Abstract

Grating-based X-ray differential phase contrast imaging (GDPCI) typically employs the phase-stepping technique to extract an object’s phase information. This method requires heavy radiation dosage and is time consuming. Another potential approach is the reverse projection (RP) method, which, however, relies on a synchrotron radiation source to obtain highly sensitive differential phase contrast(DPC) signal. Here, we present an alternative approach that enables the RP method to be used with a conventional X-ray source and substantially improves the sensitivity of the DPC signal by replacing the analyzer grating of the GDPCI with a sampling grating. This development represents a significant step towards obtaining fast and low-dosage DPC images in medical, biological, and industrial applications.

© 2015 Optical Society of America

1. Introduction

Conventional X-ray imaging relies on absorption as the contrast mechanism and has been applied in various fields, such as medical diagnostics, industrial non-destructive testing, and security checks. However, this technique cannot provide clear contrast images for soft tissues and other weak absorption materials. X-ray phase contrast imaging substantially overcomes this limitation and provides good contrast for such objects. Differential phase contrast imaging (DPCI) is a promising approach that records the phase gradient signals or refraction angles caused by the objects under study. Several types of DPCI techniques, such as diffraction enhanced imaging (DEI) [1, 2], GDPCI [3–7], code aperture imaging [8–10], and grating projection imaging [11] have been developed in the recent years. Although the configurations of these methods are all different, the physical principles involving the determination of refraction angles have some common characteristics [12, 13].

It has been shown that GDPCI holds great promise for practical applications owing to its compatibility with conventional low-brilliance X-ray tubes and capability to obtain quantitative absorption, DPC, and dark field of multi-contrast images [5]. A GDPCI, as shown schematically in Fig. 1, mainly consists of a source grating G0, a phase grating G1, and an analyzer grating G2. G0 divides a conventional X-ray source into an array of multiple line emitters. These emitters, being individually coherent, provide a sufficient spatial coherence for an interference fringe at the first order fractional Talbot distance of dt; this distance is created downstream by G1 even though the emitters are mutually incoherent sources in space. Passing through a phase object, the X-ray beam encounters a slight refraction. The refraction angle α is proportional to the gradient of the phase shift of the object, and is expressed as follows [14]:

α=λc2πφ(x,y)x,
where λc is the central wavelength of the X-ray, x and y represent two directions perpendicular to the optical axis z in the Cartesian coordinates, and φ(x, y) is the phase shift of the wavefront. Although the refraction angle is very small, especially for hard X-rays (typically in the order of micro-radians), it leads to a distortion in the interference pattern. A standard detector has insufficient resolution to resolve the fringe because the fringe has a period of only a few microns. Accordingly, an analyzer grating G2 with period, duty cycle, and orientation similar to those of the fringe is introduced immediately in front of the detection plane. This grating acts as a mask to form resolvable moiré patterns. The intensity of the moiré patterns in each pixel (m, n) can be expressed as a first order Fourier expansion [15]:
I(m,n)a0(m,n)+a1(m,n)cos[2πpm(mcosθ+nsinθ)+ϕ],
and
ϕ=λcdtp2φ(x,y)x,
where θ is a rotational misalignment angle between G1 and G2, and pm is the period of the moiré fringes. a0(m, n) is the DC term and represents the absorption contrast information, a1(m, n) is the first Fourier coefficient that is related to the dark field information, and ϕ represents the DPC information. Each of these quantities can be determined by using the phase-stepping technique.

 figure: Fig. 1

Fig. 1 Schematic of the configuration of a GDPCI.

Download Full Size | PPT Slide | PDF

The phase-stepping technique has an important limitation: its procedure for extracting the phase information leads to multiple exposures and excessive run times. This, in turn, leads to unacceptably high levels of radiation dosage, low mechanical stability, and slow imaging. To overcome this limitation, several interesting fast phase retrieval methods have been developed [15–20]. In 2010, Zhu P. P. et al. first introduced the idea of incorporating DEI to DPCI based on a synchrotron radiation source known as the reverse projection (RP) method. This method has great advantages in fast and low-dose applications, especially for phase contrast computed tomography [6]. However, it typically relies on a synchrotron radiation source to obtain a highly sensitive DPC signal. In this letter, we propose an alternative solution, whereby the analyzer grating in DPCI is replaced with a sampling grating. This approach uses a conventional X-ray source and substantially improves the sensitivity of the DPC signal.

