Abstract

We reported on the generation of dual-wavelength rectangular pulses in a Yb-doped fiber laser (YDFL) by using a microfiber-based graphene saturable absorber (GSA). The duration of dual-wavelength rectangular pulse could be varied from 1.41 ns to 4.23 ns with the increasing pump power. With a tunable bandpass filter, it was found that the characteristics of the rectangular pulses centered at 1061.8 nm and 1068.8 nm are similar to each other. Moreover, the dual-wavelength switchable operation was also realized by properly rotating the polarization controllers (PCs). The demonstration of the dual-wavelength rectangular pulses from a YDFL would open some applications for fields such as spectroscopy, biomedicine and sensing research.

© 2014 Optical Society of America

1. Introduction

Passively mode-locked Yb-doped fiber lasers (YDFLs) delivering ultrashort pulses have attracted much attention in recent decades due to their wide applications ranging from industrial to scientific research such as material processing, medicine, nonlinear microscopy, biology and nuclear physics [1,2]. Being different from the Er-doped fiber lasers, the YDFLs operate in the all-normal dispersion regime. Since the pulse evolution is strongly affected by the cavity dispersion, so far different pulse formation mechanisms and dynamics have been observed in passively mode-locked YDFLs. Generally, the passively mode-locked pulse evolved in YDFLs was believed to be conventional sech- or Gaussian-like dissipative soliton. However, recent achievements show that other solitons with different formation mechanisms could be also observed in YDFLs, such as similariton [3,4], bound solitons [5]. Very recently, the generation of rectangular pulse in fiber lasers has attracted much attention due to pulse energy scaling ability [610]. Indeed, the rectangular pulse could be experimentally obtained despite of dispersion regime and gain medium [1115], even in all-normal-dispersion YDFLs [15]. Nevertheless, the aforementioned generation of rectangular pulse is only single wavelength operation. In some applications, fiber lasers that generate dual- or multi-wavelength pulses would be more favorable [1621].

On the other hand, graphene has been demonstrated as an excellent nanomaterial for fabrication of saturable absorber (SA) [2224]. The graphene saturable absorber (GSA) possesses several advantages such as wavelength-independent saturable absorption characteristic, low saturable absorption threshold, and large modulation depth. As for fabrication of fiber-compatible GSA, several methods have been proposed, such as using chemical vapor deposition [25,26], polymer nanocomposite [27,28], and optical deposition [29,30]. Based on the fabricated GSA, the passively mode-locked fiber laser generally delivered the conventional pulse with sech or Gaussian profile [2230]. Recently, the microfiber was also proposed to deposit the graphene to form a SA [31]. By virtue of the geometric characteristic, the microfiber-based graphene was believed as a good candidate of nonlinear photonic device for investigating some nonlinear phenomena such as pulse shaping and four-wave-mixing [32,33]. Given that the multiwavelength mode locking and rectangular pulses are of great significance in field of laser physics, it would be interesting to develop a dual-wavelength rectangular pulse YDFL by using a microfiber-based GSA.

In this work, we demonstrated a dual-wavelength rectangular pulse YDFL by using a microfiber-based GSA. With the increasing pump power, the duration of dual-wavelength rectangular pulse varied from 1.41 ns to 4.23 ns. It was found that each wavelength corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter, where the dual-wavelength rectangular pulses show similar characteristics. In addition, the dual-wavelength switchable operation was also achieved. The demonstrated dual-wavelength rectangular pulse YDFL possesses flexible pulse output, which might open some new applications for the related fields.

2. GSA fabrication

In the experiment, the optical deposition method [34] was employed to fabricate the microfiber-based GSA. Firstly, the graphene/Dimethylformamide (DMF) solution with a concentration of 0.075 mg/ml was ultrasonicated for 30 minutes to ensure the uniformity of the solution. Then the standard single-mode fiber (SMF) was stretched into a microfiber with the waist diameter of ~6 µm by utilizing the flame brushing technique. Finally, the graphene/DMF solution was dripped around the waist region of the microfiber. An amplified spontaneous emission (ASE) light source was injected into the microfiber for optical evanescent-field deposition. The process of deposition was in situ observed through the microscope. When the graphene was deposited on the microfiber at a proper amount, we turn off the ASE light source. Then the deposited graphene was evaporated at room temperature. The microscopy image of the as-prepared microfiber-based GSA was presented in Fig. 1, showing that the graphene was uniformly and compactly deposited on the microfiber.

