Abstract

Atomic force microscope (AFM)-enabled manipulation of individual metallic nanoparticles (NPs) has proven useful for assembling diverse structural motifs of metamolecules. However, for the reliable verifications of their electric/magnetic behaviors and translations into practical applications (e.g., metasurfaces), currently available assembly of polygonal shaped metallic NPs with size and shape distributions should be further advanced. Here, we discover conditions for AFM-enabled, deterministic assembly of highly uniform, super-spherical gold NPs (AuNPs) into the metamolecules, which can show the designed electric/magnetic resonance behaviors in a highly reliable fashion. The use of super-spherical AuNPs together with the controlled adhesive properties of an AFM tip allows us to linearly and continuously push AuNPs toward the pre-programed directions and positions with minimized slipping away effect. Thus, a versatile and fast (as little as few minutes per each metamolecule) assembly of metamolecules with unprecedented structural fidelity becomes possible via AFM-enabled manipulation; enabling a high precision engineering of electromagnetic properties with metamolecules.

© 2015 Optical Society of America

1. Introduction

Metamaterials and their application to metadevices (e.g., photonic modulator) enable unprecedented engineering of light-matter interaction with exquisite control over the geometry of artificial photonic meta-atoms and heterogeneous integration of each different active material (e.g., graphene and semiconductor-based phase change materials) [1–13]. This capability promises compelling opportunities in advancing various photonic technologies; nonetheless, the experimental challenge in approaching to the metamaterials working at a broadband visible frequency remains as obstacles for various practical applications including solar cells and light emitting diodes (LED) [14]. In particular, much of the development of metamaterials has relied on the conventional lithographic techniques such as e-beam lithography, focused ion beam lithography, and photolithography [5–10,12–14]; but, such conventional methods have proven to be not amenable to the construction of optical metamaterials made of sub-100-nm sized, photonic meta-atoms.

The rapidly growing field of metamolecules could address these challenges both by versatile accessing to sub-100-nm sized meta-atoms (e.g., simple metallic colloidal particles) and by expanding the level of available cluster geometries [15–24]. Especially, atomic force microscope (AFM) technologies have evolved the flexibility to deterministically manipulate and assemble the nanoparticles (NPs) into the cluster with sophisticated geometry [19,22,25,26]. Recent studies have actually undergone significant progress on the AFM-enabled deterministic assembly of metallic NPs and the resultant realization of complex resonant modes within the metamolecules [19,22]. However, the previous assembly of metamolecules by AFM manipulation has inherently focused on the use of conventionally accessible, polygonal shaped metallic NPs (i.e., generally, shape is not perfectly spherical and size is dispersed) [19,22]. Thus, the reliable assembly of metamolecules and consistent verification of the underlying electromagnetic modes remains as obstacles; also, translation of such metamolecules into large-area metamaterial application (e.g., meta-surfaces) with exotic light molding behavior still requires us to first address the reliability of metamolecule assembly, while maintaining the high level of complexity of the clusters with AFM manipulation.

Just recently has the authors provided a synthesis platform for ultra-smooth, highly spherical monocrystalline gold NPs (AuNPs) (i.e., selective etching out the edges and vertices of Au octahedron) [27]; but, in contrast to the negatively charged, conventional AuNPs, which have been synthesized by the reduction of Au chloride and stabilization of citrate [28,29], our new AuNPs are mostly covered by the positively charged polymeric surfactants (poly(diallyl dimethyl ammonium chloride), polyDADMAC) [27]. Inspired by this versatile access to unprecedentedly qualified AuNPs with different surface charge properties, we have discovered the experimental conditions for AFM-enabled manipulation of such positively charged, super-spherical AuNPs and assembly of metamolecules (i.e., dimer, trimer, and asymmetric tetramer made of 80 nm-sized AuNPs) in a highly reliable way. Indeed, the plasmonic scattering from the assembled metamolecules was quite consistent with the theoretical predictions; highly uniform plasmonic scattering behaviors were experimentally obtained across the assembled metamolecules. This highly uniform plasmonic scattering can also be used in precise sensing of light with enhanced sensitivity [30].

