Abstract

We present an optical holographic micro-tomographic technique for imaging both the three-dimensional structures and dynamics of biological cells. Optical light field images of a sample, illuminated by a plane wave with various illumination angles, are measured in a common-path interferometry, and thus both the three-dimensional refractive index tomogram and two-dimensional dynamics of live biological cells are measured with extremely high sensitivity. The applicability of the technique is demonstrated through quantitative and measurements of morphological, chemical, and mechanical parameters at the individual cell level.

© 2014 Optical Society of America

1. Introduction

In the last decade, there have been significant advances in quantitative phase imaging (QPI) techniques, which have potential for diverse applications in various research fields [13]. Due to its non-invasiveness and quantitative and label-free imaging capability, QPI has played important roles in several emerging biophysical studies including the pathophysiology of human red blood cells (RBCs) [49], the live cell imaging [10], the investigation of bacteria [11] and neuron cells [12], the measurements of angle resolved light scattering from individual cells [1316], and the measurements of cellular growth and division [17, 18].

QPI techniques based on a common-path interferometry design have recently achieved extremely high phase-sensitivity [1924]; sensitivity of optical path lengths of about a few milliradian can be realized, enabling quantification of subtle cell membrane motions [25, 26]. One the other hand, tomographic QPI techniques have been employed to measure the 3D tomograms of individual biological samples [2737]. Tomographic QPI techniques, typically based on a Mach-Zehnder interferometer, measure multiple 2D optical fields with various illumination angles to reconstruct the 3D tomogram of a sample based on appropriate algorithms. These two technical advances have significantly extended the applications of the QPI including measurement of the 3D structures of living cells and the dynamic fluctuation in cell membranes [57, 38].

None of the existing techniques, however, precisely measure both 3D tomograms and 2D dynamics of live individual biological cells using a single optical setup. Current common-path QPI techniques can measure the 2D dynamic phase images of a sample with high stability. However, the measured phase images are translated into physical thickness information assuming the refractive index (RI) of the sample, because the RI of the sample should be independently measured. Existing QPI tomography methods typically employ Mach-Zehnder interferometry and suffer from phase noise, which impedes stable measurement of a sample with high stability. One of the unexplored applications of QPI is to simultaneously measure the local RI of individual cells and the dynamic membrane fluctuation of the cells at the single cell level. This can offer the possibility of investigating the subtle alterations associated with pathophysiology of several diseases at the single cell level [39]. Although there is strong motivation for single cell profiling, achieving a full-field common-path tomographic phase imaging technique has been regarded as technically challenging. To fully profile individual cells, morphological, chemical, and mechanical parameters should be quantified at the individual cell level, which requires measuring both the 3-D RI tomogram and dynamic fluctuations at the individual cell level. For this purpose, optical instruments should provide 3-D RI tomography capability while providing common-path interferometry for highly stable dynamic phase measurement.

Here, a novel common-path quantitative phase tomography, referred to as common-path diffraction optical tomography (cDOT), is presented to measure both the 3D RI tomogram and 2D dynamic phase images of a sample. The angle of the beam impinging onto a sample is scanned over a wide range for tomographic measurements, and the beam diffracted from the sample is de-scanned to ensure common-path interferometry. This non-invasive and label-free technique simultaneously characterizes the 3D structures and 2D dynamics of individual cells. We demonstrate the capability of cDOT by measuring morphological, chemical, and mechanical parameters of healthy human red blood cells (RBCs) at the single cell level. In addition, we also show the tomographic image of a hepatocyte cell as a model eukaryotic cell.

2. Methods and results

2.1. Common-path diffraction optical tomography

The experimental scheme of cDOT is based on the principles of common-path laser-interferometric microscopy and optical diffraction tomography (Fig. 1). A sample, which is positioned between the condenser lens (CL) and objective lens (OL), is illuminated using a spatially filtered plane-wave laser beam with specific angles of illumination. The angle of the impinging beam is systematically controlled by rotating a two-axis galvanometer mirror (GM1). GM2, which is located at the conjugated plane to the sample and GM1, is synchronized with GM1 such that the angle of the beam reflected from GM2 remains unchanged regardless of the illumination angle. Then, after passing through the sample, the beam can be precisely quantified using a common-path interferometric microscope using the principle of diffraction phase microscopy, the details of which can be found elsewhere [19, 20]. Finally, a spatially modulated hologram is recorded onto an image sensor from which a full-field optical-field image with both amplitude and phase information is quantitatively retrieved using a phase retrieval algorithm [40].

