Abstract

We study ultrafast excitonic population inversion resulting from the interaction of a semiconductor quantum dot (SQD) with localized surface plasmons. The plasmonic enhanced fields are generated when a metallic nanoparticle (MNP) is subject to a nonlinear chirped few-cycle pulse train. By numerically solving the time-dependent Bloch equations beyond the rotating-wave approximation, we show that the complete population inversion can be achieved for small interparticle distance and the dynamic in population inversion exhibits a steplike transition between absorption and amplifying. This phenomenon can be exploited as an all-optical ultrafast switching device. Moreover, the final state of population inversion is shown to be modified significantly with the interparticle distances, which is not only robust against the variation of probe pulse parameters but also suggests a straightforward method for measuring the interparticle distances via probing the final populations.

© 2015 Optical Society of America

There have been significant research activities on the hybrid systems consisting of one semiconductor quantum dot (SQD) and one metallic nanoparticle (MNP) for many potential applications [127]. When the exciton energy of a SQD is on resonance with the plasmon peak of the MNP, strong exciton-plasmon coupling can be observed on the power absorption in a SQD-MNP hybrid system [1, 11]. Coherent dynamics in excitons and optical properties of the hybrid complexes can be modified significantly by the strong coherent interaction [127]. Several fascinating effects induced through exciton-plasmon coherent couplings have been discovered when lasers are applied to these hybrid systems, such as controllable Rabi oscillations [2, 6], plasmonic metal-resonances [6], tunable ultrafast nanoswitches [8], modified resonance fluorescence and photon statistics [9, 10], creation of plasmonically induced transparency [22], controlling speed of light [7], and intrinsic bistability and hysteresis [4, 15, 20] in these hybrid complexes.

Controlled dynamics of exciton population inversion between the ground and single-exciton states has been analyzed in the SQD-MNP hybrid system [2, 5, 8, 21, 24], which showed that the population and Rabi oscillations in the SQD is significantly altered due to the presence of MNP. Specifically, the final population inversion induced by a widely used π pulse can be destroyed for small interparticle distances due to the interaction between excitons and surface plasmon [24]. One area of ongoing interest is the ultrafast optical switching mechanism for the exciton population inversion. Motivated by this, we study the optical switching in the population inversion between the ground and single-exciton states in a coupled system composed of a SQD and a MNP. We give an emphasis to the case of interaction of this hybrid system with electromagnetic pulses of few cycles in duration. We numerically solve the effective nonlinear Bloch equations for a hybrid complex consisting of a small SQD and a spherical MNP, by taking into account the ultrashort nature of the applied field. A complete population inversion is shown to be possible and the related population inversion dynamic exhibits a steplike transition between absorption and amplifying even for small interparticle distances. In addition, the final population inversion can be modified significantly by the interparticle distances, which might suggest a straightforward method for measuring the interparticle distances from the final state of the inversion. More importantly, the present results are reasonably robust with respect to pulse shape, electric field amplitude, and chirped parameter. Our study not only provides an efficient tool to manipulate the ultrafast dynamics of SQD system with wide adjustable parameters but also represents an achievement in this direction. Our results may also have potential applications in the development of ultrafast all-optical switching and solid-state quantum information science.

The hybrid system under consideration is illustrated in Fig. 1. The device is composed of a spherical MNP of radius a and a spherical SQD of radius b in the environment with dielectric constant εe. The center-to-center distance between the two particles is denoted as R. The parameters of the system, i.e., the size of the SQD and MNP, the center-to-center distance between two particles, are chosen such that the SQD has small dimensions ba and the size of the MNP is constraint as a < R. Here the SQD is characterized by a two-level system, with |0⟩ being the ground state and |1⟩ being the single-exciton state [3,12,28]. We will study the dynamics of this hybrid system driven by a linear polarization few-cycle chirped pulse train. The total electric field for the train of pulse can be written as E(tnt0)=n=0N1z^E0f(t)cos[ω(t)+ϕ(t)]. Here z^ is the polarization unit vector (along the z direction), E0 is the electric field amplitude, f (t) is the dimensionless pulse envelope, ω is the angular frequency, t0 is the pulse repetition time, and φ (t) is the time-dependent phase of the applied field. The electric field excites both the interband transition in the SQD and the surface plasmon in a MNP. Such surface plasmon influence the exciton and induce electromagnetic interactions between exciton and plasmon [13]. This interaction is responsible for the coupling between the two particles and leads to Förster energy transfer [29]. Under the dipole approximation, the Hamiltonian of the system can be written as,

