Abstract

We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.

© 2015 Optical Society of America

1. Introduction

Faithful distribution of photonic entangled states between two distant parties is one of the significant issues in the field of quantum information processing such as quantum teleportation [1], superdense coding [2] and entanglement-based quantum key distribution [3]. In order to perform these quantum information processing, schemes for robust distribution of entanglement are required. Entanglement distillation [46] is one of the protocols for this purpose and several schemes have been proposed and demonstrated experimentally [711]. In previous proof-of-principle experiments, photons at visible wavelength were used. However, for practical optical-fiber-based quantum communication over a long distance, photons in telecommunication bands should be used to benefit from a low photon loss in an optical fiber.

In this paper, we report an experimental demonstration of the entanglement extraction based on linear optics and a post-selection [7] by using two non-degenerated photon pairs at a visible wavelength of 780 nm and a telecom wavelength of 1551 nm. The sender Alice keeps the two visible photons and sends the two telecom photons to the receiver Bob through a collective phase damping channel (CPC) which adds the same phase shifts to the two photons. Such a collective noise channel appears in many practical situations [1214] and discussed in many quantum communication protocols, such as reference-frame-free quantum communication [1518], decoherence-free quantum communication [1924] and computation [2527]. Through the transmission through the CPC, the entanglement of each photon pair is lost. However, after performing the quantum operation on two photons of 780 nm at Alice’s side and a projective measurement on one of the two photons at Bob’s side, Alice and Bob can extract an entangled photon pair. An observed fidelity of the extracted photon pairs to a maximally entangled state is 0.73 ± 0.07, which shows extraction of the entanglement from two phase-disturbed photon pairs shared between Alice and Bob.

2. The theory of the entanglement extraction

We first introduce the demonstrated entanglement extraction scheme. The purpose of two parties, Alice and Bob, is to share a maximally entangled photon pair denoted by |ϕ+(|HH+|VV)/2, where |H〉 and |V〉 represent horizontal (H) and vertical (V) polarization states of a photon, respectively. As shown in Fig. 1, Alice generates ρ^1234=ϕ^12+ϕ^34+, where ϕ+ ≡ |ϕ+〉 〈ϕ+|. The subscripts represent the spatial modes of the photons. She then sends the photons in modes 2 and 4 to Bob through a CPC. By denoting Z^|HH||VV| and Z^(θ)exp(iθZ^/2), the CPC acting on the two photons in modes 2 and 4 transforms ρ^1234 to

ρ^1234=12πdθZ^2(θ)Z^4(θ)ρ^1234Z^2(θ)Z^4(θ)
=(|HHHHHHHH|+|HHVVHHVV|+|HHVVVVHH|+|VVHHHHVV|+|VVHHVVHH|+|VVVVVVVV|)/4.

 

Fig. 1 The schematic diagram of the entanglement extraction protocol. Alice generates two polarization entangled photon pairs and sends halves of the photon pairs to Bob through the collective phase-damping channel (CPC). When Alice performs the quantum parity check (QPC) on the two photons in modes 1 and 3, and Bob performs a projection on the photon in mode 4, a maximally entangled photon pair is shared in mode 2 and mode 5.

Download Full Size | PPT Slide | PDF

Because the density operator of each photon pair Tr34(12)[ρ^1234]=(|HH34(12)HH|34(12)+|VV34(12)VV|34(12))/2 has no entanglement, Alice and Bob do not share any entangled photon pairs as long as they treat the photon pairs separately. However, they can extract a maximally entangled state of a photon pair from ρ^1234 of the whole system by local operation and classical communication in the following way.