2. AFM-enabled deterministic manipulation of super-spherical AuNPs

2.1 Importance of being ultra-smooth and super-spherical

Herein, we used a commercialized AFM system (NTEGRA spectra, NT-MDT) and followed a standard manipulation protocol, as previously reported (see Fig. 1(a)) [31]. Specifically, first, the topography of ultra-smooth, super-spherical monocrystalline AuNPs, synthesized through Au octahedron growth followed by selective etching of vertices and edges [27], was imaged with the z-axis feedback control (non-contact scan mode): 80 nm-sized AuNPs were used as main building primitives in this work. Then, the z-axis feedback control was turned off; the tip, detailed in Fig. 1(b) (the scanning electron microscope (SEM) image of a tip shape), was precisely controlled to continuously push the AuNPs. Toward this direction, we used the vector lithography mode, provided by a commercialized AFM system (NTEGRA spectra, NT-MDT). In this vector lithography mode, an AFM tip can be precisely programmed to move toward the specified point with an extremely high precision, while continuously pushing the AuNPs along the fixed trajectory line with the minimized slipping away from the tip. This protocol (i.e., continuous pushing without a stepwise kicking and dribbling) has been frequently accompanied by a large static frictional problem (i.e., spatial uncertainties by thermal drift and actuator’s hysteresis) and the resultant slipping away from a tip [31,32]. However, in our case, as the AuNPs used in this study are super-spherical in shape (not polygonal shapes as with conventional AuNPs) and extremely monodisperse in size (see Fig. 1(c) containing SEM image and dark-field optical microscope image of AuNPs), the reliable contact of the tip to the prescribed spatial surface of AuNPs and continuous pushing AuNPs without significant slipping away from the tip can be reliably achieved, even in the presence of a relatively large frictional effect. The slipping away problem, possibly caused by asymmetric feature of tip [25], was not significant in our deterministic manipulation process. This observation highlights that much larger AuNPs (80 nm) than tip apex (~20 nm) together with their unique super-spherical feature make our process quite robust to such structural imperfections of tip (asymmetric apex). Furthermore, since the linear vector movement of the AFM tip can be carried out within few tens of seconds, the collective set of the process of metamolecule assembly including linear manipulation of AuNPs and second imaging process can be achieved as little as several minutes.

 figure: Fig. 1

Fig. 1 (a) Schematic for atomic force microscope (AFM)-enabled manipulation of super-spherical gold nanoparticles (AuNPs) by vector lithography mode (NTEGRA spectra, NT-MDT). (b) Scanning electron microscope (SEM) image of platinum-iridium (Pt-Ir) coated AFM tip. (c) Dark-field optical microscopic image of super-spherical AuNPs (size of 80 nm) dispersed onto silicon wafer with SEM image (inset). (d) Experimentally measured adhesion force between the loaded AFM tip and polymeric (poly(diallyl dimethyl ammonium chloride), polyDADMAC) thin film, which was used for the stabilization of super-spherical AuNPs.

Download Full Size | PPT Slide | PDF

Meanwhile, our super-spherical AuNPs are coated with the positively charged polyDADMAC surfactants in stark contrast to the conventionally synthesized polygonal AuNPs, which are negatively charged by citrate (or citrate combined with hydroquinone) surfactants [29]; it turns out that our new AuNPs were easily stick to the commercially available AFM tip made of silicon (Si). Indeed, the adhesion force between polyDADMAC (thin film) and a Si tip was measured to be relatively high (223.6 nN) (see Fig. 1(d)), thereby resulting in the sticking of AuNPs to the AFM tip: the adhesion force, herein, was measured by load-penetration experiment. To reduce such high adhesion force, we used the Si tip coated with Platinum-Iridium (Pt-Ir), as shown in Fig. 1(b); the adhesion force between an AFM tip and polyDADMAC was found to be actually reduced by one order of magnitude after Pt-Ir coating (21.1 nN). Thereby, such synergistic advantages including fast, versatile, and reliable AFM tip-enabled contacting/pushing of super-spherical AuNPs with the minimized sticking and slipping away effects provide essential functions in a deterministic assembly of metamolecules even with simple level of continuous linear pushing strategy.

