]
  18. P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221(5187), 1257–1258 (1969).
    [Crossref] [PubMed]
  19. P. J. Wyatt, “Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus),” Nature 226(5242), 277–279 (1970).
    [Crossref] [PubMed]
  20. B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
    [Crossref] [PubMed]
  21. P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
    [Crossref] [PubMed]
  22. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
    [Crossref] [PubMed]
  23. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
    [Crossref] [PubMed]
  24. I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express 19(22), 21768–21785 (2011).
    [Crossref] [PubMed]
  25. A. Suchwalko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express 21(9), 11322–11337 (2013).
    [Crossref] [PubMed]
  26. P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972).
    [Crossref] [PubMed]
  27. B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
    [Crossref] [PubMed]
  28. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
    [Crossref] [PubMed]
  29. Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
    [Crossref] [PubMed]
  30. G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
    [Crossref]
  31. B. K. Wilson and G. D. Vigil, “Automated bacterial identification by angle resolved dark-field imaging,” Biomed. Opt. Express 4(9), 1692–1701 (2013).
    [PubMed]
  32. Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
    [Crossref] [PubMed]
  33. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
    [Crossref] [PubMed]
  34. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  35. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  36. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref] [PubMed]
  37. H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
    [Crossref]
  38. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  39. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [Crossref] [PubMed]
  40. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  41. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
  42. K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
    [Crossref] [PubMed]
  43. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
    [Crossref] [PubMed]
  44. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
    [Crossref] [PubMed]
  45. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949).
    [Crossref] [PubMed]
  46. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
    [Crossref] [PubMed]
  47. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
    [Crossref] [PubMed]
  48. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
    [Crossref] [PubMed]
  49. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006), Vol. 1.
  50. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
    [Crossref] [PubMed]
  51. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
    [Crossref] [PubMed]
  52. I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006).
    [Crossref] [PubMed]
  53. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
    [Crossref] [PubMed]
  54. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
    [Crossref] [PubMed]
  55. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
    [Crossref] [PubMed]
  56. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
    [Crossref]
  57. B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
    [Crossref]
  58. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
    [Crossref] [PubMed]
  59. I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
    [Crossref]
  60. R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
    [Crossref] [PubMed]
  61. A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
    [Crossref]
  62. I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
    [Crossref]
  63. W. Zhao, A. Krishnaswamy, R. Chellappa, D. L. Swets, and J. Weng, “Discriminant analysis of principal components for face recognition,” in Face Recognition (Springer, 1998), pp. 73–85.
  64. G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory 14(1), 55–63 (1968).
    [Crossref]
  65. I. Jolliffe, Principal Component Analysis (Wiley Online Library, 2005).
  66. D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
    [Crossref] [PubMed]
  67. A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007).
    [Crossref] [PubMed]
  68. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7(2), 179–188 (1936).
    [Crossref]
  69. G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition (John Wiley & Sons, 2004), Vol. 544.
  70. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.
  71. R. Walpole, R. Myers, S. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists (Prentice Hall, 2004).
  72. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
    [Crossref] [PubMed]
  73. J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  74. J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
    [Crossref] [PubMed]
  75. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  76. K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
    [Crossref] [PubMed]
  77. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
    [Crossref] [PubMed]
  78. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
    [Crossref] [PubMed]
  79. M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
    [Crossref] [PubMed]
  80. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005).
    [Crossref] [PubMed]
  81. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
  82. H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
    [Crossref] [PubMed]
  83. J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
    [Crossref] [PubMed]
  84. D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
    [Crossref] [PubMed]
  85. L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001).
    [Crossref]
  86. S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
    [Crossref]
  87. J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
    [PubMed]
  88. D. G. Remick, “Pathophysiology of sepsis,” Am. J. Pathol. 170(5), 1435–1444 (2007).
    [Crossref] [PubMed]
  89. B. Yegnanarayana, Artificial Neural Networks (PHI Learning Pvt. Ltd., 2009).
  90. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2(2), 121–167 (1998).
    [Crossref]

2015 (1)

2014 (10)

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

2013 (7)

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

B. K. Wilson and G. D. Vigil, “Automated bacterial identification by angle resolved dark-field imaging,” Biomed. Opt. Express 4(9), 1692–1701 (2013).
[PubMed]