 

Fig. 1 Microscopy image of fabricated microfiber-based GSA.

Download Full Size | PPT Slide | PDF

3. Laser performance and discussions

After preparing the microfiber-based GSA, we incorporated it into a Yb-doped fiber ring laser. The experimental setup of the dual-wavelength YDFL with a microfiber-based GSA was shown in Fig. 2. It has a ring cavity configuration made of pure normal-dispersion fibers. A piece of 3 m Yb-doped fiber (YDF) was used as the gain medium, which was pumped by a 980 nm laser diode with maximum output power of 370 mW after passing a 980/1060 nm wavelength-division multiplexer (WDM). The other fibers were all standard SMFs with a length of ~112 m. Thus, the total cavity length was ~115 m, corresponding to the cavity roundtrip time of ~561.8 ns. A bandpass filter centered at 1064 nm with a bandwidth of 8 nm was employed to obtain stable mode-locking operation [35]. To ensure unidirectional light propagation, a polarization-independent isolator (PI-ISO) was employed. A 20/80 coupler was used to output the laser emission. The output optical spectrum of the proposed laser was monitored by an optical spectrum analyzer (OSA). The pulse characteristics were detected by an oscilloscope (LeCroy Wave Runner 104MXi, 1 GHz) together with a 12.5 GHz photodetector (Newport 818-BB-35F) and a radio-frequency (RF) spectral analyzer (Advantest R3131A).

 

Fig. 2 Schematic of dual-wavelength rectangular pulse YDFL with a microfiber-based GSA.

Download Full Size | PPT Slide | PDF

As we know, squeezing the fiber in the PCs could generate the polarization-dependent loss. The combination of the intracavity birefringence and the polarization-dependent loss could induce a comb filtering effect which could be used to achieve multiwavelength operation [16]. Therefore, when the pump power was increased to about 100 mW, single- and dual-wavelength cw operation could be easily observed by properly rotating the PCs. Figure 3(a) provides an example of the spectrum of dual-wavelength cw operation. Since the GSA was incorporated into the laser cavity, it was expected that dual-wavelength passive mode-locking could be achieved by increasing the pump power. Thus, in order to obtain dual-wavelength mode-locked pulses, we kept the cavity parameters and just increased the pump power when the dual-wavelength cw operation was achieved. In this case, the dual-wavelength mode-locked pulses were obtained as the pump power was increased to 263 mW. Figure 3(b) presents the typical dual-wavelength mode-locked spectrum. As can be seen from Fig. 3(b), the dual-wavelength simultaneously oscillated at 1061.8 and 1068.8 nm, with a 3dB bandwidth of 4.50 nm and 2.16 nm, respectively. It should be noted that the center wavelengths of dual-wavelength mode-locking are almost the same as those of cw operation. Then the dual-wavelength mode-locking in the time domain was investigated. Notably, the pulse profile exhibits rectangular shape on the oscilloscope trace, as shown in Fig. 3(c). Here, the pulse duration is 2.64 ns, as presented in the inset of Fig. 3(c). The pulse repetition rate is 1.78 MHz, which is determined by the cavity length. In the experiment, we also employed a commercial autocorrelator (FR-103XL) to check the fine structure of the rectangular pulse. However, no pulse signal could be detected with the autocorrelator, it is because the nanosecond duration of the rectangular pulse is beyond the maximum measurement range of the autocorrelator (90 ps), which indicates that the rectangular pulse is not the tight bunching of multi-soliton [36]. The RF spectrum presented in Fig. 3(d) revealed a fundamental cavity repetition rate of 1.78 MHz. The RF signal-to-noise ratio (SNR) over 50 dB confirmed that the mode-locking pulse was stable.