To elucidate the importance of being super-spherical during the deterministic, linear manipulation, we systematically compared the vector manipulations of our super-spherical and conventional polygonal AuNPs, as summarized in Fig. 2. Here, polygonal shaped AuNPs (size of 75 ~130 nm) were synthesized by seed-growth method (the growth of the citrated AuNP seed with the assistance of hydroquinone surfactants) [29]. Super-spherical AuNPs obviously moved exactly along the pre-programmed, linear vector direction of the AFM tip movement (see snapshot series of AFM topographic images in Fig. 2(a)), whereas the polygonal shaped AuNPs were frequently slipped away from the AFM tip movement direction (see the orange arrow in Fig. 2(b)), owing to the tip contact to the vertices of AuNP and the resultant non-conformal pushing of it.

 figure: Fig. 2

Fig. 2 Snapshot series of AFM images during linear vector manipulation of AuNPs. (a) For super-spherical AuNPs. (b) polygonal shaped AuNPs.

Download Full Size | PPT Slide | PDF

2.2 Deterministic assembly of metamolecules

Then, for the generality, we tried to deterministically assemble the super-spherical AuNPs into metamolecules (i.e., dimer, trimer, and asymmetric tetramer) on various substrates including a glass, silicon and polymer (Poly[(methyl methacrylate)-co-(Disperse Red 1 acrylate)] (PDR1), Sigma-Aldrich) film. The thin film of pDR1 was employed as a representative example of polymeric substrate, as has been widely used for the photochemical near-field imaging of plasmonic resonance [33–36]. For the thin film preparation, pDR1 was first dissolved in 1-1-2 trichloroethane (Sigma-Aldrich) and then spin coated onto a slide glass at 3500 rpm for 40 sec. Slide glass and silicon substrates were cleaned by sonication for at least 5 min with acetone, IPA and deionized (DI) water, sequentially. To make the substrate hydrophilic for the uniform dispersion of AuNP aqueous suspension (initially, polyDADMAC-coated our AuNPs were dispersed in water), both glass slide and silicon substrate were initially treated with oxygen plasma for 1 min at 60W. The AuNPs suspensions, spread onto various substrates, was completely dried in the presence of nitrogen-purged air; at certain concentration of AuNPs suspension (i.e., 2 nM), the individually separated AuNP monomers with minimized aggregation were obtained onto the substrates.

AFM topographic images of Figs. 3(a)-3(b) show the typical examples of our AFM-enabled linear manipulation of super-spherical AuNPs onto both pDR1 (a) and oxygen plasma-treated glass (b): same performance was observed onto silicon substrate as well. Here, we assembled dimer (no. 6 + no. 7), trimer (no. 8 + no. 9 + no. 10), and asymmetric tetramer (no. 2 + no. 3 + no. 4 + no. 5; center to center distances along the long and short axes of tetramer are 120 nm and 95 nm, respectively) with almost 100% yield; the orange, light blue, and white arrows indicate the linear directions of super-spherical AuNP movements, guided by an AFM tip, for the synthesis of dimer, trimer, and asymmetric tetramer, respectively. Interestingly, our positively charged AuNPs can be readily pushed with minimized slipping away from the Pt-Ir coated tip even onto the hydrophilic substrates (oxygen plasma-treated glass or silicon wafer with contact angle less than 20 °). This indicates that a static friction caused by high electrostatic interaction becomes negligible in our process due to the reliable mechanical contact of the AFM tip onto the prescribed surface of super-spherical AuNPs and its deterministic linear pushing, as mentioned above. AFM and SEM images presented in Fig. 3(c) (the magnified AFM and SEM images of metamolecules, assembled onto oxygen plasma-treated glass in Fig. 3(b)) confirmed the high quality of metamolecules fully made of super-spherical AuNPs; two key structural features defining plasmonic resonance behaviors including gaps of AuNP clusters and sizes of each individual AuNP were quite consistent across all assembled metamolecules. This is due to the unprecedented quality of ultra-smooth, super-spherical AuNPs.