A. Suchwalko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express 21(9), 11322–11337 (2013).
[Crossref] [PubMed]

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

2012 (6)

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

2011 (8)

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
[Crossref] [PubMed]

A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Crit. Care Nurs. Clin. North Am. 23(1), 79–97 (2011).
[Crossref] [PubMed]

I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express 19(22), 21768–21785 (2011).
[Crossref] [PubMed]

2010 (6)

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
[Crossref]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
[Crossref] [PubMed]

2009 (4)

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
[Crossref] [PubMed]

2008 (5)

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

2007 (5)

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
[Crossref] [PubMed]

A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

D. G. Remick, “Pathophysiology of sepsis,” Am. J. Pathol. 170(5), 1435–1444 (2007).
[Crossref] [PubMed]

2006 (6)

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

2005 (5)

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
[Crossref] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005).
[Crossref] [PubMed]

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

2003 (1)

R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003).
[Crossref] [PubMed]

2001 (2)

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001).
[Crossref]

2000 (1)

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

1998 (1)

C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2(2), 121–167 (1998).
[Crossref]

1994 (1)

J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
[PubMed]

1993 (1)

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

1992 (1)

T. F. O’Brien, “Global surveillance of antibiotic resistance,” N. Engl. J. Med. 326(5), 339–340 (1992).
[Crossref] [PubMed]

1991 (1)

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

1985 (1)

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

1984 (1)

S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
[Crossref]

1972 (1)

P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972).
[Crossref] [PubMed]

1970 (1)

P. J. Wyatt, “Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus),” Nature 226(5242), 277–279 (1970).
[Crossref] [PubMed]

1969 (1)

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221(5187), 1257–1258 (1969).
[Crossref] [PubMed]

1968 (2)

P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7(10), 1879–1896 (1968).
[Crossref] [PubMed]

G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory 14(1), 55–63 (1968).
[Crossref]

1949 (1)

1936 (1)

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7(2), 179–188 (1936).
[Crossref]

Adil, A.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

Aldabo-Pallas, T.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Alexandrov, S. A.

Ali, M. M.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Amiel, C.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

Anand, A.

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
[Crossref] [PubMed]

Aptowicz, K. B.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Aroonnual, A.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

Backman, V.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Badizadegan, K.

Bae, E.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

Bai, N.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

Banada, P. P.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Barman, I.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Barroso, S.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Bayraktar, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Berg, M. J.

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Berl, E.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Berthet, J. B.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Best-Popescu, C. A.

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

Bhunia, A. K.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Boch, J.

J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
[PubMed]

Boppart, M.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Boppart, S. A.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Boss, D.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
[Crossref] [PubMed]

Boustany, N. N.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Boyle, D. S.

A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
[Crossref] [PubMed]

Bremer, E.

J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
[PubMed]

Burges, C. J. C.

C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2(2), 121–167 (1998).
[Crossref]

Burkhardt, H.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Buzalewicz, I.

Calderwood, S. B.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Cao, H.

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Carapezza, E.

Cartwright, M. J.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Casati, C.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Castro, C. M.

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Caviness, V. S.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Cayuela, A.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Chan, J. Z.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Chang, R. K.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, C.

Choi, W.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Choi, Y.

Chung, H. J.

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Cohen, A. E.

A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007).
[Crossref] [PubMed]

Constantinidou, C.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Cooper, R. M.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Crain, C.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Crosta, G. F.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Cruz, M.

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

Daneshpanah, M.

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
[Crossref]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
[Crossref] [PubMed]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Dark, P. M.

P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
[Crossref] [PubMed]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Dean, P.

P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
[Crossref] [PubMed]

Debnath, S. K.

Depeursinge, C.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Dey, D. K.

Diaz, A.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Digman, M. A.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Ding, H.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Ding, H. F.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Dinno, M. A.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Domansky, K.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Durand, M. L.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Erlinger, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

Feld, M. S.

Fellgett, P. B.

Ferguson, T. M.

A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
[Crossref] [PubMed]

Fisher, R. A.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7(2), 179–188 (1936).
[Crossref]

Freeman, J.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Fu, D.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Gamini, N.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Gapes, J. R.

