Abstract

The wavelength dependence of magneto-optic properties of TGG ceramics, including the Verdet constant, has been investigated experimentally. The previously obtained Verdet constant of 36.4 rad/Tm for 1064 nm wavelength and 139.6 rad/Tm for 633 nm are in good agreement with presented white light measurements . The comparison with previously reported Verdet constant and absorption coefficient values for TGG single crystal has shown very similar results. These results lead to the conclusion that TGG ceramics is a very good alternative to TGG single crystal and is a powerful approach for realizing large-aperture optical isolators which are required in high-average-power laser systems.

© 2015 Optical Society of America

1. Introduction

Faraday rotators (FR) are important optical components widely used for optical isolation, polarization control, and birefringence compensation. Terbium gallium garnet (TGG) crystal is magneto-active (MA) material which is commonly used for the construction of such devices, especially for the wavelengths around 1 µm. It possesses two most important properties needed in such a device: it has high Verdet constant 35-40 rad/Tm [1,2] at 1 µm wavelength and high thermal conductivity, typically 5 W/m.K [3]. High Verdet constant is essential for the achievement of sufficient polarization rotation with as low magnetic field and as short crystal length as possible, while high thermal conductivity facilitates the cooling of the magneto-optic element (MOE) thus avoiding thermally induced wavefront and polarization aberrations. The only disadvantage of TGG crystal is insufficient scalability for larger apertures needed in high-average-power lasers [4–8]. Several years ago a new material, polycrystalline TGG ceramics, has been developed to improve the scalability of the MA element while maintaining high Verdet constant and thermal conductivity comparable to TGG single crystal. The first functional FR using commercially available magnet was reported in 2011 [9] and recently the first experiments with Faraday isolator (FI) based on TGG ceramics for high-average-power lasers were reported [10–13].

It has been shown already that the basic physical properties of TGG ceramics are comparable to the ones measured for the best TGG single crystal samples. First of all the linear absorption coefficient at 1 µm wavelength has been shown to be 1.3 x 10−3 cm−1 [14], the temperature dependencies of thermal quantities like thermal conductivity κ and thermal expansion coefficient α have been measured already providing the room temperature values κ = 4.9 W/m.K [15] and α = 7.1 x 10−6 K−1 [16], respectively. Optical and thermo-optical properties of TGG ceramics have been also studied in detail leading to the wavelength dependence of refractive index [16] and the temperature dependence of thermo-optical coefficient dn/dT providing the room temperature value of 1.7 x 10−5 K−1 [16] at 0.633 µm wavelength. Finally, the temperature dependence of Verdet constant for 1.053 µm wavelength has been investigated giving the room temperature value 36.4 rad/Tm [15]. To the best of our knowledge, there is no measurement providing the wavelength dependence of the Verdet constant of TGG ceramics which is crucial for the design of efficient magneto-optic devices, such as FIs, operating at specific wavelengths.

In this paper we have investigated the wavelength dependence of Verdet constant for several TGG ceramics samples (produced by Konoshima Chemical Co. Ltd.) in the range from 0.5 to 1.3 µm. This wavelength range was approximately established according to high transmission region which was also investigated by optical transmittance measurement.

2. Experimental setup

A schematic diagram of experimental setup used for the Verdet constant wavelength dependence measurement of TGG ceramics is shown in Fig. 1. The white light was propagating through the sample placed between two Glan prism polarizers used as polarizer and analyzer, respectively. The sample was exposed to the action of magnetic field of permanent magnet. The transmitted white light spectrum was then analyzed by optical spectrum analyzer.

 figure: Fig. 1

Fig. 1 Schematic diagram of the experimental setup for the measurement of Verdet constant as a function of wavelength in TGG ceramics.

Download Full Size | PPT Slide | PDF

The white light produced by xenon lamp (Ocean Optics HPX-2000) was partially collimated by the fiber collimator and the meniscus lens L1 with the focal length 60 mm. The iris I1 was used to remove the blue light around the beam diffracted by the collimator lens. The Glan prism polarizer was fixed in the rotating stage which allows the change of the bias angle between the transmission axes of the polarizer and analyzer prism. The beam was focused to the magnetic “tunnel” inside permanent magnet by the lens L2 with the focal length 100 mm because of small diameter of the magnet aperture as well as relatively small size of some samples. The magnetic field magnitude in the central part has been measured by the Gauss meter (MODEL 5080, F. W. Bell) to be 1.17 ± 0.05 T. Lens L3 with the focal length of 170 mm improved the coupling of the beam to the spectrum analyzer optical fiber. The transmission axis of Glan prism was oriented in the direction which maximized the coupling efficiency of the beam to the collimator which was attached to the optical fiber connected to the optical spectrum analyzer (Advantest Q8381A).