2. Method

In DEI, information regarding the absorption and refraction of an object to be tested can be extracted from the two linear regions of its Bragg analyzer rocking curve. Furthermore, the intensity at the half-power points of the two side slopes can be accurately measured. The steeper the slope, the higher the sensitivity to the refraction signals. Similar to the case of DEI, the extraction of refraction information in the RP method relies on the “grating shifting curve” of the GDPCI with analyzer grating. The grating shifting curve can be acquired by scanning G1 or G2, without the sample, perpendicular to the grating orientation. As shown in Fig. 2(c), the intensity I versus the relative displacement xg between G1 and G2, as recorded by a detector, can be expressed as:

Ixgdt=I0S(xgdt),
where dt is the first order fraction of the Talbot distance between G1 and G2, S(xg/dt) is the grating shifting curve, and I0 is the intensity of the X-ray incoming in front of G2. In addition, we define p2 as the period of G2, and −p2/4dt and p2/4dt as the two points on the steepest slopes of the grating shifting curve. With a sample placed in front of G1, the incident X-ray beam refracts by a small angle θx(x, y) on the plane of G2, and the intensity of the sample image is given by:
Ixgdt=I0exp[μ(x,y)]S[xgdt+θx(x,y)],
where μ(x, y) is the absorption of the sample. For a small value of θx(x, y), S[xg/dt + θx(x, y)] can be approximated to its first order Taylor expansion:
S[x0dt+θx(x,y)]=S(x0dt)+dSd(xg/dt)(x0dt)θx(x,y).
When xg/dt is set at the position of -p2/4dt and p2/4dt, the intensity of the sample can be written as:
Iup(x,y)=I0exp[μ(x,y)][S(p24dt)+dSd(xg/dt)(p24dt)θx(x,y)],
and
Idown(x,y)=I0exp[μ(x,y)][S(p24dt)+dSd(xg/dt)(p24dt)θx(x,y)].
Owing to the symmetry of the grating shifting curve, the intensities at ± p2/4dt are equivalent and the derivative of dS/d (xg/dt) is opposite in sign. Under these conditions, the following equations hold:
S(p24dt)=S(p24dt),
and
dSd(xg/dt)(p24dt)=dSd(xg/dt)(p24dt).
By combining Eqs. (7) and (8) and substituting Eqs. (9) and (10), the absorption image Ia(x, y) and refraction angle image θx(x, y) can be resolved as:
Ia(x,y)=ln[2I0S(p24dt)Iup(x,y)+Idown(x,y)],
and
θx(x,y)=CgIdown(x,y)Iup(x,y)Idown(x,y)+Iup(x,y),
where Cg = S(p2/4dt)/[dS(p2/4dt)/d(xg/dt)] is a constant.

 figure: Fig. 2

Fig. 2 (a) Procedure for sampling fringe at the up-slope region. (b) Procedure for sampling fringe at the down-slope region. (c) Grating shifting curve.

Download Full Size | PPT Slide | PDF

However, a relatively large duty cycle of the analyzer grating, typically γ2 = 0.5, cannot provide sufficient resolution at the two half-power points of the grating shifting curve. This reduces the steepness of the grating shifting curve at ± p2/4d and thus decreases the sensitivity of the refraction signal. Consequently, an analyzer grating with a smaller duty cycle, called a sampling grating, is an alternative method for improving the resolution at the slope region of the grating shifting curve.

To verify the feasibility of the proposed approach, we present a numerical simulation of the procedure involved in the RP method for GDPCI. The simulation is performed by assuming that an X-ray beam passes through a protein pellet as a phase specimen. A CCD camera, with pixel size of 12 μm, is used as the image detector. All parameters are set in accordance with our previously reported experimental parameters [21, 22]. The protein pellet is assumed to have a radius of 350 μm and complex refractive index parameters of β = 1.26495384 × 10−10 and δ = 3.34127037 × 10−7. Note that the phase factor δ is approximately three orders of magnitude larger than the absorption factor β. The effect on the DPCI of a sampling grating with duty cycle of rs = 0.25 and an analyzer grating with duty cycle of r2 = 0.5 are compared in the simulation. Considering the effect of the noise in the system [23], we choose the same noise distribution of the incident X-rays for the methods with analyzer grating and sampling grating, which means that the simulations process launch at the same anode current and exposure time for a fixed tube voltage.