 figure: Fig. 3

Fig. 3 (a-b) Deterministic assembly of metamolecules (i.e., dimer, trimer, and asymmetric tetramer) by AFM-enabled manipulation of superspherical AuNPs onto (a) poly(disperse red 1) (pDR1) film (route mean square roughness (RMS) of 2.38 nm for left panel and RMS of 1.63 for right panel) and (b) oxygen plasma-treated glass substrate (RMS of 2.04 nm for left panel and RMS of 2.38 nm for right panel). The orange, light blue, and white arrows indicate the linear vector direction for the assembly of dimer, trimer, and asymmetric tetramer, respectively. The white dotted lines is the reference for clarity. (c) 2D/3D AFM topographic images and SEM images of assembled metamolecules (from top to bottom: dimer (RMS of 1.76 nm), trimer (RMS of 1.87 nm), and asymmetric tetramer (RMS of 2.68 nm). (d) Dark-field optical microscopic images before and after assembly by AFM-enabled linear vector manipulation. The orange, light blue, and white arrows indicate the linear vector direction for the assembly of dimer, trimer, and asymmetric tetramer, respectively. The white dotted boxes correspond to AFM topographic images in (b).

Download Full Size | PPT Slide | PDF

3. Optical analysis of the assembled metamolecules

3.1 Dark-field scattering spectra of dimer, trimer, and asymmetric tetramer

Dark-field optical microscopic images (Nikon, NA = 0.9) together with the relevant scattering spectra can further confirm the deterministic assembly of metamolecules. In Fig. 3(d), the orange, light blue, and white arrows indicate the linear movement directions of super-spherical AuNPs onto glass substrate for the assembly of dimer, trimer, and asymmetric tetramer, respectively; the AFM topographic images, shown in Fig. 3(b), correspond to the white-dotted boxes of dark-field optical microscopic images (see Fig. 3(d)). By comparison between dark-field optical microscopic images before and after assembly, we can conclude that our process enables the deterministic manipulation of each individual AuNP to be assembled into metamolecules without any invasions to other intact AuNPs.

Then, we measured dark-field scattering spectra (PIXIS-400B CCD combined with IsoPlane, Princeton Instruments) of the assembled monomer, dimer, trimer, and asymmetric tetramer, as summarized in Figs. 4(a)-4(d). In order to avoid the obscured scattering spectra possibly caused by broadband multi-pole scattering, the polarized white light (s-pol) with 78 ° incident angle was irradiated; the scattering light was collected by means of objective lens with NA of 0.9 (scattering from each different metamolecule was selectively analyzed by using aperture). Indeed, the experimentally measured dark-field scattering spectra were well matched to the theoretically predicted results. The theoretical predictions of dark-field scattering were performed by full electromagnetic numerical simulation (finite-element method), supported by COMSOL Multiphysics (the complex dielectric constants of Au and polyDADMAC were obtained by Drude-critical model and ellipsometry measurement, respectively): the bottom surface of spherical AuNPs was truncated by 3 nm height to avoid unrealistic point contact with substrate. It is extremely difficult to empirically measure the thickness of polyDADMAC surfactants, which are conformably coated onto super-spherical AuNP; thus, herein, we fitted the thickness of polyDADMAC to 1.5 nm and the resultant gap between AuNPs of metamolecules to 3.0 nm, in our numerical simulation.

 figure: Fig. 4

Fig. 4 (a-d) Numerically simulated and experimentally measured dark-field scattering spectra (averaged intensity) of the assembled metamolecules including monomer (a), dimer (b), trimer (c), and asymmetric tetramer (d). The insets of (c) and (d) represent magnetic near-field distribution at 768 nm of (c) and at 761 nm (d). (e) Electric near-field distribution of trimer at 768 nm (i.e., resonance wavelength of magnetic dipole). (f) Electric near-field distribution of asymmetric tetramer at 761 nm (i.e., resonance wavelength of magnetic dipole). In both trimer and asymmetric tetramer, the circulating electric fields were clearly verified at the resonance wavelength of magnetic dipole.