The transmitted white light spectrum was measured for three mutual bias angles of G1 and G2 transmittance axes deviation θ. Let us denote the measured spectral profile for θn as In(λ), where θn = 0, π/4, π/2 for n = 1, 2, 3. The wavelength-dependent Verdet constant has been evaluated from these data by polarization-stepping technique [17]

V(λ)=12BLarctan{2I2(λ)[I1(λ)+I3(λ)]I3(λ)I1(λ)},
where B is the magnetic field magnitude and L denotes the length of the sample.

3. Results and discussion

To demonstrate the advantages of TGG ceramics we first investigated the transparency region. The transmittance of two uncoated TGG ceramics samples has been measured with a white light source and a wide dynamic range optical spectrum analyzer (Advantest Q8381A). The results are shown in Fig. 2 and compared with values which can be found in the literature for TGG single crystal [18–20] (circles) as well as for TGG ceramics [14] (cross). The spikes in the region between 0.6 and 1.4 µm were caused by very sharp peaks in the xenon lamp spectrum and are measurement artifacts which were smoothed for the absorption coefficient calculation to avoid the occurrence of local negative values of absorption coefficient. For the calculation of the absorption coefficient, the Fresnel loss for normal incidence has been subtracted from the results taking advantage from the knowledge of the refractive index wavelength dependence which can be found in the literature [16]. The absolute values of absorption coefficient have been validated by the comparison with the value α = 1.3 x 10−3 cm−1 obtained from 1 µm wavelength thermally induced depolarization laser measurement on AR coated TGG ceramics sample in [14]. This value for 1 µm wavelength is in good agreement with our result. The absorption coefficient wavelength dependence is plotted in Fig. 2 it should be noted that the absorption coefficient measurement relative error is estimated to be approximately 35%.

 figure: Fig. 2

Fig. 2 Transmittance and linear absorption coefficient of TGG ceramics.

Download Full Size | PPT Slide | PDF

As it can be seen from Fig. 2, the TGG ceramics is suitable to be used in the range from 0.6 to 1.4 µm. In this range the absorption coefficient is of the order of 10−3 cm−1. Below 0.6 µm the absorption coefficient increases rapidly reaching its peak at approximately 0.488 µm caused by 7F65D4 transition of Tb3+ ions then it drops again forming narrow transmission window between 0.39 and 0.488 µm. However, the absorption coefficient in this window reaches the value of about 0.5 cm−1, which is too high for efficient FI operation especially in high power systems. TGG ceramics is highly transparent up to 1.4 µm wavelength.

The wavelength dependence of the Verdet constant has been measured for four different samples of TGG ceramics. To obtain meaningful results three independent measurements have been taken for each of these samples. The resulting wavelength dependence of Verdet constant was calculated from the spectra obtained from the white-light measurement according to (1). The result is shown in Fig. 3.

 figure: Fig. 3

Fig. 3 Wavelength dependence of Verdet constant in TGG ceramics.

Download Full Size | PPT Slide | PDF

As can be seen from Fig. 3 the relative measurement error was maintained below 4% for the wavelengths under 1.2 µm while it grew for longer wavelengths up to 8% for 1.3 µm due to relatively weaker signal of our experimental setup in this region. The results were also validated by two more precise single-wavelength measurements with He-Ne (0.633 µm) and diode (1.06 µm) lasers. These values are plotted in Fig. 3 by black asterisks. The relative measurement error of these laser measurements was well below 1%.

The resulting Verdet constant was fitted by the function [21–23]

V(λ)=Aλ2λ02,
where λ0 corresponds to 4f-4f5d transition wavelength of Tb3+ ions and fitting constant A is proportional to the concentration of magnetic ions density, the Landé splitting factor, and the transition probability [24]. The best fit of the experimental data has been obtained for A = 41.5 ± 0.6 rad.µm2/Tm and λ0 = 0.296 ± 0.005 µm.

The resulting Verdet constant of TGG ceramics has been also compared to the TGG <111> cut single crystal. The data for crystalline TGG were collected from the literature [17, 22, 25] as well as from our own measurement of crystalline TGG Verdet constant. The results are shown in Fig. 4.

 figure: Fig. 4

Fig. 4 Comparison of the Verdet constant of TGG ceramics with the TGG single crystal TGG<111> – our own measurement for crystalline TGG, Barnes - [25], Villora - [22].