H=h¯ω10|11|μESQD(|01|+|10|),
where μ represents the dipole moment of the semiconductor quantum dot corresponding to the single-exciton transition, and ESQD denote the total electric field inside the semiconductor quantum dot. To properly calculate ESQD, we separate out the positive and negative frequency contributions as they exhibit different time responses. Thus ESQD can be expressed as
ESQD(t)=h¯μ[(Ω(t)2+Gρ10(t))+(Ω*(t)2+G*ρ01(t))],
where ρij(t) is the density matrix elements. In Eq. (2), we defined the time-dependent Rabi frequency
Ω(t)=(Ω0+Ω)n=0N1f(t)ei[ω(tnt0)+ϕ(t)]
with Ω=saγ1a3R3Ω0=saγ1a3R3μE0h¯εeffs. The Rabi frequency Ω(t) in Eq. (3) includes two parts, one is the electric field induced by the direct coupling between the SQD and the applied field (i.e., Ω0), and the other is the electric field from MNP that is induced by the external applied field (i.e., Ω) [3,12,24]. The parameter G arises when the applied field polarizes the SQD, which in turn polarizes the MNP and then produces a field to interact with the SQD. G is responsible for the interaction between a MNP and SQD, and can be defined as [3]
G=j=1l14πεe(j+1)2γja2j+1μ2h¯εeffsR2j+4,
where εeffs=2εe+εs3εe is the effective dielectric constant of SQD with εs the background dielectric constant of the semiconductor. γj=εm(ω)εeεm(ω)+(j+1)εe/j(j=1,2,3), and sa = 2 when the applied field is parallel to the major axis (z) of the system. In addition, the items with different j are related to different order multipole polarization in MNP. In the following analysis, we will take l = 10 in our calculations, as we find that this is enough to obtain converging results [3].

 figure: Fig. 1

Fig. 1 Schematic diagram of our hybrid system composed of a semiconductor quantum dot (SQD) and a metallic nanoparticle (MNP). The centers of the two particles are separated by a distance represented by R.

Download Full Size | PPT Slide | PDF

The dynamics of the interaction system can be described by the following effective nonlinear Bloch equations beyond the rotating-wave approximation (RWA):

S˙1(t)=ω10S2(t)S1(t)T2,
S˙2(t)=ω10S1(t)2[ΩR(t)+GRS1(t)+GIS2(t)]S3(t)S2(t)T2,
S˙3(t)=2[ΩR(t)+GRS1(t)+GIS2(t)]S2(t)S3(t)+1T1,
where S1 (t) = ρ01 + ρ10 and S2 (t) = i(ρ10ρ01) are, respectively, the mean real and imaginary parts of polarization, and S3(t) = ρ00 − ρ11 is the mean population inversion with ρjj the occupation probability. In the Eqs. (5)(7), ΩR(t) is the real part of the Rabi frequency Ω(t), GI and GR are the imaginary and real parts of the parameter G, respectively. Finally, the terms containing the population decay time T1 and the dephasing time T2 describe relaxation processes in the SQD and have been added phenomenologically in Eqs. (5)(7). The relaxation times T1 and T2 are influenced by the presence of the MNP [30]. However, for the parameters that we use here the values of T1 and T2 do not change much in the frequency region of interest, and therefore will be considered constant. According to the previous papers concerning similar systems [2, 5, 8, 21, 24], the influence of the relaxation time (T1 0.8 ns, T2 0.3 ns) can be neglected owing to the extremely short pulse width of the few-cycle laser field in the present study.

As far as we know, no closed-form solution of the nonlinear differential Eqs. (5)(7) exists for fields of arbitrary temporal profile in the present complex system. In order to investigate the dynamic response of the excitonic population inversion in this system, we employ the fourth-order Runge-Kutta algorithm approach for solving Eqs. (5)(7) for a specific parameters T1 = 0.8 ns, T2 = 0.3 ns, εe = ε0, a = 7.5 nm, μ = 0.65e nm, h¯ω0=2.5eV, and εs = 6ε0, with ε0 the dielectric constant of the vacuum. These parameter values correspond to the typically CdSe-based quantum dots and have been used in various studies [1, 3, 6, 12, 15, 24, 29, 31]. For εm(ω) we use the experimental values for gold nanoparticle [32].