Alice performs the quantum parity check (QPC) [28] on photons in modes 1 and 3. Kraus operators of the QPC in Fig. 1 is described as {F^,I^F^F^}, where F^|H5HV|13+|V5VH|13 corresponds to a successful operation of the QPC and the other Kraus operator to a failure operation. After the successful operation of the QPC, the quantum state becomes ρ^QPCF^ρ^1234F^/Tr[F^F^ρ^1234]=(|HHV524HHV|524+|VVH524HHV|524+|HHV524VVH|524+|VVH524VVH|524)/2 When Bob performs a projective measurement {|+〉 〈+|,|−〉 〈−|} on the photon in mode 4, where |±(|H±|V)/2, the state in modes 2 and 5 is projected onto |ϕ+〉 or |ϕ25(|HH|VV)/2. By performing a phase flip operation when the photon in mode 4 is projected onto |−〉, |ϕ〉 is corrected to |ϕ+〉. As a result, Alice and Bob share |ϕ+〉 with a success probability Tr [F^F^ρ^QPC]=1/4 In our experiment, we do not perform the phase flip operation, and the success probability becomes 1/8. We notice that in the scheme, the effect of the phase disturbance on the photons in modes 2 and 4 is compensated by the QPC on the photons 1 and 3 at Alice’s side. Such a non-local cancellation of the phase fluctuation is the result of the use of a significant property of the maximally entangled states, which is described by the relation (I^1(3)Z^2(4))|ϕ+12(34)=(Z^1(3)I^2(4))|ϕ+12(34) [22,23].

3. Experiment

3.1. Experimental setup

The experimental setup is shown in Fig. 2(a). Two entangled photon pairs are generated by spontaneous parametric down conversion (SPDC) at source A and B. The setup of the photon pair sources is shown in Fig. 2(b). The pump laser is based on a fiber laser (wavelength: 1037 nm, pulse width: 381 fs, repetition rate: 80 MHz), which is frequency doubled such that the center wavelength is 519 nm with the power of 1.32 W. The polarization of the pump beam is set to be diagonal to the axes of two adjacent phase-matched 1-mm-thick β -barium borate (BBO) crystals by the half wave plate (R45). In this experiment, we select the non-degenerate photon pair at a visible wavelength of 780 nm and a telecom wavelength of 1551 nm among the photon pairs generated from the BBOs. After the BBO crystal, the pump beam is removed by using a pair of dichroic mirrors (DM1) whose reflectance for the photons at 780 nm and 1551 nm is over 99 % and transmittance for the photons at 519 nm is ~97 %. After DM1, the visible photons and telecom photons are separated into different spatial modes by DM2. For both photons, the group delays between |H〉 and |V〉 are compensated by 6.17 mm and 7.44 mm-thick quartz crystals (Quartz1) in the paths of the visible and the telecom photons, respectively. The relative phase shift between |HH〉 and |VV〉 is compensated by tilting 0.6 mm-thick quartz crystals (Quartz2).

 

Fig. 2 (a) The experimental setup for the entanglement extraction. The half wave plate R90 transforms |H〉 to |V〉 and vice versa. The half wave plate R45 transforms |H〉 to |+〉 and |V〉 to |−〉, and vice versa. HWP is a half wave plate and QWP is a quarter wave plate. (b) The experimental setup of photon sources A or B. The pulsed pump light (519 nm) is obtained by frequency doubling the output light of the mode locked fiber laser at 1037 nm. The details are shown in the main text.