 

Fig. 1 Experimental setup and principle of cDOT. (a) The cDOT setup is composed of two galvanometric mirrors (GM1, GM2) synchronized with each other and a laser-interferometric microscope in a common-path geometry. A sample is positioned between the condenser and objective lenses. OL: objective lens; CL: condenser lens; GM1-2: galvanometric mirrors; M1-2: mirrors; L1-8: lenses. (b) The angle of an illumination beam impinging onto the sample is scanned by rotating GM1 and is de-scanned by GM2 in a synchronized manner such that the angle of the beam reflected from GM2 remains unchanged. (Inset) The sample is illuminated with a plane wave at different angles of illumination

Download Full Size | PPT Slide | PDF

The synchronized angle-scanning and common-path interferometry are finely tuned to work together, which allows simultaneous measurement of the 3D RI tomography and the dynamic 2D membrane fluctuations of individual biological cells. By changing the angles of the illumination impinging on the sample, cDOT measures multiple 2D optical fields with different illumination angles from which 3D RI tomograms of the sample are reconstructed using optical diffraction tomography [4143]. In order to measure the 2D dynamic images of the cell, the illumination angle is fixed at normal to the sample and cDOT can measure high-speed dynamic 2D optical fields from which the dynamic fluctuations in the RBC membrane can be retrieved.

2.2. Experimental setup

A diode-pumped solid-state (DPSS) laser (λ = 532 nm, 50 mW, Cobolt, Solna, Sweden) was used as an illumination source for an inverted microscope (IX73, Olympus Inc., Center Valley, PA, USA). The laser beam was first spatially filtered by a pinhole with a diameter of 25 μm. The collimated laser beam was steered by a two-axis galvanometric mirror (GM1, GVS012/M, Thorlabs, USA), and then projected onto a sample plane via a 4-f telescopic lens system composed of a lens (L1) and a condenser lens [CL, UPLFLN 60 × , numerical aperture (NA) = 0.9, Olympus, Japan] with a tube lens (f = 200 mm). A sample was prepared and sandwiched between two cover glasses separated by a thin spacer of double side tape. At the sample plane, the illumination angle of the beam can be rapidly scanned by GM1. The diffracted beam from the sample was collected by a high-NA objective lens (OL, UPLSAPO 60 × , oil immersion, NA = 1.42, Olympus, Japan).

To maintain an optical axis for common-path interferometry, the second two-axis galvanometric mirror (GM2, GVS012/M, Thorlabs, USA) was synchronized with GM1. The mirror of GM2 rotates exactly as much as rotated by GM1 but in the opposite direction, such that the beam reflected from GM2 maintains an optical axis regardless of the illumination angle at the sample plane. GM1 and GM2 are placed at the conjugate imaging plane of the sample. Thus, the rotation angle of the GM1 is linearly related with that of GM2. To physically synchronize the galvo mirrors, we first set the rotation angle of GM1 to be the maximum in the kx axis which is determined by the NA of two objective lenses. Then, we set the angle of GM2 so that the beam reflected from GM2 maintains unchanged. After repeating this procedure for both the kx and ky axes, we can synchronize the rotation angle of the galvano mirror.

The optical field of the diffracted beam is quantitatively and precisely measured by a common-path interferometry setup. Here, cDOT employs the principle of diffraction phase microscopy to construct a common-path interferometry. The beam from a sample is diffracted by a transmission grating (70 grooves mm−1, #46-067, Edmund Optics Inc., NJ, USA). Among several orders of diffracted beams, only the 0th and 1st orders of the diffracted beams are used and the others are blocked. The 0th order diffraction beam is spatially filtered by a 4-f lens system with a spatial filter to serve as a reference plane wave at the image plane. The 1st order beam is directly projected onto the image plane. At the image plane, the sample and reference beams interfere with a small angle difference defined by the spatial period of the grating and the 4-f lens system, forming spatially-modulated interferograms. The interferograms are recorded by a scientific complementary metal-oxide semiconductor camera (Neo sCMOS, ANDOR Inc., Northern Ireland, UK) with a pixel size of 6.5 μm and × 240 total magnification of the imaging system.