 

Fig. 3 Dual-wavelength operation. (a) cw laser operation; (b) Mode-locked spectrum; (c) Pulse-train. Inset: single pulse; (d) Corresponding RF spectrum.

Download Full Size | PPT Slide | PDF

Then the pulse evolution with the variation of the pump power was investigated. Although dual-wavelength mode-locking state was initiated at the pump power of 263 mW in our experiment, the fiber laser could sustain the dual-wavelength mode-locking state when the pump power was decreased to ~180 mW due to the pump hysteresis phenomenon [37]. Figure 4(a) shows the pulse width broadening when the pump power was increased. As can be seen in Fig. 4(a), the pulse duration varied from 1.41 ns to 4.23 ns as the pump power was increased from 187 mW to 370 mW. In addition, the pulse amplitude was almost clamped at a constant level during the pulse broadening. It should be also noted that during the process of the rectangular pulse broadening, the 3-dB spectral bandwidths of the dual-wavelength mode-locked spectra were almost invariable despite of the slightly increasing spectral intensity. These rectangular pulse characteristics mentioned above are the same as those in dissipative soliton resonance (DSR) region [1115]. Therefore, the dual-wavelength mode-locked rectangular pulse could be regarded as DSR pulse. Figure 4(b) further shows the experimentally measured pulse duration and the average output power versus the pump power. Here, the pulse width increased monotonically to 4.23 ns when the pump power was up to 370 mW. Correspondingly, the maximum output power of rectangular pulse is 3.05 mW under the pump power of 370 mW. Since the pulse repetition rate is 1.78 MHz, the maximum output pulse energy was 1.713 nJ.

 

Fig. 4 (a) Dynamics of pulse broadening with the pump power increased; (b) Experimentally measured pulse width and average output power versus the pump power.

Download Full Size | PPT Slide | PDF

To further study the characteristics of the dual-wavelength mode-locking operation, a bandpass filter with a tuning range from 1020 nm to 1090 nm was employed to resolve the lasing at each wavelength. The filtered spectra are shown in Fig. 5. Here, the initial dual-wavelength spectrum (black dotted curve) can be resolved as two independent spectra (blue and red curves), corresponding to the two spectral humps centered at 1061.8 nm and 1068.8 nm, respectively. The filtered pulse-trains centered at two wavelengths are shown in Figs. 6(a) and 6(c), suggesting that both of the two wavelengths operated individually in passive mode-locking state. For better clarity, the oscilloscope traces measured with small scan range are also shown in the insets of Figs. 6(a) and 6(c). The pulse profiles of both the two wavelengths are rectangular. The duration of the pulses were slightly different with each other, which were measured to be 2.41 ns (1061.8 nm) and 2.20 ns (1068.8 nm), respectively. In addition, we have also measured the RF spectra of the mode-locked pulse-trains at two wavelengths. The SNR of the two wavelengths are ~50 dB, as presented in Figs. 6(b) and 6(d).

 

Fig. 5 Filtered spectra of dual-wavelength rectangular pulse operation.

Download Full Size | PPT Slide | PDF

 

Fig. 6 Wavelength resolved operation. (a) and (c) The pulse-trains (Inset: single pulse) centered at 1061.8 nm and 1068.8 nm, respectively; (b) and (d) Corresponding RF spectra.

Download Full Size | PPT Slide | PDF

With the further orientations of the PCs, the cavity loss for the dual-wavelength pulses could vary, which could be employed for the wavelength switchable operation of dual-wavelength rectangular pulses [16]. Figure 7 shows the wavelength switchable operation of the proposed rectangular pulse fiber laser by carefully rotating the PCs. As can be seen in Figs. 7(a) and 7(c), the center wavelengths of the switchable rectangular pulses are 1061.8 nm and 1068.8 nm, respectively, in agreement with the central wavelengths of the dual-wavelength rectangular pulse operation. The corresponding pulse-trains are shown in Figs. 7(b) and 7(d), whose pulse repetition rates are both ~1.78 MHz. In addition, the pulse profiles centered at two wavelengths were also shown in the insets of in Figs. 7(b) and 7(d), which are both rectangular shapes with 2.56 ns and 2.17 ns durations, respectively. In the case of wavelength switching operation, the output pulse was still checked by a commercial autocorrelator. However, the same as the case of dual-wavelength rectangular pulse operation, no autocorrelation trace could be detected again.