Download Full Size | PPT Slide | PDF

As shown in Fig. 2(a), after flipping the polarization of the photon in mode 3 by a half wave plate (R90), the two visible photons from photon source A and B are injected into a polarizing beamsplitter (PBS) simultaneously by adjusting a moving mirror (M). The spectra of the two output photons from the PBS are filtered by interference filters (IFs) with a bandwidth of 3 nm, and then coupled to single-mode fibers followed by silicon avalanche photodetectors (quantum efficiency: 60 %) D1 and D3. We note that in principle, the successful operation of the QPC is obtained if we can select the events where the detector D3 has received exactly one photon. Instead, we postselect the cases where the photons exit from both output ports of the PBS for the successful operation. On the other hand, two telecom photons pass through a liquid crystal retarder (LCR). The LCR adds eight phase shifts nπ/4 (n = 0,1,2,⋯,7) between |H〉 and |V〉 of the two photons by switching the applied voltage. The operations of the LCR on the two photons are nominally described by the Kraus operators {Z^2nπ/4Z^4nπ/4}n=0,1,2,,7. Because this transformation is exactly the same completely positive and trace preserving map as the one given in Eq. (1), the LCR simulates the CPC. The telecom photons are sent through the interference filters (IFs) with a bandwidth of 10 nm and then they are coupled to single-mode fibers followed by two InGaAs avalanche photodetectors (quantum efficiency: 25 %) D2 and D4 which are gated by the electric signal from D1. The electric signal from D3 is connected to a time-to-digital converter (TDC) as a start signal, and electric signals from D2 and D4 are used as stop signals of the TDC. We postselect the events where two stop signals are clicked within the time difference of 2 ns, which guarantees the four-fold coincidence among D1, D2, D3 and D4.

3.2. Experimental results

We first characterized the initial two photon pairs from photon pair sources A(ρ^12) and B(ρ^34). By performing the quantum state tomography [29] with diluted maximum-likelihood algorithm [30], we reconstructed the density operators of the photon pairs as shown in Figs. 3(a) and 3(b). Observed fidelities of ρ^12 and ρ^34 to +〉 were 0.92 ± 0.01 and 0.94 ± 0.01, respectively, which implies that the two photon pairs were highly entangled. The detection rates of ρ^12 and ρ^34 were 920 Hz and 620 Hz, respectively. We estimated that the probability of a pair generated per a pump pulse is at most 10−2, which indicates that the multi-photon emission from the photon sources is negligibly small.

 

Fig. 3 The real parts and the imaginary parts of the matrix elements of (a) ρ^12, (b) ρ^34, (c) ρ^12 and (d) ρ^34.

Download Full Size | PPT Slide | PDF

Next we reconstructed the density operators when we applied phase fluctuations to each photon pair by using the LCR. Figures 3(c) and 3(d) show the reconstructed density matrices of ρ^12 and ρ^34 with phase fluctuations. Off-diagonal elements of the density matrices disappeared, which indicates that the LCR effectively simulates the phase-damping channel. Observed fidelities of ρ^12 and ρ^34 to +〉 were 0.50 ± 0.01 and 0.46 ± 0.02, respectively.

Before demonstrating the entanglement extraction scheme, we performed the Hong-Ou-Mandel (HOM) interference [31] of the photons in modes 1 and 3 which are heralded by the photon detection at D2 and D4, respectively. In this experiment, the four photons are initially prepared in H polarization. The H polarized photon in mode 1 and the V polarized photon in mode 3 are put together into the same spatial mode by the PBS. The polarization of the two photons are mixed by R45 followed by the PBS in front of D3. The photon in the reflected mode is coupled to D1, and we measure the coincidence counts between D1 and D3. The experimental result is shown in Fig. 4. We clearly observed the HOM dip around zero delay point. The observed visibility at zero delay was 0.80 ± 0.05. The full width at the half maximum (FWHM) was calculated as ~ 204 μm by fitting the experimental data with the Gaussian.

 

Fig. 4 The observed Hong-Ou-Mandel interference between two visible photons in modes 1 and 3. Each point was recorded for 1.0 × 104 s. The red solid curve is the Gaussian fit to the obtained data. The blue dashed curve is obtained by Eq. (4) with experimental parameters.

Download Full Size | PPT Slide | PDF

Finally, we reconstructed the density operator ρ^final when we performed the entanglement extraction scheme on the two photon pairs. The experiment was performed at the zero delay point of the HOM dip in Fig. 4. The reconstructed density matrix is shown in Fig. 5. An observed fidelity of ρ^final to |ϕ+〉 was 0.73 ± 0.07, clearly exceeding the threshold value of 0.5 to show that the extracted pair of photons are entangled. This means that entanglement was successfully distributed at the telecom regime in the presence of collective phase fluctuations.