2.3. Verification of the angle synchronization in cDOT

In cDOT, GM1 is used to vary the angle of the illumination beam impinging onto a sample. For a common-path interferometry, GM2 is synchronized with GM1 such that the optical axis of the beam passing the sample remains unchanged. To verify the synchronization between GM1 and GM2, representative logarithmic Fourier spectra of the measured optical fields with representative illumination angles are shown in Figs. 2(a) to 2(d). The Fourier spectra were obtained by 2D Fourier transform of the measured optical field images. The maximum intensity of the Fourier spectra corresponds to an unscattered light field, and thus the position that yields the maximum intensity indicates the spatial frequency of the unscattered light field. As can be seen in Fig. 2(b), when the angle of the illumination beam is set to 0°, the position of the maximum intensity is located at the exact center, or the DC point in the Fourier spectra. When the illumination angle is changed to −30° or 30° [Figs. 2(a) or 2(c)], the maximum intensity is still located at the DC point. This is because GM2 compensates the angle of the beam path to the same degree that the angle is rotated by GM1. When synchronized, the beam will pass the pinhole between two lenses (L7 & 8) and the beam intensity will be high at the camera plane; otherwise, if it is not synchronized, the beam will not pass through the pinhole and will have low intensity, as shown in Fig. 2(d).

 

Fig. 2 (a)-(d) Representative logarithmic Fourier spectra corresponding to specific illumination angles. The dashed circle in (b) represents the cut-off frequency for diffraction-limited optical fields. (e) The maximum intensity value of Fourier spectra as a function of illumination angle. (f) The temporal fluctuations of the intensity at the normal illumination (0°).

Download Full Size | PPT Slide | PDF

Figure 2(e) shows the maximum intensity of Fourier spectra as a function of the illumination angle controlled by GM1. Over a range of illumination angles from −43° to 43° (inside the medium), high light intensity was observed. Regardless of the illumination angle, the maxima of the Fourier spectra are found at the center of the spectra, which indicates that GM1 and GM2 are precisely synchronized with each other. The temporal changes in the intensity with the fixed angle illumination only vary within 0.8%. This demonstrates that over this angle range the two galvanometric mirrors (GM1 & 2) are precisely synchronized with each other such that the common path interferometry works for various illumination angles. This angle range is comparable with the upper limit determined by the NA of the condenser and objective lenses. This shows that the two galvanometric mirrors are synchronized sufficiently to fully utilize the NA of the condenser and objective lenses.

2.4. 3-D tomographic reconstruction of refractive index

To verify the 3D imaging capability of cDOT, we first measured the 3D RI tomogram of a polystyrene microsphere. Multiple optical fields of a sample illuminated with various angles were recorded in cDOT, from which the 3D RI tomograms of the sample were reconstructed using an optical diffraction tomography algorithm. The detailed optical diffraction tomography algorithm for retrieving the 3D RI map of a sample can be found elsewhere [28, 41]. In short, the spatial frequencies of diffracted optical fields from a sample at a specific illumination angle are mapped onto a hemispheric surface in the frequency domain called an Ewald sphere. Multiple 2D optical fields with various illumination angles are mapped onto multiple Ewald spheres with corresponding translations in Fourier space, resulting in 3D Fourier spectra. The inverse 3D Fourier transform of the Fourier spectra then provides the 3D RI tomogram of a sample. Due to the weak scattering nature of most biological cells, the first Rytov approximation is applied to simplify the relationship between incident and scattered light fields in the optical diffraction tomography algorithm. Unlike conventional optical diffraction tomography, cDOT considers the rotation of diffracted fields due to the rotation of GM2. The optical field from each illumination is rotated on the surface of the Ewald sphere corresponding to the angle of incident illumination; this can be approximated as the translation of an optical field in a 2-D plane because the rotation angle is less than 1° due to the angular de-magnification at the plane of GM2. Due to the limited accepted angle of the optical system, reconstructed 3-D Fourier spectra have missing information which is so-called the missing cone. This missing cone information was filled using the iterative non-negativity algorithm [29, 30, 43].