Figures 2(a) and 2(b) show the procedure for obtaining signals at ± p2/4dt of the two slopes of the grating shifting curve [in Fig. 2(c)]. Figure 3 shows the simulation results according to Eq. (12). Figures 3(a) and 3(b) show the protein pellet phantoms acquired by a sampling grating and by an analyzer grating, respectively. Figure 3(c) demonstrates the quantitative difference between the two DPC images. A comparison between the results obtained by the analyzer grating and by the sampling grating reveals that the latter exhibits higher sensitivity compared to the former.

 figure: Fig. 3

Fig. 3 Simulation results of a protein pellet. (a) DPC image by a sampling grating. (b) DPC image by an analyzer grating. (c) Line profiles of (a) and (b). The rear sight of the picture width is 200 μm.

Download Full Size | PPT Slide | PDF

3. Experimental

Furthermore, we performed an experiment to demonstrate the proposed principle. Shown in Fig. 4 is a scanning electron microscope (SEM) image of a part of a sampling grating designed in our lab. The sampling grating was made of single crystal Si-based grating by filling Bi in it, a process involving photo-assisted electrochemical etching and micro-casting methods [24].

 figure: Fig. 4

Fig. 4 SEM image of the sampling grating: (a) front view, and (b) lateral view.

Download Full Size | PPT Slide | PDF

The imaging principle is schematically shown in Fig. 1, except that the analyzer grating G2 is replaced with the sampling grating Gs. The illumination source is a conventional tungsten X-ray generator with an effective focus size of 1(horizontal) × 0.8(vertical) mm2, operating at 60kV/4mA, corresponding to a mean photon energy of 30 keV. The π phase grating G1 is designed and fabricated according to these parameters. The source grating G0 is also fabricated by the micro-casting process. The periods of these two gratings are p0 = 42 μm and p1 = 5.6 μm with a duty cycle of r0 = 0.25 and r1 = 0.5, and heights of h0 = 150 μm and h1 = 40 μm. Gs is designed for a period of ps = 3 μm, a duty cycle of rs = 0.25, and a height of h2 = 150 μm. The distance between G0 and G1 is l = 1.47 m, and the distance between G0 and Gs is dt = 105 mm, respectively. The Gs is directly coupled to an ANDOR 2048 × 2048 (13.5 μm/pixel) area CCD by a 2X magnification fiber optical tape, and thus, the effective pixel size is 27 μm.

Figure 5 shows the experimental results obtained by using the sampling grating. As shown in Fig. 5(a), the grating shifting curve is obtained firstly by scanning the phase grating along the transverse direction xg during one period without the sample. Images of Iup and Idown, with the samples present, are acquired at the positions, marked by two green triangles in Fig. 5(a), corresponding to the center of linear regions on the up slope (xg = -p2/4) and down slope (xg = p2/4) of the grating shifting curve. The exposure time is 10 s for each original image and 10 images are superimposed to reduce the system noise. The absorption image and DPC image can be extracted by using Eqs. (11) and (12), respectively. Figures 5(b) and 5(c) show the images of a polyurethane tube with two different contrast mechanisms, demonstrating that the DPC signal has a strong advantage in resolving the difference in refractive indexes. Figures 5(d) and 5(e) show the results of a biological sample of two peanuts. Compared with the conventional absorption image in Fig. 5(d), the DPC image in Fig. 5(e) clearly provides more details, such as the textured structure of the peanut shell and kernel, which are hardly demonstrated in conventional absorption images.

 figure: Fig. 5

Fig. 5 X-ray imaging of two samples consisting of a polyurethane tube and two peanuts. (a) Plot of intensity oscillation (grating shifting curve) for a detector pixel when the phase grating is scanned along xg without sample. (b) Absorption images of a polyurethane tube, and (c) its DPC image. (d) Absorption images of two peanuts, and (e) their DPC image. The rear sight is 5 mm.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have demonstrated an alternative and simple method to implement X-ray DPCI by replacing the analyzer grating in GDPCI with a sampling grating. This method facilitates the realization of the RP technique using a conventional X-ray source and avoids excessive run time due to the multiple exposures required during phase stepping. The simulation and experimental results show that, in a GDPCI setup, the DPC signal obtained using a sampling grating is significantly better than that obtained using an analyzer grating. Owing to the excellent linearity of the grating shifting curve in the vicinity of ± p2/4, the mechanical precision and stability are considerably improved.