Our calculations can be performed for a wide range of pulse shapes and related parameters. In the following, we will show the representative results for Gaussian pulse train (f (t) = exp(−(tnt0)22)) and hyperbolic secant pulse train (sech((tnt0))), respectively. Besides, the time-dependent phase of the pulse train is chosen as ϕ˙(t)=αtanh[(tnt0)/τ] with α the chirp rate. The chirp form is controlled by adjusting the parameters α. Due to the recent advancement of comb laser technology, it is highly likely that such a time-varying CEP can be achieved in the near future [33]. First of all, we present the effects of MNP on the incident few-cycle pulse train. Figures 2(a) and 2(b) show the plasmonic fields of different shape few-cycle pulse trains. The corresponding plasmonic field enhancement spectrum of the MNP for different interparticle distances, R = 15 nm, R = 30 nm, and R = 80 nm are shown as red solid, blue dashed and black dotted curves, respectively. These figures show that modifying the incident pulse train by the MNP has a direct consequence of enhancing the field for small interparticle distance. The maximum field enhancement exceeds 1.5 for the small interparticle distance R = 15 nm. Second, we plot the time evolution of the population inversion S3(t) induced by the corresponding plasmonic fields for different interparticle distances, as shown in Fig. 2(c) and 2(d). One can find that complete population inversion does not occur for the large interparticle distances, i.e., R = 30 nm and R = 80 nm. However, complete excitonic population inversion occurs for a small interparticle distance R = 15 nm. The distance-sensitive population inversion in Fig. 2(c) and 2(d) can readily be understood by perturbation theory [34]. The large enhancement of plasmonic field for small R induce more population transitions between the ground and single-exciton state. Thus, one can easily conclude the enhancement of plasmonic field in vicinity of MNP plays an important role in controlling the excitonic population inversion dynamics. It can be also seen from Fig. 2(c) and 2(d) that the population are transferred to the single-exciton state during the interaction with the initial pulse (n = 1) in the pulse train for R = 15 nm. Subsequently, the population are transferred to the ground state after passing the second pulse (n = 2) in the pulse train. The holding time of population in the single-exciton state is nearly equal to the pulse repetition time t0 = 200 fs. Remarkably, there is a steplike transition between the ground state and single-exciton state, from absorbing (S3 < 0) to amplifying (S3 > 0) as a function of the number of the pulses in the pulse train. For an odd number of the pulses, the complete inversion occurs. For an even number of the pulses, the population are transferred to the ground state. Direct comparison in Fig. 2(c) and 2(d) implies that population inversion is robust against the variation of pulse shape. Therefore, the excitonic population inversion of the SQD can be switched on and off by tuned the number of the pulses in the pulse train. And this optical switching provides an ultrafast and convenient way to achieve complete inversion.

 figure: Fig. 2

Fig. 2 The upper plots are the plasmonic fields inside the SQD for different interparticle distances, i.e., R = 15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), with (a) the incident Gaussian pulse train (f(t) = exp((tnt0)22)) and (b) the incident hyperbolic secant pulse train (sech((tnt0))). The lower plots are the the corresponding excitonic population inversion S3(t) from the numerical merical solution of Eqs. (5)(7) for R=15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), with (c) incident Gaussian pulse train and (d) incident hyperbolic secant pulse train. Other parameters of the pulse train are chosen as N = 6, |Ω0| = 12 me V, τ = 25 fs, t0 = 200 fs, and α = 5.