Download Full Size | PPT Slide | PDF

According to the number and spatial position of AuNPs, the electric and magnetic responses can be precisely controlled [15–24]. For example, in addition to electric resonances, both trimer and asymmetric tetramer exhibited strong resonances of magnetic dipole (at 768 nm for trimer; at 761 nm for asymmetric tetramer), as evidenced by (i) circulating electric dipole moment, (ii) strongly confined electric field near the gap of AuNPs (Figs. 4(e)-4(f)), and (iii) highly concentrated magnetic field at the center of AuNPs rings (inset of Figs. 4(c)-4(d)). In contrast, only electric resonances were observed in monomer (at 550 nm) and dimer (at 700 nm for primary mode; at 570 nm for higher mode). The coincidence of scattering spectra with such numerical simulation further represents the high quality of metamolecules benefitting from the AFM-enabled deterministic assembly of monocrystalline, super-spherical AuNPs.

3.2 Reliability of electromagnetic properties of metamolecules

Finally, we profiled the uniformity of the metamolecules (e.g., trimer), which were independently assembled onto same substrate, as with aforementioned experimental methods. For example, four different trimers made of same super-spherical AuNPs were assembled independently (the white arrows in dark-field) onto oxygen plasma-treated glass by AFM-enabled, linear manipulation (see left panels of Figs. 5(a)-5(b)); dark-field optical images (see right panels of Figs. 5(a)-5(b)) and scattering spectra (Fig. 5(c)) were analyzed. The dark-field scattering colors (i.e., light-orange) from each individual trimer were almost same; no dramatic differences between scattering spectra were actually observed (Fig. 5(c)). In particular, the key feature of trimer, this is, the resonance of magnetic dipole, was consistently observed at 730 nm across the assembled metamolecules. During the spreading and consecutive drying of AuNPs aqueous suspension on the substrate, less coupled trimer (with ~90 nm gap) was accidently obtained, as indicated by gray star in Fig. 5(b); its dark-field scattering image and spectra were more closed to those of single AuNP without the hallmark of magnetic resonances (see right panel of Fig. 5(b) and Fig. 5(d)). Along with the results presented above, we can conclude that the experimental verifications of unique electric and magnetic resonances of metamolecules, assembled by our AFM-enabled manipulation of super-spherical AuNPs, can be deterministically achieved in a highly reliable way.

 figure: Fig. 5

Fig. 5 (a-b) AFM topographic images (left panel) and dark-field (DF) optical microscope images (right panel) before (a) and after (b) assembly of four different trimers: trimer 1 (assembly of AuNP no. 1, no. 2, and no. 3), 2 (assembly of AuNP no. 4, no. 5, and no. 6), 3 (assembly of AuNP no. 7, no. 8, and no. 9), and 4 (assembly of AuNP no. 10, no. 11, and no. 12). The white arrows in AFM topographic images indicate the linear vector direction of manipulation. (c) Experimentally measured dark-field scattering spectra (averaged intensity) of four different trimers. (d) Numerically simulated and experimentally measured dark-field scattering spectra (averaged intensity) of trimer with large gap (i.e., 90 nm), which is marked by gray star in (b).

Download Full Size | PPT Slide | PDF

To further elucidate the unprecedented quality of our metamolecules, both two trimers made of polygonal shaped AuNPs were additionally assembled onto the same substrate. The AuNPs synthesized by conventional citrate method generally showed the disperse size and shape distribution (75 nm ~130 nm), as with other previous results (see various distinct scattering colors of dark-field optical microscopic image shown in Fig. 6(a)) [29]. Thus, in this case, we’re not able to use continuous linear vector manipulation, due to the slipping away effect; consequently, the kicking and careful dribbling of polygonal AuNPs were tediously repeated until the desired trimer is assembled. Figure 6(b) presents the SEM images of the assembled two trimers made of polygonal shaped AuNPs; their dark-field scattering spectra were found to be not consistent each other, owing to the inevitable structural non-uniformity.

 figure: Fig. 6

Fig. 6 (a) Dark-field optical microscope images before (left panel) and after (right panel) assembly of two different trimers (trimer 1 and 2 in right panel) by use of polygonal shaped AuNPs, synthesized by conventional citrate method. (b) SEM images of representative trimers made of polygonal shaped AuNPs. (c) Experimentally measured dark-field scattering spectra of trimer 1 and 2 in right panel of (a).