It should be pointed that the signal photons on the detector will be decreased with reducing the duty cycle of analyzer grating. RP method is implemented at the linear region in the grating shifting curve at both sides of the halfway position. Therefore, a grating with its opening the size of the linear region is appropriate. In the future, we hope to perform a rigorous analysis the characteristics of the GDPCI setup with different duty cycle of sampling grating such as noise, resolution, sensitivity and signal photons utilization.

We believe that the results presented here provides an alternative concept for promoting the development of GDPCI, and, in future, would provide faster imaging with lower radiation dosage in fields such as medical diagnoses or in vivo phase contrast imaging.

Acknowledgments

The authors are grateful to the reviewers for their constructive suggestion. This research was supported by the National Natural Science Foundation of China (grant no. 11404221), the China Postdoctoral Science Foundation (grant no. 2014M562204), the National Special Foundation of China for Major Science Instrument (grant no. 61227802), and the National Program on Key Basic Research Project (grant no. 2012CB825802).

References and links

1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995). [CrossRef]  

2. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997). [CrossRef]   [PubMed]  

3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]  

4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006). [CrossRef]  

5. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008). [CrossRef]   [PubMed]  

6. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010). [CrossRef]   [PubMed]  

7. Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013). [CrossRef]   [PubMed]  

8. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007). [CrossRef]  

9. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative X-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36(1), 55–57 (2011). [CrossRef]   [PubMed]  

10. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure X-ray phase contrast imaging using a single attenuation grid,” Opt. Express 19(20), 19781–19789 (2011). [CrossRef]   [PubMed]  

11. Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009). [CrossRef]  

12. P. Zhu, W. Huang, Q. Yuan, Z. Wang, and K. Zhang, “Generalization of DEI methods in grating-based phase-contrast imaging,” in AIP Conf. Proc.1365 (AIP, 2011), pp. 329–332. [CrossRef]  

13. P. P. Zhu, Z. Z. Zhu, Y. L. Hong, K. Zhang, W. X. Huang, Q. X. Yuan, X. J. Zhao, Z. Q. Ju, Z. Y. Wu, Z. Wei, S. Wiebe, and L. D. Chapman, “Common characteristics shared by different differential phase contrast imaging methods,” Appl. Opt. 53(5), 861–867 (2014). [CrossRef]   [PubMed]  

14. D. M. Paganin, Coherent X-ray Optics (Oxford University, 2006).

15. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012). [CrossRef]   [PubMed]  

16. M. Das and Z. Liang, “Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging,” Opt. Lett. 39(18), 5395–5398 (2014). [CrossRef]  

17. I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011). [CrossRef]  

18. H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013). [CrossRef]   [PubMed]  

19. Y. Ge, K. Li, J. Garrett, and G. H. Chen, “Grating based x-ray differential phase contrast imaging without mechanical phase stepping,” Opt. Express 22(12), 14246–14252 (2014). [CrossRef]   [PubMed]  

20. N. Bevins, J. Zambelli, K. Li, and G.-H. Chen, “Comparison of phase contrast signal extraction techniques,” in AIP Conf. Proc.1466 (AIP, 2012), pp. 169–174. [CrossRef]  

21. Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011). [CrossRef]   [PubMed]  

22. Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012). [CrossRef]   [PubMed]  

23. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010). [CrossRef]   [PubMed]  

24. Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
    [Crossref]
  2. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
    [Crossref] [PubMed]
  3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
    [Crossref]
  4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  5. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
    [Crossref] [PubMed]
  6. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
    [Crossref] [PubMed]
  7. Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
    [Crossref] [PubMed]
  8. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
    [Crossref]
  9. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative X-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36(1), 55–57 (2011).
    [Crossref] [PubMed]
  10. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure X-ray phase contrast imaging using a single attenuation grid,” Opt. Express 19(20), 19781–19789 (2011).
    [Crossref] [PubMed]
  11. Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
    [Crossref]
  12. P. Zhu, W. Huang, Q. Yuan, Z. Wang, and K. Zhang, “Generalization of DEI methods in grating-based phase-contrast imaging,” in AIP Conf. Proc.1365 (AIP, 2011), pp. 329–332.
    [Crossref]
  13. P. P. Zhu, Z. Z. Zhu, Y. L. Hong, K. Zhang, W. X. Huang, Q. X. Yuan, X. J. Zhao, Z. Q. Ju, Z. Y. Wu, Z. Wei, S. Wiebe, and L. D. Chapman, “Common characteristics shared by different differential phase contrast imaging methods,” Appl. Opt. 53(5), 861–867 (2014).
    [Crossref] [PubMed]
  14. D. M. Paganin, Coherent X-ray Optics (Oxford University, 2006).
  15. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
    [Crossref] [PubMed]
  16. M. Das and Z. Liang, “Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging,” Opt. Lett. 39(18), 5395–5398 (2014).
    [Crossref]
  17. I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
    [Crossref]
  18. H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
    [Crossref] [PubMed]
  19. Y. Ge, K. Li, J. Garrett, and G. H. Chen, “Grating based x-ray differential phase contrast imaging without mechanical phase stepping,” Opt. Express 22(12), 14246–14252 (2014).
    [Crossref] [PubMed]
  20. N. Bevins, J. Zambelli, K. Li, and G.-H. Chen, “Comparison of phase contrast signal extraction techniques,” in AIP Conf. Proc.1466 (AIP, 2012), pp. 169–174.
    [Crossref]
  21. Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
    [Crossref] [PubMed]
  22. Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
    [Crossref] [PubMed]
  23. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
    [Crossref] [PubMed]
  24. Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
    [Crossref]