 

Fig. 7 Wavelength switchable operation of the proposed rectangular pulse fiber laser: (a) and (c) The spectra centered at 1061.8 nm and 1068.8 nm, respectively; (b) and (d) Corresponding pulse-trains (Inset: single pulse).

Download Full Size | PPT Slide | PDF

In our experiment, we noted that the maximum pulse energy under the available pump power level is only about 1.713 nJ, which might be a little low. It could be mainly because the insertion loss of the microfiber-based GSA is not small enough, i.e., ~6.7 dB in this experiment. Thus, the output pulse energy could be improved by further fabricating a higher performance GSA with low insertion loss. In addition, only the dual-wavelength mode-locking operation was obtained, which could be due to the large channel spacing of the intra-cavity birefringence-induced comb filter. Therefore, in order to obtain multiwavelength mode-locked rectangular pulses, we could employ a comb filter with narrower channel spacing in the fiber laser, such as high-birefringence-based comb filter [38]. Although the generation of the rectangular pulse was only reported in this work, in the current laser system we have also observed the tightly bunched solitons. It was also found that the tightly bunched solitons could result in the ‘rectangular’ shape pulse shown on the oscilloscope trace due to the limited bandwidth of the used oscilloscope [36]. However, different from the rectangular pulse reported in this work, when achieving the tightly bunched solitons, the autocorrelation trace could be clearly observed. Based on the above experimental results, we could infer that the rectangular pulse obtained in this work is a single coherent pulse.

4. Conclusion

In conclusion, we have demonstrated the generation of dual-wavelength rectangular pulse from a YDFL with a microfiber-based GSA. After being resolved by a tunable bandpass spectrum filter, it is found that each wavelength corresponds to an independent rectangular pulse. The duration of dual-wavelength rectangular pulse broadened from 1.41 ns to 4.23 ns with the increasing pump power. Moreover, by properly rotating the PCs, the dual-wavelength switchable operation was also obtained. Such a dual-wavelength laser with flexible rectangular pulse outputs at 1.0 μm would find some applications in spectroscopy, biomedicine and sensing research.

Acknowledgments

This work was supported in part from the National Natural Science Foundation of China (Grant Nos. 61378036, 61307058, 11304101, 11074078), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320), and the Scientific Research Foundation of Graduate School of South China Normal University (Grant No. 2013kyjj044). Z.-C. Luo acknowledges the financial support from Zhujiang New-Star Plan of Science & Technology in Guangzhou City.

References and links

1. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008). [CrossRef]  

2. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007). [CrossRef]   [PubMed]  

3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000). [CrossRef]   [PubMed]  

4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004). [CrossRef]   [PubMed]  

5. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14(13), 6075–6083 (2006). [CrossRef]   [PubMed]  

6. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008). [CrossRef]  

7. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008). [CrossRef]  

8. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010). [CrossRef]  

9. E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011). [CrossRef]   [PubMed]  

10. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]  

11. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009). [CrossRef]   [PubMed]  

12. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012). [CrossRef]   [PubMed]  

13. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010). [CrossRef]   [PubMed]  

14. L. Duan, X. M. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012). [CrossRef]   [PubMed]  

15. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013). [CrossRef]   [PubMed]  

16. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009). [CrossRef]   [PubMed]  

17. Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012). [CrossRef]   [PubMed]  

18. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012). [CrossRef]  

19. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013). [PubMed]  

20. B. G. Bale, E. Farnum, and J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008). [CrossRef]  

21. Z. Chen, H. Z. Sun, S. Z. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008). [CrossRef]  

22. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]  

23. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]  

24. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010). [CrossRef]  

25. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009). [CrossRef]   [PubMed]  

26. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010). [CrossRef]   [PubMed]  

27. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]  

28. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

29. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef]   [PubMed]  

30. H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011). [CrossRef]  

31. J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012). [CrossRef]  

32. P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, and W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013). [CrossRef]  

33. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014). [CrossRef]  

34. K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009). [CrossRef]   [PubMed]  

35. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008). [CrossRef]  

36. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008). [CrossRef]  

37. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]  

38. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
    [CrossRef]
  2. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007).
    [CrossRef] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [CrossRef] [PubMed]
  5. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14(13), 6075–6083 (2006).
    [CrossRef] [PubMed]
  6. N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [CrossRef]
  7. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [CrossRef]
  8. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010).
    [CrossRef]
  9. E. Ding, Ph. Grelu, J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
    [CrossRef] [PubMed]
  10. Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [CrossRef]
  11. X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [CrossRef] [PubMed]
  12. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
    [CrossRef] [PubMed]
  13. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
    [CrossRef] [PubMed]
  14. L. Duan, X. M. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
    [CrossRef] [PubMed]
  15. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
    [CrossRef] [PubMed]
  16. H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [CrossRef] [PubMed]
  17. Z. X. Zhang, Z. W. Xu, L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
    [CrossRef] [PubMed]
  18. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
    [CrossRef]
  19. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [PubMed]
  20. B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008).
    [CrossRef]
  21. Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
    [CrossRef]
  22. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [CrossRef]
  23. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
    [CrossRef]
  24. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [CrossRef]
  25. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [CrossRef] [PubMed]
  26. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
    [CrossRef] [PubMed]
  27. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [CrossRef]
  28. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  29. A. Martinez, K. Fuse, B. Xu, S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
    [CrossRef] [PubMed]
  30. H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
    [CrossRef]
  31. J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
    [CrossRef]
  32. P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
    [CrossRef]
  33. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
    [CrossRef]
  34. K. Kashiwagi, S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009).
    [CrossRef] [PubMed]
  35. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
    [CrossRef]
  36. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [CrossRef]
  37. A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [CrossRef]
  38. Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
    [CrossRef]

2014 (1)

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

2013 (3)

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

2012 (6)

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Z. X. Zhang, Z. W. Xu, L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
[CrossRef] [PubMed]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[CrossRef]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

L. Duan, X. M. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[CrossRef] [PubMed]

2011 (3)

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

E. Ding, Ph. Grelu, J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[CrossRef] [PubMed]

Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[CrossRef]

2010 (6)

2009 (7)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

K. Kashiwagi, S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009).
[CrossRef] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[CrossRef] [PubMed]

2008 (7)

N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008).
[CrossRef]

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Akhmediev, N.

Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[CrossRef]

Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Ankiewicz, A.

Bale, B. G.

B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008).
[CrossRef]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

Bao, Q. L.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Brunel, M.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Cai, Z. P.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Cai, Z. R.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

Cao, W. J.

Chang, W.

Chédot, C.

Chen, W. C.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Chen, Z.

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

Cheng, H. H.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Cheng, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Chiang, K. S.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Cho, J.

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

Chong, A.

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Cui, Y. D.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Ding, E.

Duan, L.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Dutta, N. K.

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

Farnum, E.

B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008).
[CrossRef]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Fu, H. Y.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Fuse, K.

Gong, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Grelu, Ph.

Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[CrossRef]

E. Ding, Ph. Grelu, J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[CrossRef] [PubMed]

Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Haboucha, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Han, D. D.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Hideur, A.

Hu, X. H.

Huang, Y. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

Ilday, F. O.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Jang, S. Y.

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

Kashiwagi, K.

Kim, H.

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Komarov, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Kutz, J. N.

Leblond, H.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Li, X. H.

Liao, J. H.

Limpert, J.

Lin, Z. B.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

Liu, J.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Liu, L.