In order to obtain 3D RI tomograms of polystyrene beads, cDOT measures multiple 2D optical-field images of the sample with different angles of illumination; the 3D RI tomogram of the sample is then reconstructed using a diffraction optical tomography algorithm [41]. Typically 300 holograms are recorded while the illumination angles draw a spiral trajectory within a range from −35° to 35° in the 2-D sample plane (inside the medium). The total measurement time is less than 0.5 s. The 3D RI tomogram of the polystyrene microsphere with a diameter of 3 μm (79166, Sigma-Aldrich Inc., USA) submersed in immersion oil (noil = 1.518 at λ = 532 nm) is presented in Fig. 3. Cross-sectional views of the 3D RI tomogram of the bead demonstrate the high resolution capability of cDOT, and both the morphology and the RI values of the beads show good agreement with expected values and previous reports [41, 43].

 

Fig. 3 3D RI tomogram of a polystyrene bead with a diameter of 3 μm. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 0.5 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the values of RI.

Download Full Size | PPT Slide | PDF

2.5. 3D RI maps and dynamic membrane fluctuations of a RBC

In order to obtain 3D RI tomograms of individual RBCs, RBCs from a healthy individual were prepared according to the standard protocol [7], and then diluted in Dulbecco`s Phosphate Buffered Saline (DPBS, nDPBS = 1.337 at λ = 532 nm) before the measurement. The same measurement procedure as used to measure the polystyrene microsphere with cDOT was performed. The 3D RI tomograms of a RBC from a healthy individual are presented in Fig. 4. Cross-sectional views of the measured 3D RI tomograms are presented in Figs. 4(a) to 4(c). The RI values of the cytoplasm of a RBC can be directly translated into the Hb concentration, because the cytoplasm of a RBC mainly consists of Hb solution. The RI tomograms of RBCs from the healthy individual exhibited the characteristic biconcave shape. The reconstructed morphologies and the RI values exhibit good agreement with the known reference range [44]. The image shown in Fig. 4(d) is a rendered isosurface of the 3D RI tomogram of the RBC, where rendering was performed using commercial software (Amira 5, Visage Imaging Inc., San Diego, CA, USA).

 

Fig. 4 3-D RI tomogram of a RBC from a healthy individual. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 0.5 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the values of RI and corresponding Hb concentration. (d) 3D rendered isosurfaces of RI maps of individual RBCs from a healthy individual and (e) Height fluctuation of the positions indicated as A and B in (d), and a position in the background as a function of time.

Download Full Size | PPT Slide | PDF

Furthermore, quantitative mechanical information related to the cell deformability is simultaneously obtained by measuring dynamic fluctuations in the membrane of the RBC. To probe the dynamic membrane fluctuation, 256 optical field images of a RBC with a normal incident illumination beam were recorded at a temporal resolution of 125 frames/s. From the measured optical field images, the instantaneous phase delay, Δϕ(x,y;t), is retrieved using the following relation with the cell height profile, h(x,y;t):

h(x,y;t)=λ2π(ncnm)Δϕ(x,y;t),
where λ is the wavelength of the laser source and nc and nm are the RI of the cell cytoplasm and surrounding medium, respectively. Importantly, the values for nc can be independently measured for individual cells, thus enabling precise quantification of membrane dynamics.

Figure 4(e) presents the dynamic membrane fluctuations in several locations in the RBC, as indicated in Figs. 4(a) to 4(d). A position on the convex area of the RBC (position A) and a position on the dimple area of the cell (position B) exhibits mean fluctuation of 41 nm and 54 nm, respectively. These values of membrane fluctuations are in good agreements with previous reports [4, 45]. A position in the background exhibits fluctuation of 6.8 nm, demonstrating the high sensitivity of the common-path interferometry.