 

Fig. 5 (left) the real part and (right) imaginary part of the density operator ρ^final of the extracted photon pair.

Download Full Size | PPT Slide | PDF

4. Discussion

In the following, we consider the reason for the degradation of the observed values of the visibility of the HOM interference between the photons in modes 1 and 3 and the fidelity of ρ^final after the entanglement extraction scheme. Because the probability of the multi-photon pair emission is sufficiently low, the two-photon state obtained by SPDC after IFs is expressed as

|ψijdωdωΦ(ω,ω)a^i(ω)a^j(ω)|vac,
where |vac〉 is the vacuum state, and a^k(ω) is a creation operator at the angular frequency of ω in spatial mode k(= 1,2,3,4). Φ(ω,ω′) is a product of the spectral amplitude of the two-photon state generated from the SPDC and the transmission coefficients of the IFs for the visible and telecom photons. In the HOM experiment, since the photons in modes 1 and 3 are in the same spatial mode with H and V polarization, respectively, after the PBS for the QPC, we relabel the subscripts 1 and 3 in Eq. (3) for H and V polarization modes from here. Because the detectors distinguish neither angular frequencies nor exact arriving times of the photons, the 4-fold coincidence probability P1234 among the detectors D1, D2, D3 and D4 is given by the sum of all the frequency contributions, which is proportional to ∫∫∫∫1234|〈vac1(ω1)â3(ω3)Û|ϕ (ω2)〉1|ϕ (ω4)〉3|2. Here |ϕ(ω2)1vac|a^2(ω2)|Ψ12=dωΦ(ω,ω2)a^1(ω)|vac and |ϕ(ω4)3vac|a^4(ω4)|Ψ34=dωΦ(ω,ω4)a^3(ω)eiωτ|vac where τ is the time delay in mode 3. The unitary operator Û represents the transformation at R45, which satisfies Û|vac〉 = |vac〉, U^a^1(ω)U^=(a^1(ω)+a^3(ω))/2 and U^a^3(ω)U^=(a^1(ω)+a^3(ω))/2. In our experiment, we assume that phase matching bandwidth of the BBO crystal is sufficiently broad, and the spectral distribution function of the pump beam for the photon pairs is a Gaussian with a variance δωp and a center angular frequency ωp, and those of the IFs for the visible/telecom photons are Gaussians with a variance δωv/t and a center angular frequency ωv/t. By these assumptions, Φ(ω,ω′) is represented as Φ(ω,ω)=exp[(ω+ωωP)2/(4δωP2)]exp[(ωωV)2/(4δωV2)]exp[(ωωt)2/(4δωt2)]. Then P1234 is calculated as
P12341δωP2(δωP2+δωV2+δωt2)(δωV2+δωP2)(δωt2+δωP2)eδωV2δωP2τ2δωV2+δωP2.

The coefficient of the second term in right hand side of Eq. (4) is the visibility of the HOM dip. In our experiment, we use the pump beam at 519 nm with a pulse width of 397 fs, the interference filters with a bandwidth of 3 nm for the visible photons at 780 nm and those with a bandwidth of 10 nm for the telecom photons at 1551 nm. These values correspond to δωp ≃ 3.0 × 1012 rad s−1, δωv ≃ 3.9 × 1012 rad s−1 and δωt ≃ 3.3 × 1012 rad s−1. The dependency of the visibility on τ is predicted as in Fig. 4. The visibility at zero delay and the FWHM of the dip are found to be 0.80 and 210 μm. We see that the theoretical curve is in good agreement with the experimental results. Thus we expect that a higher visibility will be obtained by using a narrower spectral filtering or engineering group velocity matching techniques [32].