Download Full Size | PPT Slide | PDF

We note that the above condition is not the only one that could control population inversion in the present SQD-MNP hybrid system. Based on the above Eqs. (5)(7), we have calculated numerically the final population inversion as a function of the input electric field amplitude of the pulse train |Ω0| and chirp rate α after the passing of the Gaussian pulse train, as shown in Fig. 3. From Fig. 3(a), we can find that for chirp rate α up to α = 5, high-efficiency population transfer from the ground state to the single-exciton state occurs for several values of |Ω0|, as long as R = 15 nm. Also, complete return to the initially occupied ground state can be found for several value |Ω0| for small interparticle distance R = 15 nm. This figure shows a typical switching behavior that could be found in the present hybrid system. For the results of Fig. 3(a) the transfer process takes 1.2 ps. The effects of the interparticle distances on the maximum inversion are also shown in this figure. We note that for the large interparticle distances (i.e., R = 30, 80 nm) complete population transfer to the single-exciton state or complete population return to the ground state is not possible. In order to verify the robustness of the scheme for excitonic population inversion, we depict the evolution of the final inversion S3 (t) against the variation of the chirp rate. The curve shows the population inversion is robust to the variation of the chirp rate. The complete population inversion can be achieved for 4.8 < |α| < 5.2. In other words, the switching behavior shown in Fig. 2 holds up to a wide region of the chirp rate α. In addition, the plots are symmetric and efficient population inversion can occur for both negative and positive values of the chirp rate. This behavior changes with the increase of the interparticle distances. For larger values of the interparticle distances, we find that complete population inversion does not occur. In this way, we might provide a scheme for obtaining a rough estimate of the interparticle distances between the MNP and SQD via probing the final population.

 figure: Fig. 3

Fig. 3 The final excitonic population inversion S3 at t = 6t0 obtained from numerical solution of Eqs. (5)(7) as a function of (a) input electric field amplitude |Ω0| with α = 5, with a Gaussian pulse train N = 6, for R = 15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), and (b) chirp rate α for the input electric field amplitude of the pulse train |Ω0| = 12 meV. Other parameters of the pulse train are chosen as τ = 25 fs and t0 = 200 fs.

Download Full Size | PPT Slide | PDF

For a better insight into the effects of the input electric field amplitude of the pulse train and chirp rate on global behavior of the excitonic population inversion, the contour map of the final population inversion of S3 (t) as the function of both |Ω0| and α is shown in Fig. 4. It can be found from Fig. 4(a) there are a wide region of Ω0 and α in which complete population inversion can be obtained under the condition R = 15 nm. However, if the interparticle distance increases, the maximum value of corresponding population transfer obtained will decrease. For R = 80, we plot in Fig. 4(b) the contour map of final population inversion S3 (t) with the same other parameter settings. Compared with Fig. 4(a), the structure is qualitatively very similar, but the maximum value of population transfer becomes much smaller. Interesting enough, the influence of the distances on the excitonic population inversion depends strongly on the pulse duration τ. As an example, Figs. 4(c) and 4(d) show the contour map of the final population inversion of S3(t) as the function of both |Ω0| and α for pulse duration τ = 10 fs with different distances R = 15 nm and R = 80 nm. It can be found that the final excitonic population inversion is sensitive to the pulse duration. The effect of the pulse duration on the population inversion can be explained using the quasi-adiabatic following approximation [35]. As the pulse duration becomes shorter the enhanced effect of the plasmonic inside the SQD becomes less pronounced, which leads to the fact that the complete population inversion does not occur even for the small interparticle distance. In addition, the chirp rate α can modify the pulse duration, pulse shape as well as the pulse amplitude, thus the exciton population inversion depends on the chirp rate α, as illustrated in Fig. 3(b). This means that the pulse train for every R will not lead to complete excitonic population inversion for shorter pulse duration (see Figs. 4(c) and 4(d) for τ = 10 fs). In other words, as the pulse duration becomes shorter, the influence of the plasmon effect weakens and smaller final populations are obtained.

 figure: Fig. 4

Fig. 4 Contour map of the final population S3(t) obtained from numerical solution of Eqs. (5)(7) as a function of the input electric field amplitudes |Ω0| and chirp rate α of the chirped Gaussian few-cycle pulse train for different interparticle distance R with fixed pulse duration τ = 25 fs: (a) R = 15 nm; (b) R = 80 nm; with fixed pulse duration τ = 10 fs: (c) R = 15 nm; (d) R = 80 nm. Other parameters are the same as Fig. 3.