Download Full Size | PPT Slide | PDF

4. Conclusions

This AFM-enabled manipulation of super-spherical AuNPs displays favorable strategy for a deterministic and reliable assembly of metamolecules, in stark contrast to the manipulation or the self-assembly of polygonal shaped metallic NPs, which has generally suffered from the structural non-uniformity. Since the linear manipulation can be reliably achieved even with simple continuous pushing mode, the successive process set consisting of first topographic imaging, assembly, and second topographic imaging can all be finished within as little as few tens of minutes. Such reliable and deterministic manipulation of super-spherical AuNPs should expand the accessible range of metamolecular fundamentals with an increased range of spatial positioning precision, which is not obtainable by other methods.

Acknowledgments

This research was supported by the Basic Science Research Program and the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (Grant Number: 2011-0030046, 2012R1A1A1041416, 2014M3C1A3053024 and NRF-2014R1A1A2057763).

References and links

1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]  

2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]   [PubMed]  

3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef]   [PubMed]  

4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]   [PubMed]  

5. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef]   [PubMed]  

6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef]   [PubMed]  

7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]  

8. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef]   [PubMed]  

9. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]   [PubMed]  

10. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011). [CrossRef]   [PubMed]  

11. T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011). [CrossRef]  

12. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef]   [PubMed]  

13. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012). [CrossRef]   [PubMed]  

14. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011). [CrossRef]   [PubMed]  

15. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). [CrossRef]   [PubMed]  

16. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef]   [PubMed]  

17. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007). [CrossRef]   [PubMed]  

18. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [CrossRef]   [PubMed]  

19. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013). [CrossRef]   [PubMed]  

20. A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013). [CrossRef]   [PubMed]  

21. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013). [CrossRef]   [PubMed]  

22. J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014). [CrossRef]   [PubMed]  

23. S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014). [CrossRef]  

24. S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014). [CrossRef]   [PubMed]  

25. S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011). [CrossRef]   [PubMed]  

26. M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012). [CrossRef]   [PubMed]  

27. Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013). [CrossRef]   [PubMed]  

28. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241(105), 20–22 (1973). [CrossRef]  

29. S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009). [CrossRef]   [PubMed]  

30. S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013). [CrossRef]   [PubMed]  

31. A. A. G. Requicha, “Nanomanipulation with the atomic force microscope,” Nanotechnology; R. Waser, eds. (Wiley-VCH: Weinheim, Germany, 2008), pp. 239−273.

32. S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009). [CrossRef]   [PubMed]  

33. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005). [CrossRef]   [PubMed]  

34. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012). [CrossRef]   [PubMed]  

35. S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014). [CrossRef]   [PubMed]  

36. T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014). [CrossRef]   [PubMed]  

References

  • View by:

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  5. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  8. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  9. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  10. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  11. T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
    [Crossref]
  12. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  13. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
    [Crossref] [PubMed]
  14. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  15. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [Crossref] [PubMed]
  16. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  17. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
    [Crossref] [PubMed]
  18. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  19. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  20. A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
    [Crossref] [PubMed]
  21. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
    [Crossref] [PubMed]
  22. J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
    [Crossref] [PubMed]
  23. S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
    [Crossref]
  24. S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
    [Crossref] [PubMed]
  25. S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
    [Crossref] [PubMed]
  26. M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
    [Crossref] [PubMed]
  27. Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
    [Crossref] [PubMed]
  28. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241(105), 20–22 (1973).
    [Crossref]
  29. S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009).
    [Crossref] [PubMed]
  30. S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
    [Crossref] [PubMed]
  31. A. A. G. Requicha, “Nanomanipulation with the atomic force microscope,” Nanotechnology; R. Waser, eds. (Wiley-VCH: Weinheim, Germany, 2008), pp. 239−273.
  32. S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
    [Crossref] [PubMed]
  33. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
    [Crossref] [PubMed]
  34. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
    [Crossref] [PubMed]
  35. S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
    [Crossref] [PubMed]
  36. T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
    [Crossref] [PubMed]

2014 (5)

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

2013 (5)

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

2012 (4)

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

2011 (5)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

2010 (1)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

2009 (4)

S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009).
[Crossref] [PubMed]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

2008 (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (2)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241(105), 20–22 (1973).
[Crossref]

Akhavan, S.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Alaeian, H.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Alù, A.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Averitt, R. D.