Next, we consider the reason for the degradation of the fidelity of ρ^final after the entanglement extraction scheme. We assume that the visibility of the HOM interference does not depend on the polarization of the photons. We also assume that each input pulse is described by a photon in a single temporal and spatial mode, and the overlap (indistinguishability) between the two mode shapes is given by the observed visibility of 0.80. By using the reconstructed density operators of ρ^12 and ρ^34 in Figs. 3(a) and 3(b) as the initial photon pairs, the fidelity of the two-photon state after the entanglement extraction is calculated to be 0.79, which is within the margin of the statistical error of our experimental result. In this model, the degradation of the fidelity is caused by the imperfection of the initial state and the imperfect overlap between the two modes, where the latter effectively causes the phase damping of the final state [33]. If we prepare the maximally entangled states ϕ^12+ and ϕ^34+ as the initial photon pairs and the visibility of HOM interference is 0.80, the fidelity of the extracted state is calculated to be 0.90. If we use the narrower IFs such that the visibility is 1, the fidelity of the final two-photon state is calculated to be 0.87 from the initial states ρ^12 and ρ^34.

5. Conclusion

In conclusion, we have demonstrated the entanglement extraction scheme using the polarization entangled photon pairs at the visible wavelength of 780 nm and the telecom wavelength of 1551 nm. The observed fidelity of the extracted photon pair is 0.73 ± 0.07, which clearly shows the recovery of the entanglement shared between the parties. While this scheme was demonstrated for distributing entangled photon pairs against collective phase noise, it is also applicable to the entanglement distribution against general collective noises for two qubits by sending H polarized and V polarized photons through different channels as proposed in Ref. [13]. We believe that our result is useful for the efficient and robust distribution of entanglement through optical fibers over a long distance.

Acknowledgments

This work was supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), MEXT Grant-in-Aid for Scientific Research on Innovative Areas 21102008, JSPS Grant-in-Aid for Scientific Research(A) 25247068, (B) 25286077 and (B) 26286068.

References and links

1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]   [PubMed]  

2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]   [PubMed]  

3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]   [PubMed]  

4. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef]   [PubMed]  

5. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]   [PubMed]  

6. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]   [PubMed]  

7. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]  

8. Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]  

9. J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]   [PubMed]  

10. Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003). [CrossRef]   [PubMed]  

11. T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003). [CrossRef]   [PubMed]  

12. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002). [CrossRef]  

13. T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007). [CrossRef]  

14. K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004). [CrossRef]   [PubMed]  

15. A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010). [CrossRef]  

16. J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013). [CrossRef]  

17. P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014). [CrossRef]   [PubMed]  

18. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014). [CrossRef]   [PubMed]  

19. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000). [CrossRef]   [PubMed]  

20. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004). [CrossRef]   [PubMed]  

21. T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008). [CrossRef]  

22. R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011). [CrossRef]   [PubMed]  

23. H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013). [CrossRef]  

24. R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007). [CrossRef]  

25. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003). [CrossRef]   [PubMed]  

26. J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003). [CrossRef]   [PubMed]  

27. L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005). [CrossRef]   [PubMed]  

28. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]  

29. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]  

30. J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007). [CrossRef]  

31. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]   [PubMed]  

32. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). [CrossRef]   [PubMed]  

33. B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [Crossref] [PubMed]
  4. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [Crossref] [PubMed]
  5. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
    [Crossref] [PubMed]
  6. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [Crossref] [PubMed]
  7. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
    [Crossref]
  8. Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
    [Crossref]
  9. J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
    [Crossref] [PubMed]
  10. Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
    [Crossref] [PubMed]
  11. T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
    [Crossref] [PubMed]
  12. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
    [Crossref]
  13. T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
    [Crossref]
  14. K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
    [Crossref] [PubMed]
  15. A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
    [Crossref]
  16. J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
    [Crossref]
  17. P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
    [Crossref] [PubMed]
  18. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
    [Crossref] [PubMed]
  19. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
    [Crossref] [PubMed]
  20. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
    [Crossref] [PubMed]
  21. T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
    [Crossref]
  22. R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
    [Crossref] [PubMed]
  23. H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
    [Crossref]
  24. R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
    [Crossref]
  25. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
    [Crossref] [PubMed]
  26. J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
    [Crossref] [PubMed]
  27. L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
    [Crossref] [PubMed]
  28. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
    [Crossref]
  29. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  30. J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
    [Crossref]
  31. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  32. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  33. B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
    [Crossref]