Download Full Size | PPT Slide | PDF

An interesting effect is the influence of the input electric field amplitude of pulses on the final state of population inversion. We find that the dependence of final population inversion on the input electric field amplitude exhibits a typical switching behavior and this dependence is strongest for smaller interparticle distances. Moreover, the final population inversion is found to be sufficiently robust against the variation of the chirp rates. In order for maintaining clarity in the exposition, the present results were obtained in the context of symmetric pulse shapes. Actually, one can readily check that our results are robust with respect to the pulse shape. Of course, the present study was not exhaustive due to the enormous number of parameters involved. The typical example of these results shown in Fig. 4 shows that the complete population inversion can not maintain for shorter pulse duration. Finally, we should note that in the results presented above the pulse area is not a parameter that should get very specific values in order to achieve complete inversion, which is quite different from the Rabi solution of the optical Bloch equations for an atomic two-level system interacting with pulsed laser fields [36].

It is worth noting that our calculation performed for typical system parameters, i.e., those of CdSe SQD and Au nanoparticle complexes, demonstrated the ultrafast exciton population dynamics induced by the few-cycle pulse train. With the development of spectroscopy technology, the single-particle spectroscopy [3739] could probably be used to realize these effects experimentally. The interaction between SQD and MNP depends on not only the pulse parameters and interparticle distance but also the orientation of the dipole moments of the two particles, therefore, switching can be achieved not only by the traditional control via the incident electric field amplitude and interparticle distance but also the polarization of the incident pulses. We believe that the modification of the surface plasmon on ultrafast excitonic population dynamics in our proposed hybrid system will also manifest itself in other quantum interference phenomena as well, and hence our study might open up an avenue to explore and utilize the these effects and could be exploited in real SQD-MNP hybrid as high speed optical modulators and switches.

In conclusion, we have studied the phenomenon of controllable ultrafast excitonic population dynamics in the hybrid system comprised of a SQD and a metal nanoparticle by utilizing the train of chirped few-cycle pulses. We have used the effective nonlinear Bloch equations for the description of the system dynamics. We present the numerical results for the case that the system interacts with the pulse train for Gaussian or hyperbolic secant envelope. Our findings showed that the excitonic population inversion can be modified for small interparticle distances due to the interaction between exciton and surface plasmon. We also showed that the time evolution of excitonic population inversion in the SQD exhibits a steplike transition between absorption and amplifying for small interparticle distance. These results suggest a straightforward method for measuring the interparticle distances from the final state of the inversion occur. This can be realized by injecting a probe beam in order to determine the state of the SQD. Probe amplification would indicate that the SQD was left in the single-exciton state, whereas probe absorption would indicate that the SQD was left in the ground state.

Acknowledgments

We appreciate useful discussions with Y. Wu. The research is supported in part by National Natural Science Foundation of China under Grant Nos. 11374050 and 61372102, by Qing Lan project of Jiangsu, and by the Fundamental Research Funds for the Central Universities under Grant No. 2242012R30011.

References and links

1. W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef]   [PubMed]  

2. M.T. Cheng, S.D. Liu, H.J. Zhou, Z.H. Hao, and Q.Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007). [CrossRef]   [PubMed]  

3. J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]  

4. R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008). [CrossRef]   [PubMed]  

5. P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008). [CrossRef]   [PubMed]  

6. S.M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]  

7. Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]  

8. S.M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010). [CrossRef]  

9. A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010). [CrossRef]  

10. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010). [CrossRef]  

11. A.O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and excitonplasmon interactions,” Phys. Rev. B 82, 155322 (2010). [CrossRef]  

12. R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010). [CrossRef]  

13. J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010). [CrossRef]  

14. R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011). [CrossRef]  

15. A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011). [CrossRef]  

16. A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011). [CrossRef]  

17. M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011). [CrossRef]  

18. N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011). [CrossRef]   [PubMed]  

19. M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011). [CrossRef]  

20. J.B. Li, N.C. Kim, M.T. Cheng, L. Zhou, Z.H. Hao, and Q.Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012). [CrossRef]   [PubMed]  

21. M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012). [CrossRef]  

22. S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

23. S.M. Sadeghi, “Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times,” Appl. Phys. Lett. 101, 213102 (2012). [CrossRef]  

24. E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013). [CrossRef]  

25. A. Hatef, S.M. Sadeghi, S. Fortin-Deschnes, E. Boulais, and M. Meunier, “Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems,” Opt. Express 21, 5643–5653 (2013). [CrossRef]   [PubMed]  