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bachelot, R.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Bae, D. R.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Billot, L.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Brandl, D.

Capasso, F.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Chan, W. C. W.

S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009).
[Crossref] [PubMed]

Chang, S. H.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Chen, H.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

D’Addato, S.

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

Demir, H. V.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Dionne, J. A.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Elias, S.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Fan, J. A.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241(105), 20–22 (1973).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grand, J.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Gray, S. K.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Gungor, K.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Halas, N. J.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Henkel, C.

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, T.

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Hubert, C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kang, H. S.

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kante, B.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Kim, J.

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

Kim, J.-Y.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, S.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
[Crossref] [PubMed]

Kim, T.-T.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kim, Y.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Knight, M. W.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Koh, A. L.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Kostcheev, S.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Large, N.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lee, G.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Lee, S.

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S.-A.

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, Y.-J.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Lerondel, G.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, X.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, X.-X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Manoharan, V. N.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Mariscal, M. M.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Min, B.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Monticone, F.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Mutlugun, E.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ni, X.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Nordlander, P.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Padilla, W. J.

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Paolicelli, G.

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

Papke, T.

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

Park, J.-K.

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Perrault, S. D.

S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009).
[Crossref] [PubMed]

Ratchford, D.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

Ratchford, D. C.

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Royer, P.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Rumyantseva, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Sacanna, S.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Santer, S.

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

Schade, N. B.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Schatz, G. C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

Sheikholeslami, S. N.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, X.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, J.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sun, L.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Talyor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tripathi, M.

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Urban, A. S.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Urzhumov, Y. A.

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valeri, S.

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

Vial, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, H.

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Wang, Y.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

Wiederrecht, G. P.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Wu, Y.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Xin, Z.

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

Yadavalli, N. S.

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

Yang, S.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Yi, G.-R.

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

Yin, X.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, P.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhu, J.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

T. Papke, N. S. Yadavalli, C. Henkel, and S. Santer, “Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves,” ACS Appl. Mater. Interfaces 6(16), 14174–14180 (2014).
[Crossref] [PubMed]

ACS Nano (2)

Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, “Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics,” ACS Nano 7(12), 11064–11070 (2013).
[Crossref] [PubMed]

S. Kim, D. C. Ratchford, and X. Li, “Atomic force microscope nanomanipulation with simultaneous visual guidance,” ACS Nano 3(10), 2989–2994 (2009).
[Crossref] [PubMed]

Adv. Mater. (3)

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref] [PubMed]

S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, “Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography,” Adv. Mater. 26(44), 7521–7528 (2014).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Appl. Phys. Express (1)

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Hu, W. J. Padilla, Z. Xin, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17(1), 92–101 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

S. D. Perrault and W. C. W. Chan, “Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm,” J. Am. Chem. Soc. 131(47), 17042–17043 (2009).
[Crossref] [PubMed]

Nano Lett. (3)

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. H. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5(4), 615–619 (2005).
[Crossref] [PubMed]

A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, “Three-dimensional plasmonic nanoclusters,” Nano Lett. 13(9), 4399–4403 (2013).
[Crossref] [PubMed]

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13(9), 4137–4141 (2013).
[Crossref] [PubMed]

Nanotechnology (3)

S. Kim, F. Shafiei, D. Ratchford, and X. Li, “Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures,” Nanotechnology 22(11), 115301 (2011).
[Crossref] [PubMed]

M. Tripathi, G. Paolicelli, S. D’Addato, and S. Valeri, “Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures,” Nanotechnology 23(24), 245706 (2012).
[Crossref] [PubMed]

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Talyor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nat. Phys. Sci (Lond.) (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241(105), 20–22 (1973).
[Crossref]

Nature (3)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (3)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Other (1)