2014 (2)

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

2013 (2)

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

2012 (1)

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

2011 (1)

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

2010 (1)

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

2008 (2)

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

2007 (3)

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

2005 (1)

L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
[Crossref] [PubMed]

2004 (2)

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

2003 (4)

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
[Crossref] [PubMed]

2002 (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

2001 (5)

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[Crossref]

Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[Crossref]

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

2000 (1)

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

1996 (3)

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1992 (2)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Altepeter, J. B.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

Aungskunsiri, K.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Banaszek, K.

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

Bell, B.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Berglund, A. J.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

Bitauld, D.

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

Bonneau, D.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Bourennane, M.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Brukner, c.

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

Cabello, A.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

Chen, Y.-A.

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

Clark, A.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

D’Ambrosio, V.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Dragan, A.

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

Eibl, M.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

Fulconis, J.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Gaertner, S.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

Halder, M.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Hayashi, K.

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hradil, Z.

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

Ikuta, R.

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

Imoto, N.

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[Crossref]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jiang, P.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kay, L. E.

J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
[Crossref] [PubMed]

Kim, M. S.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

Knill, E.

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

Koashi, M.

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[Crossref]

Kumagai, H.

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

Kurtsiefer, C.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

Laing, A.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

Li, H.

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

Li, H. W.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Lidar, D. A.

L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
[Crossref] [PubMed]

J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
[Crossref] [PubMed]

Lobino, M.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

Lvovsky, A. I.

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Marrucci, L.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Martín-López, E.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Mohseni, M.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Munns, J.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nagase, R.

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

Niskanen, A.

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

Niskanen, A. O.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Nock, R. W.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

O’Brien, J.

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

O’Brien, J. L.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

Ollerenshaw, J. E.

J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
[Crossref] [PubMed]

Ono, Y.

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Özdemir, S. K.

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

Pan, J.-W.

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[Crossref]

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

Paternostro, M.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

Popescu, S.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

Prevedel, R.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

Radzewicz, C.

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

Rarity, J.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Rarity, J. G.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

Rehácek, J.

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

Resch, K. J.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

Ribordy, G.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

Scarani, V.

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

Schumacher, B.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

Sciarrino, F.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Shimamura, J.

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

Silberhorn, C.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Simon, C.

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

Slussarenko, S.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Sponselli, A.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Stefanov, A.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

Steinberg, A. M.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

Tame, M.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Tame, M. S.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

Tashima, T.

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

Thompson, M. G.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Vallone, G.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Villoresi, P.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Wabnig, J.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

Wadsworth, W.

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Wasilewski, W.

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Weinfurter, H.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Wu, L.-A.

L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
[Crossref] [PubMed]

Yamamoto, T.

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[Crossref]

Yang, T.

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

Zanardi, P.

L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
[Crossref] [PubMed]

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

Zeilinger, A.

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

Zhan, M. S.

Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[Crossref]

Zhang, A.-N.

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[Crossref]

Nat. Photonics (1)

T. Yamamoto, K. Hayashi, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2, 488–491 (2008).
[Crossref]

Nature (2)

J.-W. Pan, C. Simon, c. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, Ş. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[Crossref] [PubMed]

New J. Phys. (4)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[Crossref]

T. Yamamoto, R. Nagase, J. Shimamura, Ş. K. Özdemir, M. Koashi, and N. Imoto, “Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking,” New J. Phys. 9, 191 (2007).
[Crossref]

J. Wabnig, D. Bitauld, H. Li, A. Laing, J. O’Brien, and A. Niskanen, “Demonstration of free-space reference frame independent quantum key distribution,” New J. Phys. 15, 073001 (2013).
[Crossref]