26. M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013). [CrossRef]  

27. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013). [CrossRef]  

28. S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009). [CrossRef]  

29. S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

30. D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef]   [PubMed]  

31. A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999). [CrossRef]  

32. P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]  

33. S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003). [CrossRef]  

34. M.O. Scully and M.S. Zubariry, “Quantum optics,” (Cambridge University Press, 1997). [CrossRef]  

35. M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992). [CrossRef]   [PubMed]  

36. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

37. A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010). [CrossRef]   [PubMed]  

38. L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010). [CrossRef]  

39. L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [Crossref] [PubMed]
  2. M.T. Cheng, S.D. Liu, H.J. Zhou, Z.H. Hao, and Q.Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
    [Crossref] [PubMed]
  3. J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
    [Crossref]
  4. R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
    [Crossref] [PubMed]
  5. P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
    [Crossref] [PubMed]
  6. S.M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
    [Crossref]
  7. Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
    [Crossref]
  8. S.M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
    [Crossref]
  9. A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
    [Crossref]
  10. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010).
    [Crossref]
  11. A.O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and excitonplasmon interactions,” Phys. Rev. B 82, 155322 (2010).
    [Crossref]
  12. R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
    [Crossref]
  13. J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
    [Crossref]
  14. R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
    [Crossref]
  15. A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
    [Crossref]
  16. A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
    [Crossref]
  17. M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
    [Crossref]
  18. N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
    [Crossref] [PubMed]
  19. M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
    [Crossref]
  20. J.B. Li, N.C. Kim, M.T. Cheng, L. Zhou, Z.H. Hao, and Q.Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
    [Crossref] [PubMed]
  21. M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
    [Crossref]
  22. S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).
  23. S.M. Sadeghi, “Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times,” Appl. Phys. Lett. 101, 213102 (2012).
    [Crossref]
  24. E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
    [Crossref]
  25. A. Hatef, S.M. Sadeghi, S. Fortin-Deschnes, E. Boulais, and M. Meunier, “Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems,” Opt. Express 21, 5643–5653 (2013).
    [Crossref] [PubMed]
  26. M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
    [Crossref]
  27. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
    [Crossref]
  28. S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
    [Crossref]
  29. S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).
  30. D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [Crossref] [PubMed]
  31. A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
    [Crossref]
  32. P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  33. S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  34. M.O. Scully and M.S. Zubariry, “Quantum optics,” (Cambridge University Press, 1997).
    [Crossref]
  35. M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992).
    [Crossref] [PubMed]
  36. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  37. A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
    [Crossref] [PubMed]
  38. L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
    [Crossref]
  39. L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
    [Crossref]

2013 (5)

E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

A. Hatef, S.M. Sadeghi, S. Fortin-Deschnes, E. Boulais, and M. Meunier, “Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems,” Opt. Express 21, 5643–5653 (2013).
[Crossref] [PubMed]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

2012 (3)

S.M. Sadeghi, “Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times,” Appl. Phys. Lett. 101, 213102 (2012).
[Crossref]

J.B. Li, N.C. Kim, M.T. Cheng, L. Zhou, Z.H. Hao, and Q.Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
[Crossref] [PubMed]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

2011 (7)

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

2010 (9)

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

S.M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010).
[Crossref]

A.O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and excitonplasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

2009 (3)

S.M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[Crossref]

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

2008 (3)

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

2003 (1)

S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

1999 (1)

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

1992 (1)

M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992).
[Crossref] [PubMed]

1972 (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Aizpurua, J.

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

Allen, L.

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Andersen, M.L.

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Anderson, L.J.E.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Antón, M.A.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Artuso, R.D.

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

Boulais, E.

Bowden, C.M.

M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992).
[Crossref] [PubMed]

Bryant, G.W.

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

Cabrera-Granado, E.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Calderón, O.G.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Carreño, F.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Cerullo, G.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Chang, D.E.

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Chang, W.-S.

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Cheng, M.T.

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cooney, R.R.

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

Cox, J.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Crenshaw, M.E.

M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992).
[Crossref] [PubMed]

Cundiff, S.T.

S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Dominguez-Medina, S.

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

Duan, S.Q.

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Eberly, J.H.