Liu, X. M.

Loh, K. P.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Lu, H.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
[CrossRef] [PubMed]

Luo, A. P.

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[CrossRef]

Luo, Z. C.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[CrossRef]

Luo, Z. Q.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

Ma, S. Z.

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

Mao, D.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

L. Duan, X. M. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[CrossRef] [PubMed]

Martinez, A.

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Ning, Q. Y.

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Ortaç, B.

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Qi, W.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Rao, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Renninger, W. H.

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Salhi, M.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Sanchez, F.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Schmidt, O.

Schreiber, T.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Song, Y. W.

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

Soto-Crespo, J. M.

Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27(11), 2336–2341 (2010).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Sun, H. Z.

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Sun, Z. P.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Tang, D. Y.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[CrossRef] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tünnermann, A.

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Wang, F. Q.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Wang, G.

Wang, J. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Wang, L.

Wang, L. R.

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Wang, Y. S.

Wise, F. W.

F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Wu, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Wu, X.

Wu, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Xing, X. B.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Xu, B.

Xu, H. Y.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Xu, S. H.

Xu, W. C.

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[CrossRef] [PubMed]

Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[CrossRef]

Xu, Z. W.

Yamashita, S.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Yang, Z. M.

Yao, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Ye, C. C.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

Yu, W.

Zeng, C.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Zhang, H.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

Zhang, L.

Zhang, Z. X.

Zhao, L. M.

Zhao, W.

Zhou, M.

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Zhou, X.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Zhu, P. F.

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

H. Kim, J. Cho, S. Y. Jang, Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. G. Bale, E. Farnum, J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44(10), 976–983 (2008).
[CrossRef]

IEEE Photon. J. (2)

J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[CrossRef]

Z. C. Luo, A. P. Luo, W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3(1), 64–70 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[CrossRef]

Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20(24), 2066–2068 (2008).
[CrossRef]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

Laser Phys. Lett. (1)

P. F. Zhu, Z. B. Lin, Q. Y. Ning, Z. R. Cai, X. B. Xing, J. Liu, W. C. Chen, Z. C. Luo, A. P. Luo, W. C. Xu, “Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber,” Laser Phys. Lett. 10(10), 105107 (2013).
[CrossRef]

Nat. Photonics (1)

Ph. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[CrossRef]

Opt. Express (10)

X. Wu, D. Y. Tang, H. Zhang, L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

L. Duan, X. M. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[CrossRef] [PubMed]

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[CrossRef] [PubMed]

Z. X. Zhang, Z. W. Xu, L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007).
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14(13), 6075–6083 (2006).
[CrossRef] [PubMed]

A. Martinez, K. Fuse, B. Xu, S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[CrossRef] [PubMed]

K. Kashiwagi, S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Phys. Rev. A (3)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, H. Leblond, F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Sci. Rep. (1)

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscopy image of fabricated microfiber-based GSA.

Fig. 2
Fig. 2

Schematic of dual-wavelength rectangular pulse YDFL with a microfiber-based GSA.

Fig. 3
Fig. 3

Dual-wavelength operation. (a) cw laser operation; (b) Mode-locked spectrum; (c) Pulse-train. Inset: single pulse; (d) Corresponding RF spectrum.

Fig. 4
Fig. 4

(a) Dynamics of pulse broadening with the pump power increased; (b) Experimentally measured pulse width and average output power versus the pump power.

Fig. 5
Fig. 5

Filtered spectra of dual-wavelength rectangular pulse operation.

Fig. 6
Fig. 6

Wavelength resolved operation. (a) and (c) The pulse-trains (Inset: single pulse) centered at 1061.8 nm and 1068.8 nm, respectively; (b) and (d) Corresponding RF spectra.

Fig. 7
Fig. 7

Wavelength switchable operation of the proposed rectangular pulse fiber laser: (a) and (c) The spectra centered at 1061.8 nm and 1068.8 nm, respectively; (b) and (d) Corresponding pulse-trains (Inset: single pulse).

Metrics