Download Full Size | PPT Slide | PDF

Note from Fig. 4 that the Verdet constant of TGG ceramics is comparable to that of crystalline TGG for all wavelengths in the range 0.5 – 1.3 µm.

Another important property which can be evaluated from the measured data is the magneto-optical figure of merit (FoM) defined as the ratio of Verdet constant and linear absorption coefficient V/α. The FoM values are plotted in Fig. 5. As it can be seen, TGG ceramics exhibits highest performance in the range from 0.88 to 1.15 µm, where the figure of merit is higher than 200 rad/T.

 figure: Fig. 5

Fig. 5 Magneto-optical figure of merit of TGG ceramics

Download Full Size | PPT Slide | PDF

Compared to the magneto-optical figure of merit of TGG single crystal published in the literature, the values measured for TGG ceramics are lower because of about two times higher absorption coefficient of TGG ceramics compared to the best samples of TGG single crystal. For example ref [26]. provided the data which gave FoM = 384 rad/T at 1.07 µm wavelength, and ref [14]. provided even higher FoM = 514 rad/T at 1.05 µm. However, TGG crystal is very difficult to manufacture with high quality due to the crystal growth fabrication as reported in [18]. In contrast, TGG ceramics technology can maintain high uniformity of the optical component even for large aperture elements used for high energy pulsed lasers.

4. Conclusions

In conclusion, the wavelength dependence of Verdet constant in TGG ceramics has been investigated in detail. It has been shown that TGG ceramics can provide excellent magneto-optical performance in the wavelength range from 0.88 to 1.15 µm, where the figure of merit is higher than 200 rad/T. These values are comparable to the ones obtained for TGG single crystals. The whole transparency region covers the wavelength range from 0.6 µm to 1.3 µm. Furthermore, TGG ceramics provides much better scalability in comparison to single crystal. These properties make the TGG ceramics an attractive material for optical isolation in large-aperture high-average power laser systems up to the kW range.

Acknowledgments

This work is co-financed by the European Regional Development Fund, the European Social Fund and the state budget of the Czech Republic (project HiLASE: CZ.1.05/2.1.00/01.0027, project DPSSLasers: CZ.1.07/2.3.00/20.0143, project Postdok: CZ.1.07/2.3.00/30.0057). This research was supported in part by a grant from AMADA foundation. Further, this work was supported by JSPS KAKENHI (Grant No. 26709072).

References and links

1. M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995). [CrossRef]  

2. A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005). [CrossRef]  

3. G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971). [CrossRef]  

4. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008). [CrossRef]  

5. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013). [CrossRef]  

6. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012). [CrossRef]   [PubMed]  

7. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008). [CrossRef]   [PubMed]  

8. T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010). [CrossRef]   [PubMed]  

9. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011). [CrossRef]   [PubMed]  

10. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014). [CrossRef]  

11. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014). [CrossRef]   [PubMed]  

12. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014). [CrossRef]   [PubMed]  

13. A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014). [CrossRef]  

14. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013). [CrossRef]   [PubMed]  

15. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). [CrossRef]   [PubMed]  

16. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013). [CrossRef]   [PubMed]  

17. J. L. Flores and J. A. Ferrari, “Verdet constant dispersion measurement using polarization-stepping techniques,” Appl. Opt. 47(24), 4396–4399 (2008). [CrossRef]   [PubMed]  

18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). [CrossRef]   [PubMed]  

19. E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004). [CrossRef]  

20. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B 29(4), 786–792 (2012). [CrossRef]  

21. J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966). [CrossRef]  

22. E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011). [CrossRef]  

23. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011). [CrossRef]   [PubMed]  

24. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997). [CrossRef]  

25. N. Barnes and L. Petway, “Variation of the verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9(10), 1912–1915 (1992). [CrossRef]  