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

Garnacho-Montero, C.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Garnacho-Montero, J.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Gemperline, P. J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Gillette, M. U.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Goodacre, R.

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Gratton, E.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Graveline, A. R.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Guo, S.

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

Halachev, M.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Harz, M.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Helm, D.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Heo, J. H.

Higgins, J. M.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Hillman, T. R.

Hirleman, E. D.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Hofer, S.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Hoffmann, A.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Hosseini, P.

Hotchkiss, R. S.

R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003).
[Crossref] [PubMed]

Howard, R.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Huang, S. S.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Huff, K.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

Hughes, G.

G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory 14(1), 55–63 (1968).
[Crossref]

Ikeda, T.

Im, H.

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Ingber, D. E.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Jang, J.

Jang, S.

Jarvis, R. M.

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Javidi, B.

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
[Crossref] [PubMed]

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
[Crossref] [PubMed]

B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
[Crossref]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

Jeong, J.

Jiang, A.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Jiménez, R.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Jo, Y.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kang, D. K.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Kang, J. H.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Kang, J. W.

Karl, I. E.

R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003).
[Crossref] [PubMed]

Kempf, B.

J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
[PubMed]

Kim, H. D.

Kim, K.

K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
[Crossref] [PubMed]

Kim, M. W.

Kim, T.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Kim, Y.

Kole, A.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Crit. Care Nurs. Clin. North Am. 23(1), 79–97 (2011).
[Crossref] [PubMed]

Labischinski, H.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

Lankers, M.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Lary, T.

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

Lee, H.

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Lee, J. W.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

Lee, K.

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lendl, B.

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

Leppard, G. G.

S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
[Crossref]

Li, Y. Q.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Lineaweaver, W.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Liu, J. M.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Liu, R.

Liu, S. C.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Loman, N. J.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Mace, J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Magistretti, P. J.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Majumder, A.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Mammoto, A.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Mammoto, T.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Mariey, L.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

Marquet, P.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28(6), 1204–1210 (2011).
[Crossref] [PubMed]

McMorris, S.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Miller, S. I.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Millet, L. J.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Min, B.

Mir, M.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Moerner, W. E.

A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007).
[Crossref] [PubMed]

Moon, I.

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
[Crossref]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
[Crossref] [PubMed]

Motzkus, H. W.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Nam, K. T.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

Naumann, D.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

Newton, R. J.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Niemz, A.

A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
[Crossref] [PubMed]

Noh, H.

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

O’Brien, T. F.

T. F. O’Brien, “Global surveillance of antibiotic resistance,” N. Engl. J. Med. 326(5), 339–340 (1992).
[Crossref] [PubMed]

Ortiz-Leyba, C.

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

Ozcan, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

Pallen, M. J.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Pan, Y. L.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Paolini, D.

S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
[Crossref]

Park, H.

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, J.

Park, J. H.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

Park, J.-H.

Park, Y.

K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Patel, N. R.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

Penn, C. W.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Peschke, K. D.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Peterson, E.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Phillips, D. T.

P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972).
[Crossref] [PubMed]

Pinnick, R. G.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Podbielska, H.

Pomeroy, L. R.

L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001).
[Crossref]

Popescu, G.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Popp, J.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Ragheb, K.

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

Rajwa, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Rao, S. S.

S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
[Crossref]

Rappaz, B.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Rebuffo, C. A.

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

Reese, I.

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

Remick, D. G.

D. G. Remick, “Pathophysiology of sepsis,” Am. J. Pathol. 170(5), 1435–1444 (2007).
[Crossref] [PubMed]

Robertson, J.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Robinson, E. R.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Robinson, J. P.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

Rodas, M. J.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Ronneberger, O.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Rösch, P.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Rottman, M.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Rumley, T.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Sampson, D. D.

Schallehn, G.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

Scherer, S.

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

Schmitt, J.

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

Schmitt, M.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Schuster, K. C.

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

Seo, S.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

Sergeant, M.

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Shim, H.

Shin, D.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35(23), 4066–4068 (2010).
[Crossref] [PubMed]

Signolle, J. P.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

So, P. T.

Soucy, D.

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Southwick, F. S.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Stern, A.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
[Crossref] [PubMed]

Stice, S.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Su, T. W.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

Suchwalko, A.