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Evangelou, S.

E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

Fan, Z.Y.

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Fina, N.

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Fofang, N.T.

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Fortin-Deschnes, S.

Fraleigh, R.D.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Franceschetti, A.

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

Fu, H.

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

Garcia-Etxarri, A.

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

Govorov, A.O.

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

A.O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and excitonplasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

Grady, N.K.

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Ha, J.W.

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

Hafner, J.H.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Halas, N.J.

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Hao, Z.H.

Hatef, A.

Hemmer, P.R.

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kambhampati, P.

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

Khanal, B.P.

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Kihm, J.E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Kim, D.S.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Kim, N.C.

Kosionis, S.G.

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

Kunets, Vas.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Lammers, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Lee, K.

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

Lee, S.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Li, J.B.

Lienau, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Link, S.

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Liu, S.D.

Lodahl, P.

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Lu, Z.

Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[Crossref]

Lukin, M.D.

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Luo, Y.Q.

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

Ma, X.S.

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

Maiuri, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Malyshev, A.V.

A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

Malyshev, V.A.

A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

Manzoni, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Mayer, K.M.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Mazur, Yu. I.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Melle, S.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Meunier, M.

Ouyang, M.

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

Paspalakis, E.

E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

Pomraenke, R.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Ridolfo, A.

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Sadeghi, S.M.

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

A. Hatef, S.M. Sadeghi, S. Fortin-Deschnes, E. Boulais, and M. Meunier, “Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems,” Opt. Express 21, 5643–5653 (2013).
[Crossref] [PubMed]

S.M. Sadeghi, “Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times,” Appl. Phys. Lett. 101, 213102 (2012).
[Crossref]

S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

S.M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

S.M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

Saija, R.

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Savasta, S.

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Schindel, D.G.

A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Scully, M.O.

M.O. Scully and M.S. Zubariry, “Quantum optics,” (Cambridge University Press, 1997).
[Crossref]

Sewall, S.L.

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

Singh, M. R.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Singh, M.R.

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

Slaughter, L.S.

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Sorensen, A.S.

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Sridharan, D.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010).
[Crossref]

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Stefano, O.Di

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Stobbe, S.

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Swanglap, P.

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Tang, Y.

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

Tcherniak, A.

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Terzis, A.F.

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

Vasa, P.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Waks, E.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010).
[Crossref]

Wang, L.W.

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

Wang, P.Z.

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

Wang, Q.Q.

Wang, W.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

West, R.G.

S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

Yan, J.Y.

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Yang, Y.

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

Ye, J.

S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Zhang, J.T.

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

Zhang, W.

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

Zhao, G.X.

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

Zhao, X.G.

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Zhou, H.J.

Zhou, L.

Zhu, K.D.

Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[Crossref]

Zubarev, E.R.

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Zubariry, M.S.

M.O. Scully and M.S. Zubariry, “Quantum optics,” (Cambridge University Press, 1997).
[Crossref]

Zunger, A.

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

Appl. Phys. Lett. (3)

A. Hatef, D.G. Schindel, and M.R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, and G.X. Zhao, “Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits,” Appl. Phys. Lett. 99, 223509 (2011).
[Crossref]

S.M. Sadeghi, “Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times,” Appl. Phys. Lett. 101, 213102 (2012).
[Crossref]

J. Phys. B (1)

Z. Lu and K.D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[Crossref]

J. Phys. Chem. C (2)

L.J.E. Anderson, K.M. Mayer, R.D. Fraleigh, Y. Yang, S. Lee, and J.H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127–11132 (2010).
[Crossref]

L.S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B.P. Khanal, E.R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

J. Phys.: Condens. Matter (2)

S.G. Kosionis, A.F. Terzis, S.M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).