2014 (4)

2013 (2)

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

2012 (2)

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

2009 (1)

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

2008 (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

2007 (1)

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

2003 (1)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

1997 (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

1995 (1)

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Adamo, N. M.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Arfelli, F.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Bech, M.

I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Bennett, E. E.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Bevins, N.

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Chapman, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Chapman, L. D.

Chen, G. H.

Y. Ge, K. Li, J. Garrett, and G. H. Chen, “Grating based x-ray differential phase contrast imaging without mechanical phase stepping,” Opt. Express 22(12), 14246–14252 (2014).
[Crossref] [PubMed]

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Chen, J.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Chen, L.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Das, M.

David, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Davis, T. J.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

DeLuca, A. M.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Ding, F.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Du, Y.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Fang, Q.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Gao, D.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Gao, K.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Garrett, J.

Ge, X.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Ge, Y.

Gmür, N.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Gomella, A. A.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Guo, J.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

Gureyev, T. E.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Hamaishi, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Hong, Y. L.

Huang, J.

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

Huang, W. X.

Huang, Z.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Johnston, R. E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Ju, Z. Q.

Kang, K.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Kaufmann, R.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Kawamoto, S.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Kottler, C.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Koyama, I.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Lei, Y.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

Li, J.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Li, K.

Y. Ge, K. Li, J. Garrett, and G. H. Chen, “Grating based x-ray differential phase contrast imaging without mechanical phase stepping,” Opt. Express 22(12), 14246–14252 (2014).
[Crossref] [PubMed]

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Liang, Z.

Lin, D.

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

Liu, X.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Liu, Y.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Marone, F.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

McDonald, S. A.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Menk, R.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Miao, H.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Momose, A.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Morgan, K. S.

Morgan, N. Y.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Niu, H.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for x-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

Olivo, A.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

Paganin, D. M.

Pan, Z.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Patel, A.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Pfeiffer, F.

I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Pisano, E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Qi, Z.

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Revol, V.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Sayers, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Siu, K. K. W.

Speller, R.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

Stampanoni, M.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Stevenson, A. W.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Straumann, U.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Suzuki, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Takai, H.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Thomlinson, W.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Urban, C.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Wang, D.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Washburn, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Wei, Z.

Weitkamp, T.

I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Wen, H.

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

Wiebe, S.

Wilkins, S. W.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Wu, Z.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Wu, Z. Y.

Yuan, Q. X.

Zambelli, J.

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Zanette, I.

I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
[Crossref]

Zhang, K.

P. P. Zhu, Z. Z. Zhu, Y. L. Hong, K. Zhang, W. X. Huang, Q. X. Yuan, X. J. Zhao, Z. Q. Ju, Z. Y. Wu, Z. Wei, S. Wiebe, and L. D. Chapman, “Common characteristics shared by different differential phase contrast imaging methods,” Appl. Opt. 53(5), 861–867 (2014).
[Crossref] [PubMed]

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Zhang, L.

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Zhao, X. J.

Zhao, Z.

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Zhong, Z.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Zhu, P.

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Zhu, P. P.

Zhu, Z. Z.