2.6. 3D RI maps of hepatocytes

To extend the applicability of cDOT for various biological samples, we measured 3D RI tomograms of individual hepatocyte cells. Hepatocyte cells (Huh-7 cell line, Apath, Brooklyn, NY, USA) were prepared according to the standard protocol [46]. In brief, Huh-7 cells were maintained in Dulbecco's Modified Eagle Medium (DMEM, Gibco, Big Cabin, Oklahoma, USA) supplemented with 10% heat-inactivated fetal bovine serum, 4500 mg/L D-glucose, L-glutamine, 110 mg/L sodium pyruvate, sodium bicarbonate, 100 U/mL penicillin, and 100 μg/mL streptomycin. The cells were subcultivated for 4 hours before experiments, and then diluted in Dulbecco’s phosphate buffered saline (DPBS, nDPBS = 1.337 at λ = 532 nm) before measurements. The same cDOT measurement procedures were performed as previously described. The 3D RI tomograms of a hepatocyte cell in DPBS buffer are presented in Fig. 5. The spherical objects having relatively high RI inside cytoplasm are subcellular organelles. The reconstructed RI tomogram measured by cDOT shows similar quality with that measured by Mach-Zehnder-type quantitative phase tomography [40]. Although the hepatocyte cell is relatively thin, cDOT is capable to resolve the internal structures.

 

Fig. 5 3-D RI tomogram of a hepatocyte. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 1 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the RI value.

Download Full Size | PPT Slide | PDF

3. Discussions and conclusions

This paper presents a precise and sensitive optical holographic technique that is well suited for studying biological alterations at the single cell level. By integrating optical diffraction tomography into a common-path interferometer, we demonstrate that cDOT can measure the 3D RI tomography as well as membrane dynamic fluctuations of individual biological cells. 3D RI tomograms of individual biological samples are obtained in diffraction-limited resolution. Furthermore, the dynamic membrane fluctuations of the cells were simultaneously measured with sub-10-nm sensitivity. We demonstrate the capability of cDOT by measuring both 3D RI tomograms and the dynamic membrane fluctuation of individual human RBCs. The present method employs a pair of synchronized galvanometer mirrors, which enabled common-path optical diffraction tomography. This approach can also be combined with other modalities in quantitative phase imaging including spectroscopic measurement [4751], polarization-sensitive phase imaging [52, 53], and reflection geometry [54].

The primary advantage of cDOT is its ability to analyze single cell profiles of RBCs, and cDOT is expected to find immediate applications in hematology. cDOT can provide not only routine red cell indices (such as cell volume, Hb contents, and Hb concentration) but also other indices such as sphericity, surface area, and membrane fluctuation. The structural, chemical, and mechanical information of RBCs is important for hemodiagnosis, and cDOT can potentially be used to simultaneously measure these parameters at the individual cell level. Although only healthy RBCs were examined to demonstrate the proof of principle, this method is readily applicable to other RBC-related diseases such as malaria, sickle cell disease, and thalassemia [8, 16, 55, 56]. Furthermore, we demonstrated that cDOT can also be utilized for other eukaryotic cell type. In order for cDOT to be extended to clinical applications, high-throughput measurement capability is necessary. Currently, the measurement time for probing one cell is nearly 3 sec, but this time is not limited. By employing the principles of flow cytometry and optimizing the measurement instruments, the measurement speed can be significantly enhanced. Furthermore, cDOT can also be applied to other cell types including white blood cells, circulating tumor cells, and endothelial cells for biophysical and medical purposes.

Acknowledgments

The authors thank K.R. Lee for helpful discussions. This work was supported by KAIST, the Korean Ministry of Education, Science and Technology (BRL 2009-0087691), and National Research Foundation (NRF) of Korea (2012R1A1A1009082, 2012K1A3A1A09055128, M3C1A1-048860, 2013M3C1A3000499, NRF-2012-M3C1A1-048860, 2013R1A1A3011886). Y.P. acknowledges support from TJ ChungAm Foundation. K.K. is supported by Global Ph.D. Fellowship from NRF.

References and links

1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

2. K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013). [CrossRef]   [PubMed]  

3. M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011), Vol. 162.

4. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008). [CrossRef]   [PubMed]  

5. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010). [CrossRef]   [PubMed]  

6. Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011). [CrossRef]   [PubMed]  

7. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008). [CrossRef]   [PubMed]  

8. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

9. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009). [CrossRef]   [PubMed]  

10. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

11. B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, and C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

12. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011). [CrossRef]   [PubMed]  

13. H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010). [CrossRef]  

14. Y. K. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011). [CrossRef]   [PubMed]  

15. Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010). [CrossRef]   [PubMed]  

16. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012). [CrossRef]   [PubMed]  

17. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

18. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011). [CrossRef]   [PubMed]  

19. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006). [CrossRef]   [PubMed]  

20. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef]   [PubMed]  

21. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012). [CrossRef]   [PubMed]  

22. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008). [CrossRef]  

23. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012). [CrossRef]   [PubMed]  

24. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006). [CrossRef]   [PubMed]  

25. Y. K. Park, C. A. Best, and G. Popescu, “Optical sensing of red blood cell dynamics,” in Mechanobiology of Cell-cell and Cell-matrix Interactions (Springer, 2011), p. 279.