Super, M.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Suresh, S.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Swartz, M. N.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Takahashi, K.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Tang, W.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Thiele, H.

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Tobin, H.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Travert, J.

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

Tseng, D. K.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

Urlaub, E.

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

Valentin, T. M.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Van de Ville, D.

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Venkatapathi, M.

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008).
[Crossref] [PubMed]

Videen, G.

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Videen, G. W.

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

Vigil, G. D.

von Stetten, F.

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

Wang, R.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Wang, Z.

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Warhurst, G.

P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
[Crossref] [PubMed]

Waterhouse, A.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Watters, A. L.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Weber, D. J.

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

Weissleder, R.

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Wenning, M.

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

Wiebe, W. J.

L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001).
[Crossref]

Wieliczko, A.

Wilson, B. K.

Wyatt, P. J.

P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972).
[Crossref] [PubMed]

P. J. Wyatt, “Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus),” Nature 226(5242), 277–279 (1970).
[Crossref] [PubMed]

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221(5187), 1257–1258 (1969).
[Crossref] [PubMed]

P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7(10), 1879–1896 (1968).
[Crossref] [PubMed]

Xiang, M.

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Xie, C.

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Yaqoob, Z.

Yeom, S.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

Yoon, J.

Yu, H.

Yung, C. W.

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Zhang, K.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Zhang, S. S.

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Zhao, W.

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Am. J. Pathol. (1)

D. G. Remick, “Pathophysiology of sepsis,” Am. J. Pathol. 170(5), 1435–1444 (2007).
[Crossref] [PubMed]

Anal. Chem. (2)

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem. 72(22), 5529–5534 (2000).
[Crossref] [PubMed]

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, “Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).
[Crossref] [PubMed]

Ann. Eugen. (1)

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7(2), 179–188 (1936).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (2)

C. A. Rebuffo, J. Schmitt, M. Wenning, F. von Stetten, and S. Scherer, “Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy,” Appl. Environ. Microbiol. 72(2), 994–1000 (2006).
[Crossref] [PubMed]

P. Rösch, M. Harz, M. Schmitt, K. D. Peschke, O. Ronneberger, H. Burkhardt, H. W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71(3), 1626–1637 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Aquat. Microb. Ecol. (1)

L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria,” Aquat. Microb. Ecol. 23, 187–204 (2001).
[Crossref]

Arch. Surg. (1)

W. Lineaweaver, R. Howard, D. Soucy, S. McMorris, J. Freeman, C. Crain, J. Robertson, and T. Rumley, “Topical antimicrobial toxicity,” Arch. Surg. 120(3), 267–270 (1985).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007).
[Crossref] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24(6), 1685–1692 (2009).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Crit. Care (2)

J. Garnacho-Montero, T. Aldabo-Pallas, C. Garnacho-Montero, A. Cayuela, R. Jiménez, S. Barroso, and C. Ortiz-Leyba, “Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis,” Crit. Care 10(4), R111 (2006).
[Crossref] [PubMed]

P. M. Dark, P. Dean, and G. Warhurst, “Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection,” Crit. Care 13(4), 217 (2009).
[Crossref] [PubMed]

Crit. Care Nurs. Clin. North Am. (1)

A. Kumar, “Optimizing Antimicrobial Therapy in Sepsis and Septic Shock,” Crit. Care Nurs. Clin. North Am. 23(1), 79–97 (2011).
[Crossref] [PubMed]

Cytometry A (2)

B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008).
[Crossref] [PubMed]

Y. L. Pan, M. J. Berg, S. S. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, “Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification,” Cytometry A 79(4), 284–292 (2011).
[Crossref] [PubMed]

Data Min. Knowl. Discov. (1)

C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2(2), 121–167 (1998).
[Crossref]

Hydrobiologia (1)

S. S. Rao, D. Paolini, and G. G. Leppard, “Effects of low-Ph stress on the morphology and activity of bacteria from lakes receiving acid precipitation,” Hydrobiologia 114(2), 115–121 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. F. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. M. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

IEEE Photon. J. (3)