Anal. Bioanal. Chem. (1)

Y. Du, J. Huang, D. Lin, and H. Niu, “Analysis of field of view limited by a multi-line x-ray source and its improvement for grating interferometry,” Anal. Bioanal. Chem. 404(3), 793–797 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, “Interlaced phase stepping in phase-contrast x-ray tomography,” Appl. Phys. Lett. 98(9), 094101 (2011).
[Crossref]

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91(7), 074106 (2007).
[Crossref]

J. Micromech. Microeng. (1)

Y. Lei, Y. Du, J. Li, Z. Zhao, X. Liu, J. Guo, and H. Niu, “Fabrication of x-ray absorption gratings via micro-casting for grating-based phase contrast imaging,” J. Micromech. Microeng. 24(1), 015007 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, H. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Med. Phys. (2)

N. Bevins, J. Zambelli, K. Li, Z. Qi, and G. H. Chen, “Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping,” Med. Phys. 39(1), 424–428 (2012).
[Crossref] [PubMed]

Z. Wu, K. Gao, Z. Wang, X. Ge, J. Chen, D. Wang, Z. Pan, K. Zhang, P. Zhu, and Z. Wu, “A new method to retrieve phase information for equiangular fan beam differential phase contrast computed tomography,” Med. Phys. 40(3), 031911 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Nature (1)

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Phys. Rev. A (1)

Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays,” Phys. Rev. A 79(1), 013815 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Miao, L. Chen, E. E. Bennett, N. M. Adamo, A. A. Gomella, A. M. DeLuca, A. Patel, N. Y. Morgan, and H. Wen, “Motionless phase stepping in x-ray phase contrast imaging with a compact source,” Proc. Natl. Acad. Sci. U.S.A. 110(48), 19268–19272 (2013).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13576–13581 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81(7), 073709 (2010).
[Crossref] [PubMed]

Other (3)

N. Bevins, J. Zambelli, K. Li, and G.-H. Chen, “Comparison of phase contrast signal extraction techniques,” in AIP Conf. Proc.1466 (AIP, 2012), pp. 169–174.
[Crossref]

P. Zhu, W. Huang, Q. Yuan, Z. Wang, and K. Zhang, “Generalization of DEI methods in grating-based phase-contrast imaging,” in AIP Conf. Proc.1365 (AIP, 2011), pp. 329–332.
[Crossref]

D. M. Paganin, Coherent X-ray Optics (Oxford University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the configuration of a GDPCI.
Fig. 2
Fig. 2 (a) Procedure for sampling fringe at the up-slope region. (b) Procedure for sampling fringe at the down-slope region. (c) Grating shifting curve.
Fig. 3
Fig. 3 Simulation results of a protein pellet. (a) DPC image by a sampling grating. (b) DPC image by an analyzer grating. (c) Line profiles of (a) and (b). The rear sight of the picture width is 200 μm.
Fig. 4
Fig. 4 SEM image of the sampling grating: (a) front view, and (b) lateral view.
Fig. 5
Fig. 5 X-ray imaging of two samples consisting of a polyurethane tube and two peanuts. (a) Plot of intensity oscillation (grating shifting curve) for a detector pixel when the phase grating is scanned along xg without sample. (b) Absorption images of a polyurethane tube, and (c) its DPC image. (d) Absorption images of two peanuts, and (e) their DPC image. The rear sight is 5 mm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α= λ c 2π φ( x,y ) x ,
I( m,n ) a 0 ( m,n )+ a 1 ( m,n )cos[ 2π p m ( mcosθ+nsinθ )+ϕ ],
ϕ= λ c d t p 2 φ( x,y ) x ,
I x g d t = I 0 S( x g d t ),
I x g d t = I 0 exp[ μ( x,y ) ]S[ x g d t + θ x ( x,y ) ],
S[ x 0 d t + θ x ( x,y ) ]=S( x 0 d t )+ dS d( x g / d t ) ( x 0 d t ) θ x ( x,y ).
I up ( x,y )= I 0 exp[ μ( x,y ) ][ S( p 2 4 d t )+ dS d( x g / d t ) ( p 2 4 d t ) θ x ( x,y ) ],
I down ( x,y )= I 0 exp[ μ( x,y ) ][ S( p 2 4 d t )+ dS d( x g / d t ) ( p 2 4 d t ) θ x ( x,y ) ].
S( p 2 4 d t )=S( p 2 4 d t ),
dS d( x g / d t ) ( p 2 4 d t )= dS d( x g / d t ) ( p 2 4 d t ).
I a ( x,y )=ln[ 2 I 0 S( p 2 4 d t ) I up ( x,y )+ I down ( x,y ) ],
θ x ( x,y )= C g I down ( x,y ) I up ( x,y ) I down ( x,y )+ I up ( x,y ) ,

Metrics