26. S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, and M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012). [CrossRef]   [PubMed]  

27. G. G. Levin, G. N. Vishnyakov, C. S. Zakarian, A. V. Likhachov, V. V. Pickalov, G. I. Kozinets, J. K. Novoderzhkina, and E. A. Streletskaya, “Three-dimensional limited-angle microtomography of blood cells: experimental results,” in Proceedings of SPIE, 1998), 159.

28. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002). [CrossRef]   [PubMed]  

29. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef]   [PubMed]  

30. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014). [CrossRef]   [PubMed]  

31. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009). [CrossRef]   [PubMed]  

32. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007). [CrossRef]   [PubMed]  

33. R. Fiolka, K. Wicker, R. Heintzmann, and A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17(15), 12407–12417 (2009). [CrossRef]   [PubMed]  

34. T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014). [CrossRef]  

35. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011). [CrossRef]   [PubMed]  

36. M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012). [CrossRef]   [PubMed]  

37. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006). [CrossRef]   [PubMed]  

38. Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). [CrossRef]   [PubMed]  

39. D. J. Weatherall, “Systems biology and red cells,” N. Engl. J. Med. 364(4), 376–377 (2011). [CrossRef]   [PubMed]  

40. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011). [CrossRef]   [PubMed]  

41. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013). [CrossRef]   [PubMed]  

42. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153 (1969). [CrossRef]  

43. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009). [CrossRef]   [PubMed]  

44. K. Kaushansky, Williams Hematology (McGraw-Hill Medical New York, 2010).

45. Y. Kim, K. Kim, and Y. Park, “Measurement Techniques for Red Blood Cell Deformability: Recent Advances,” in Blood Cell - An Overview of Studies in Hematology, T. E. Moschandreou, ed. (INTECH, 2012), pp. 167–194.

46. J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, and C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012). [CrossRef]   [PubMed]  

47. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009). [CrossRef]   [PubMed]  

48. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012). [CrossRef]   [PubMed]  

49. H. Pham, B. Bhaduri, H. F. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012). [CrossRef]   [PubMed]  

50. J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013). [CrossRef]   [PubMed]  

51. J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014). [CrossRef]   [PubMed]  

52. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008). [CrossRef]   [PubMed]  

53. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012). [CrossRef]   [PubMed]  

54. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012). [CrossRef]  