S.M. Sadeghi and R.G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

Nano Lett. (2)

R.D. Artuso and G.W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett. 10, 1398–1404 (2010).
[Crossref] [PubMed]

Nano. Lett. (1)

N.T. Fofang, N.K. Grady, Z.Y. Fan, A.O. Govorov, and N.J. Halas, “Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate?Au Nanoshell Complex Provides a Mechanism for Nonlinearity,” Nano. Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Nat. Phys. (1)

M.L. Andersen, S. Stobbe, A.S. Sorensen, and P. Lodahl, “Strongly modified plasmonCmatter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Nature (London) (1)

J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal heteronanostructures,” Nature (London) 466, 91–95 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010).
[Crossref]

Phys. Rev. B (13)

A.O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and excitonplasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

R.D. Artuso and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantumdot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

A.V. Malyshev and V.A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, and A.O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

S.M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

S.M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, and M.R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[Crossref]

E. Paspalakis, S. Evangelou, and A.F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, “Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,” Phys. Rev. B 60, 1819–1829 (1999).
[Crossref]

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (5)

D.E. Chang, A.S. Sorensen, P.R. Hemmer, and M.D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

M.E. Crenshaw and C.M. Bowden, “Quasiadiabatic following approximation for a dense medium of two-level atoms,” Phys. Rev. Lett. 69, 3475–3478 (1992).
[Crossref] [PubMed]

W. Zhang, A.O. Govorov, and G.W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

A. Ridolfo, O.Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures, Phys. Rev. Lett. 101, 116801 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S.T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Other (2)

M.O. Scully and M.S. Zubariry, “Quantum optics,” (Cambridge University Press, 1997).
[Crossref]

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of our hybrid system composed of a semiconductor quantum dot (SQD) and a metallic nanoparticle (MNP). The centers of the two particles are separated by a distance represented by R.
Fig. 2
Fig. 2 The upper plots are the plasmonic fields inside the SQD for different interparticle distances, i.e., R = 15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), with (a) the incident Gaussian pulse train (f(t) = exp((tnt0)22)) and (b) the incident hyperbolic secant pulse train (sech((tnt0))). The lower plots are the the corresponding excitonic population inversion S3(t) from the numerical merical solution of Eqs. (5)(7) for R=15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), with (c) incident Gaussian pulse train and (d) incident hyperbolic secant pulse train. Other parameters of the pulse train are chosen as N = 6, |Ω0| = 12 me V, τ = 25 fs, t0 = 200 fs, and α = 5.
Fig. 3
Fig. 3 The final excitonic population inversion S3 at t = 6t0 obtained from numerical solution of Eqs. (5)(7) as a function of (a) input electric field amplitude |Ω0| with α = 5, with a Gaussian pulse train N = 6, for R = 15 nm (red solid curve), R = 30 nm (blue dashed curve), and R = 80 nm (black dotted curve), and (b) chirp rate α for the input electric field amplitude of the pulse train |Ω0| = 12 meV. Other parameters of the pulse train are chosen as τ = 25 fs and t0 = 200 fs.
Fig. 4
Fig. 4 Contour map of the final population S3(t) obtained from numerical solution of Eqs. (5)(7) as a function of the input electric field amplitudes |Ω0| and chirp rate α of the chirped Gaussian few-cycle pulse train for different interparticle distance R with fixed pulse duration τ = 25 fs: (a) R = 15 nm; (b) R = 80 nm; with fixed pulse duration τ = 10 fs: (c) R = 15 nm; (d) R = 80 nm. Other parameters are the same as Fig. 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = h ¯ ω 10 | 1 1 | μ E S Q D ( | 0 1 | + | 1 0 | ) ,
E S Q D ( t ) = h ¯ μ [ ( Ω ( t ) 2 + G ρ 10 ( t ) ) + ( Ω * ( t ) 2 + G * ρ 01 ( t ) ) ] ,
Ω ( t ) = ( Ω 0 + Ω ) n = 0 N 1 f ( t ) e i [ ω ( t n t 0 ) + ϕ ( t ) ]
G = j = 1 l 1 4 π ε e ( j + 1 ) 2 γ j a 2 j + 1 μ 2 h ¯ ε e f f s R 2 j + 4 ,
S ˙ 1 ( t ) = ω 10 S 2 ( t ) S 1 ( t ) T 2 ,
S ˙ 2 ( t ) = ω 10 S 1 ( t ) 2 [ Ω R ( t ) + G R S 1 ( t ) + G I S 2 ( t ) ] S 3 ( t ) S 2 ( t ) T 2 ,
S ˙ 3 ( t ) = 2 [ Ω R ( t ) + G R S 1 ( t ) + G I S 2 ( t ) ] S 2 ( t ) S 3 ( t ) + 1 T 1 ,

Metrics