B. Javidi, M. Daneshpanah, and I. Moon, “Three-Dimensional Holographic Imaging for Identification of Biological Micro/Nanoorganisms,” IEEE Photon. J. 2(2), 256–259 (2010).
[Crossref]

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification of Malaria-infected RBC with digital holographic microscopy using correlation algorithms,” IEEE Photon. J. 4(5), 1456–1464 (2012).
[Crossref]

I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of Malaria-infected red blood cells via digital shearing interferometry and statistical inference,” IEEE Photon. J. 5(5), 6900207 (2013).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory 14(1), 55–63 (1968).
[Crossref]

IEEE Trans. Med. Imaging (1)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

J. Bacteriol. (1)

J. Boch, B. Kempf, and E. Bremer, “Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline,” J. Bacteriol. 176(17), 5364–5371 (1994).
[PubMed]

J. Biomed. Opt. (7)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,” J. Biomed. Opt. 11(6), 064004 (2006).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and B. Rajwa, “Feature extraction from light-scatter patterns of Listeria colonies for identification and classification,” J. Biomed. Opt. 11(3), 034006 (2006).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

J. Gen. Microbiol. (1)

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared spectroscopy,” J. Gen. Microbiol. 137(1), 69–79 (1991).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Ra. (1)

G. F. Crosta, Y. L. Pan, K. B. Aptowicz, C. Casati, R. G. Pinnick, R. K. Chang, and G. W. Videen, “Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering,” J. Quant. Spectrosc. Ra. 131, 215–233 (2013).
[Crossref]

J. R. Soc. Interface (1)

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

J. Theor. Biol. (1)

P. J. Wyatt and D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972).
[Crossref] [PubMed]

Lab Chip (1)

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[Crossref] [PubMed]

N. Engl. J. Med. (3)

M. L. Durand, S. B. Calderwood, D. J. Weber, S. I. Miller, F. S. Southwick, V. S. Caviness, and M. N. Swartz, “Acute bacterial meningitis in adults. A review of 493 episodes,” N. Engl. J. Med. 328(1), 21–28 (1993).
[Crossref] [PubMed]

R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” N. Engl. J. Med. 348(2), 138–150 (2003).
[Crossref] [PubMed]

T. F. O’Brien, “Global surveillance of antibiotic resistance,” N. Engl. J. Med. 326(5), 339–340 (1992).
[Crossref] [PubMed]

Nat. Commun. (1)

D. K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao, “Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection,” Nat. Commun. 5, 5427 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

J. H. Kang, M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber, “An extracorporeal blood-cleansing device for sepsis therapy,” Nat. Med. 20(10), 1211–1216 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. J. Chung, C. M. Castro, H. Im, H. Lee, and R. Weissleder, “A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria,” Nat. Nanotechnol. 8(5), 369–375 (2013).
[Crossref] [PubMed]

Nat. Rev. Microbiol. (1)

N. J. Loman, C. Constantinidou, J. Z. Chan, M. Halachev, M. Sergeant, C. W. Penn, E. R. Robinson, and M. J. Pallen, “High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity,” Nat. Rev. Microbiol. 10(9), 599–606 (2012).
[Crossref] [PubMed]

Nature (2)

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221(5187), 1257–1258 (1969).
[Crossref] [PubMed]

P. J. Wyatt, “Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus),” Nature 226(5242), 277–279 (1970).
[Crossref] [PubMed]

Opt. Express (10)

I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express 19(22), 21768–21785 (2011).
[Crossref] [PubMed]

A. Suchwalko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express 21(9), 11322–11337 (2013).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

Opt. Photonics News (1)

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification computational 3-D holographic microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. Van de Ville, and P. Marquet, “Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering,” PLoS ONE 7(8), e40667 (2012).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. E. Cohen and W. E. Moerner, “Principal-components analysis of shape fluctuations of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 104(31), 12622–12627 (2007).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Mir, T. Kim, A. Majumder, M. Xiang, R. Wang, S. C. Liu, M. U. Gillette, S. Stice, and G. Popescu, “Label-free characterization of emerging human neuronal networks,” Sci. Rep. 4, 4434 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J. H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4, 5090 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Trends Biotechnol. (1)

A. Niemz, T. M. Ferguson, and D. S. Boyle, “Point-of-care nucleic acid testing for infectious diseases,” Trends Biotechnol. 29(5), 240–250 (2011).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26(2), 151–159 (2001).
[Crossref]

Other (9)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006), Vol. 1.