A. A. G. Requicha, “Nanomanipulation with the atomic force microscope,” Nanotechnology; R. Waser, eds. (Wiley-VCH: Weinheim, Germany, 2008), pp. 239−273.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic for atomic force microscope (AFM)-enabled manipulation of super-spherical gold nanoparticles (AuNPs) by vector lithography mode (NTEGRA spectra, NT-MDT). (b) Scanning electron microscope (SEM) image of platinum-iridium (Pt-Ir) coated AFM tip. (c) Dark-field optical microscopic image of super-spherical AuNPs (size of 80 nm) dispersed onto silicon wafer with SEM image (inset). (d) Experimentally measured adhesion force between the loaded AFM tip and polymeric (poly(diallyl dimethyl ammonium chloride), polyDADMAC) thin film, which was used for the stabilization of super-spherical AuNPs.
Fig. 2
Fig. 2 Snapshot series of AFM images during linear vector manipulation of AuNPs. (a) For super-spherical AuNPs. (b) polygonal shaped AuNPs.
Fig. 3
Fig. 3 (a-b) Deterministic assembly of metamolecules (i.e., dimer, trimer, and asymmetric tetramer) by AFM-enabled manipulation of superspherical AuNPs onto (a) poly(disperse red 1) (pDR1) film (route mean square roughness (RMS) of 2.38 nm for left panel and RMS of 1.63 for right panel) and (b) oxygen plasma-treated glass substrate (RMS of 2.04 nm for left panel and RMS of 2.38 nm for right panel). The orange, light blue, and white arrows indicate the linear vector direction for the assembly of dimer, trimer, and asymmetric tetramer, respectively. The white dotted lines is the reference for clarity. (c) 2D/3D AFM topographic images and SEM images of assembled metamolecules (from top to bottom: dimer (RMS of 1.76 nm), trimer (RMS of 1.87 nm), and asymmetric tetramer (RMS of 2.68 nm). (d) Dark-field optical microscopic images before and after assembly by AFM-enabled linear vector manipulation. The orange, light blue, and white arrows indicate the linear vector direction for the assembly of dimer, trimer, and asymmetric tetramer, respectively. The white dotted boxes correspond to AFM topographic images in (b).
Fig. 4
Fig. 4 (a-d) Numerically simulated and experimentally measured dark-field scattering spectra (averaged intensity) of the assembled metamolecules including monomer (a), dimer (b), trimer (c), and asymmetric tetramer (d). The insets of (c) and (d) represent magnetic near-field distribution at 768 nm of (c) and at 761 nm (d). (e) Electric near-field distribution of trimer at 768 nm (i.e., resonance wavelength of magnetic dipole). (f) Electric near-field distribution of asymmetric tetramer at 761 nm (i.e., resonance wavelength of magnetic dipole). In both trimer and asymmetric tetramer, the circulating electric fields were clearly verified at the resonance wavelength of magnetic dipole.
Fig. 5
Fig. 5 (a-b) AFM topographic images (left panel) and dark-field (DF) optical microscope images (right panel) before (a) and after (b) assembly of four different trimers: trimer 1 (assembly of AuNP no. 1, no. 2, and no. 3), 2 (assembly of AuNP no. 4, no. 5, and no. 6), 3 (assembly of AuNP no. 7, no. 8, and no. 9), and 4 (assembly of AuNP no. 10, no. 11, and no. 12). The white arrows in AFM topographic images indicate the linear vector direction of manipulation. (c) Experimentally measured dark-field scattering spectra (averaged intensity) of four different trimers. (d) Numerically simulated and experimentally measured dark-field scattering spectra (averaged intensity) of trimer with large gap (i.e., 90 nm), which is marked by gray star in (b).
Fig. 6
Fig. 6 (a) Dark-field optical microscope images before (left panel) and after (right panel) assembly of two different trimers (trimer 1 and 2 in right panel) by use of polygonal shaped AuNPs, synthesized by conventional citrate method. (b) SEM images of representative trimers made of polygonal shaped AuNPs. (c) Experimentally measured dark-field scattering spectra of trimer 1 and 2 in right panel of (a).

Metrics