26. A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
    [Crossref]
  2. A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
    [Crossref]
  3. G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
    [Crossref]
  4. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
    [Crossref]
  5. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
    [Crossref]
  6. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  7. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [Crossref] [PubMed]
  8. T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
    [Crossref] [PubMed]
  9. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
    [Crossref] [PubMed]
  10. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  11. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
    [Crossref] [PubMed]
  12. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref] [PubMed]
  13. A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
    [Crossref]
  14. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  15. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  16. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  17. J. L. Flores and J. A. Ferrari, “Verdet constant dispersion measurement using polarization-stepping techniques,” Appl. Opt. 47(24), 4396–4399 (2008).
    [Crossref] [PubMed]
  18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [Crossref] [PubMed]
  19. E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [Crossref]
  20. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B 29(4), 786–792 (2012).
    [Crossref]
  21. J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
    [Crossref]
  22. E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
    [Crossref]
  23. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
    [Crossref] [PubMed]
  24. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
    [Crossref]
  25. N. Barnes and L. Petway, “Variation of the verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9(10), 1912–1915 (1992).
    [Crossref]
  26. A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
    [Crossref]

2014 (4)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (4)

2010 (1)

2008 (3)

2007 (1)

2005 (1)

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

2004 (1)

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

2002 (1)

1997 (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

1995 (1)

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

1992 (1)

1971 (1)

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

1966 (1)

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Allen, D.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Amin, R.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Andreev, N.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Argyle, B. E.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Armstrong, J.

Banerjee, S.

Barnes, N.

Barty, C.

Bayramian, A.

Beer, G.

Caird, J.

Campbell, R.

Chai, B.

Collier, J. L.

Cross, R.

Divoky, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Ebbers, C.

Eichler, H.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Erlandson, A.

Ertel, K.

Fei, Y.

Ferrari, J. A.

Flores, J. L.

Freiser, M. J.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Freitas, B.

Fujimoto, Y.

Fujita, H.

Funaki, A.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Furuse, H.

Hatanaka, T.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Hernandez-Gomez, C.

Hirao, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Ikegawa, T.

Ivanov, I.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Izawa, Y.

Kaminskii, A.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Kan, H.

Kanabe, T.

Katai, R.

Kawanaka, J.

Kawashima, T.

Kent, R.

Khazanov, E.

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Khazanov, E. A.

Kinoshita, H.

Kurita, T.

Loeser, M.

Lucianetti, A.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Malshakov, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Mason, P. D.

Matsumoto, O.

Matsuoka, S.

Mehl, O.

Menapace, J.

Mikami, K.

Miyamoto, M.

Miyanaga, N.

Mocek, T.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Molander, W.

Molina, P.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

Motokoshi, S.

Mueller, G.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Nagata, Y.

Nakamura, M.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Nakatsuka, M.

Naoe, K.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Norimatsu, T.

Nozawa, H.

Oliver, D.

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Palashov, O.

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Palashov, O. V.

Petway, L.

Phillips, P. J.

Pilar, J.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Poteomkin, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Qiu, J.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Raja, M.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Reiche, P.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Reitze, D.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Reitze, D. H.

Sawicka, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Schaffers, K.

Sekine, T.

Sergeev, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Shaykin, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shimamura, K.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

Siders, C.

Siebold, M.

Sikocinski, P.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Sisk, W.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Slack, G.

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Slezak, O.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Snetkov, I.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

Snetkov, I. L.

Starobor, A.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

Starobor, A. V.

Sugimoto, N.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Suits, J. C.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Sutton, S.

Tanaka, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Tanner, D.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Tassano, J.

Telford, S.

Tokita, S.

Tsubakimoto, K.

Uecker, R.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Vasyliev, V.

Víllora, E.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Víllora, E. G.

Yagi, H.

Yanagitani, T.

Yasuhara, R.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

Yoshida, H.

Zelenogorsky, V.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

J. Appl. Phys. (1)

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

J. Non-Cryst. Solids (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (1)

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Opt. Eng. (1)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Opt. Express (6)

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[Crossref] [PubMed]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev., B, Solid State (1)

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for the measurement of Verdet constant as a function of wavelength in TGG ceramics.
Fig. 2
Fig. 2 Transmittance and linear absorption coefficient of TGG ceramics.
Fig. 3
Fig. 3 Wavelength dependence of Verdet constant in TGG ceramics.
Fig. 4
Fig. 4 Comparison of the Verdet constant of TGG ceramics with the TGG single crystal TGG<111> – our own measurement for crystalline TGG, Barnes - [25], Villora - [22].
Fig. 5
Fig. 5 Magneto-optical figure of merit of TGG ceramics

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V( λ )= 1 2BL arctan{ 2 I 2 ( λ )[ I 1 ( λ )+ I 3 ( λ ) ] I 3 ( λ ) I 1 ( λ ) },
V( λ )= A λ 2 λ 0 2 ,

Metrics