I. Jolliffe, Principal Component Analysis (Wiley Online Library, 2005).

W. Zhao, A. Krishnaswamy, R. Chellappa, D. L. Swets, and J. Weng, “Discriminant analysis of principal components for face recognition,” in Face Recognition (Springer, 1998), pp. 73–85.

G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition (John Wiley & Sons, 2004), Vol. 544.

R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in IJCAI, 1995), 1137–1145.

R. Walpole, R. Myers, S. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists (Prentice Hall, 2004).

B. Yegnanarayana, Artificial Neural Networks (PHI Learning Pvt. Ltd., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The size distribution of the four bacterial species, L. monocytogenes, E.coli, L. casei, and B. subtilis (67, 69, 78, and 55 bacterial cells, respectively). The lengths of the major and minor axes of each rod-shaped bacterium [indicated in Fig. 3(a)] in unsynchronized growth states are observed and plotted (see the following sections for the imaging method). It is impractical to identify the species from only cellular shapes, which are observable using conventional optical microscopy.
Fig. 2
Fig. 2 Experimental setup of DPM. The DPM setup is a laser-interferometric microscope in a common-path geometry. A sample is positioned between the condenser and objective lenses. OL: objective lens; CL: condenser lens; M1-2: mirrors; L1-6: lenses.
Fig. 3
Fig. 3 QPI and FTLS of individual bacterium. (a) Amplitude and (b) phase images of an isolated L. monocytogenes bacterium observed using QPI. (c) The corresponding 2D light scattering map generated by FTLS using the full optical field information from (a) and (b). The pseudo-FTLS maps by numerical propagation (d) without amplitude information, and (e) without phase information. The results indicate that phase information, a unique feature of QPI, is central to single-bacterial characterization rather than easily accessible amplitude information.
Fig. 4
Fig. 4 Overall procedure for single-bacterial identification. 2D ALS maps of isolated individual bacteria are measured using FTLS. The measured FTLS maps are then systematically analyzed in order to extract the unique fingerprint patterns for each species (classifiers) so that a new unidentified bacterium can be identified by a single light scattering measurement.
Fig. 5
Fig. 5 PCA of the FTLS patterns to extract the features for training the classifiers. (a) The first 16 principal patterns generated by PCA of all measured FTLS patterns. Each principal pattern is scaled into [–1, 1] for visualization purposes. (b) The full spectra of the principal pattern coefficients up to the 250th coefficient. Each row represents an individual bacterium, whereas each column represents a principal pattern. The principal patterns included here contain 99.9% of the original variance or information.
Fig. 6
Fig. 6 Feature selection and optimization for training the classifiers. (a) The p-value of each principal pattern coefficient as a measure of species-distinguishing capability is calculated using ANOVA and then the principal patterns are sorted in the order of ascending p-values. The principal pattern coefficients are presented in box plots for (b) the most distinguishable (index = 1) and (c) the most indistinguishable (index = 255) principal patterns. The first principal patterns with p-values close to zero are informative for classification, while the last principal patterns with p-values close to one are noisy. Thus, we select the principal patterns in a consecutive or accumulative manner, from left to right, as the features for statistical classification. The cross-validation accuracy for the classifiers trained in this manner is plotted in (d), where the optimal classification is achieved in the middle as expected.
Fig. 7
Fig. 7 Single-bacterial identification with the optimized classifier. The proportion of each output species for a certain input species, where leave-one-out cross-validation is utilized to precisely mimic the independently measured data, is plotted. The overall accuracy was 94.05%, with sensitivities of 95.52%, 95.65%, 88.46%, and 98.18% and specificities of 99.51%, 96.50%, 97.91%, and 98.13% for L. monocytogenes, E. coli, L. casei, and B. subtilis, respectively.

Tables (1)

Tables Icon

Table 1 Identification performance of the optimized classifier

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = A ( r ) exp [ i Δ ϕ ( r ) ] ,
I ( u ) = 1 2 π | E ( r ) exp ( 2 π i u r ) d 2 r | 2 ,

Metrics