B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New J. Phys. 14, 023021 (2012).
[Crossref]

Phys. Rev. A (9)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomog raphy,” Phys. Rev. A 75, 042108 (2007).
[Crossref]

A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, “Reference-frame-independent quantum key distribution,” Phys. Rev. A 82, 012304 (2010).
[Crossref]

H. Kumagai, T. Yamamoto, M. Koashi, and N. Imoto, “Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse,” Phys. Rev. A 87, 052325 (2013).
[Crossref]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[Crossref]

Z. Zhao, J.-W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (16)

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, and J.-W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[Crossref] [PubMed]

P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, and J. L. O’Brien, “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client,” Phys. Rev. Lett. 112, 130501 (2014).
[Crossref] [PubMed]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, “Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,” Phys. Rev. Lett. 92, 257901 (2004).
[Crossref] [PubMed]

R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim, and A. Zeilinger, “Experimental demonstration of decoherence-free one-way information transfer,” Phys. Rev. Lett. 99, 250503 (2007).
[Crossref]

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003).
[Crossref] [PubMed]

J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, “Magnetic resonance realization of decoherence-free quantum computation,” Phys. Rev. Lett. 91, 217904 (2003).
[Crossref] [PubMed]

L.-A. Wu, P. Zanardi, and D. A. Lidar, “Holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 95, 130501 (2005).
[Crossref] [PubMed]

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref] [PubMed]

R. Ikuta, Y. Ono, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “Efficient decoherence-free entanglement distribution over lossy quantum channels,” Phys. Rev. Lett. 106, 110503 (2011).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Science (1)

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic diagram of the entanglement extraction protocol. Alice generates two polarization entangled photon pairs and sends halves of the photon pairs to Bob through the collective phase-damping channel (CPC). When Alice performs the quantum parity check (QPC) on the two photons in modes 1 and 3, and Bob performs a projection on the photon in mode 4, a maximally entangled photon pair is shared in mode 2 and mode 5.
Fig. 2
Fig. 2 (a) The experimental setup for the entanglement extraction. The half wave plate R90 transforms |H〉 to |V〉 and vice versa. The half wave plate R45 transforms |H〉 to |+〉 and |V〉 to |−〉, and vice versa. HWP is a half wave plate and QWP is a quarter wave plate. (b) The experimental setup of photon sources A or B. The pulsed pump light (519 nm) is obtained by frequency doubling the output light of the mode locked fiber laser at 1037 nm. The details are shown in the main text.
Fig. 3
Fig. 3 The real parts and the imaginary parts of the matrix elements of (a) ρ ^ 12, (b) ρ ^ 34, (c) ρ ^ 12 and (d) ρ ^ 34.
Fig. 4
Fig. 4 The observed Hong-Ou-Mandel interference between two visible photons in modes 1 and 3. Each point was recorded for 1.0 × 104 s. The red solid curve is the Gaussian fit to the obtained data. The blue dashed curve is obtained by Eq. (4) with experimental parameters.
Fig. 5
Fig. 5 (left) the real part and (right) imaginary part of the density operator ρ ^ final of the extracted photon pair.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ ^ 1234 = 1 2 π d θ Z ^ 2 ( θ ) Z ^ 4 ( θ ) ρ ^ 1234 Z ^ 2 ( θ ) Z ^ 4 ( θ )
= ( | HHHH HHHH | + | HHVV HHVV | + | HHVV VVHH | + | VVHH HHVV | + | VVHH VVHH | + | VVVV VVVV | ) / 4.
| ψ i j d ω d ω Φ ( ω , ω ) a ^ i ( ω ) a ^ j ( ω ) | vac ,
P 1234 1 δ ω P 2 ( δ ω P 2 + δ ω V 2 + δ ω t 2 ) ( δ ω V 2 + δ ω P 2 ) ( δ ω t 2 + δ ω P 2 ) e δ ω V 2 δ ω P 2 τ 2 δ ω V 2 + δ ω P 2 .

Metrics