55. H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012). [CrossRef]   [PubMed]  

56. S. Cho, S. Kim, Y. Kim, and Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  2. K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [CrossRef] [PubMed]
  3. M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011), Vol. 162.
  4. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
    [CrossRef] [PubMed]
  5. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [CrossRef] [PubMed]
  6. Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
    [CrossRef] [PubMed]
  7. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [CrossRef] [PubMed]
  8. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).
  9. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
    [CrossRef] [PubMed]
  10. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
  11. B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).
  12. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
    [CrossRef] [PubMed]
  13. H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
    [CrossRef]
  14. Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
    [CrossRef] [PubMed]
  15. Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
    [CrossRef] [PubMed]
  16. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
    [CrossRef] [PubMed]
  17. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).
  18. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
    [CrossRef] [PubMed]
  19. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [CrossRef] [PubMed]
  20. G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  21. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
    [CrossRef] [PubMed]
  22. V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [CrossRef]
  23. A. S. Singh, A. Anand, R. A. Leitgeb, B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [CrossRef] [PubMed]
  24. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [CrossRef] [PubMed]
  25. Y. K. Park, C. A. Best, and G. Popescu, “Optical sensing of red blood cell dynamics,” in Mechanobiology of Cell-cell and Cell-matrix Interactions (Springer, 2011), p. 279.
  26. S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
    [CrossRef] [PubMed]
  27. G. G. Levin, G. N. Vishnyakov, C. S. Zakarian, A. V. Likhachov, V. V. Pickalov, G. I. Kozinets, J. K. Novoderzhkina, and E. A. Streletskaya, “Three-dimensional limited-angle microtomography of blood cells: experimental results,” in Proceedings of SPIE, 1998), 159.
  28. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
    [CrossRef] [PubMed]
  29. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  30. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
    [CrossRef] [PubMed]
  31. M. Debailleul, V. Georges, B. Simon, R. Morin, O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009).
    [CrossRef] [PubMed]
  32. W. Gorski, W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
    [CrossRef] [PubMed]
  33. R. Fiolka, K. Wicker, R. Heintzmann, A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17(15), 12407–12417 (2009).
    [CrossRef] [PubMed]
  34. T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
    [CrossRef]
  35. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
    [CrossRef] [PubMed]
  36. M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
    [CrossRef] [PubMed]
  37. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
    [CrossRef] [PubMed]
  38. Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [CrossRef] [PubMed]
  39. D. J. Weatherall, “Systems biology and red cells,” N. Engl. J. Med. 364(4), 376–377 (2011).
    [CrossRef] [PubMed]
  40. S. K. Debnath, Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [CrossRef] [PubMed]
  41. K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
    [CrossRef] [PubMed]
  42. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153 (1969).
    [CrossRef]
  43. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
    [CrossRef] [PubMed]
  44. K. Kaushansky, Williams Hematology (McGraw-Hill Medical New York, 2010).
  45. Y. Kim, K. Kim, and Y. Park, “Measurement Techniques for Red Blood Cell Deformability: Recent Advances,” in Blood Cell - An Overview of Studies in Hematology, T. E. Moschandreou, ed. (INTECH, 2012), pp. 167–194.
  46. J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
    [CrossRef] [PubMed]
  47. Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [CrossRef] [PubMed]
  48. Y. Jang, J. Jang, Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
    [CrossRef] [PubMed]
  49. H. Pham, B. Bhaduri, H. F. Ding, G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
    [CrossRef] [PubMed]
  50. J. H. Jung, J. Jang, Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
    [CrossRef] [PubMed]
  51. J. Jung, Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
    [CrossRef] [PubMed]
  52. Z. Wang, L. J. Millet, M. U. Gillette, G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [CrossRef] [PubMed]
  53. Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [CrossRef] [PubMed]
  54. C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
    [CrossRef]
  55. H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
    [CrossRef] [PubMed]
  56. S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
    [CrossRef] [PubMed]

2014 (3)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

J. Jung, Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[CrossRef] [PubMed]

2013 (3)

J. H. Jung, J. Jang, Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[CrossRef] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[CrossRef] [PubMed]

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

2012 (12)

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[CrossRef] [PubMed]

A. S. Singh, A. Anand, R. A. Leitgeb, B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[CrossRef] [PubMed]

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Y. Jang, J. Jang, Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[CrossRef] [PubMed]

H. Pham, B. Bhaduri, H. F. Ding, G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[CrossRef] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

2011 (9)

D. J. Weatherall, “Systems biology and red cells,” N. Engl. J. Med. 364(4), 376–377 (2011).
[CrossRef] [PubMed]

S. K. Debnath, Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

2010 (4)

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

2009 (6)

2008 (5)

Z. Wang, L. J. Millet, M. U. Gillette, G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

2007 (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

W. Gorski, W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
[CrossRef] [PubMed]

2006 (4)

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[CrossRef] [PubMed]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153 (1969).
[CrossRef]

Anand, A.

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

Auth, T.

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Babacan, S. D.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

Badizadegan, K.

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

Barman, I.

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Bashir, R.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Bednarz, M.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Berl, E.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Bernet, S.

Best, C. A.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

Best-Popescu, C. A.

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Bhaduri, B.

Boppart, M.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Boss, D.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

Braun, P. V.

Byun, H. S.

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Cano, E.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

Carney, P. S.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Chang, D. Y.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Chang, G.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Charrière, F.

Chhaniwal, V.

Cho, S.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

Choi, C.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Choi, K.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Choi, W.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Choi, W. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Choi, Y. H.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Colomb, T.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Dasari, R.

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Dassari, R. R.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Debailleul, M.

Debnath, S. K.

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

Depeursinge, C.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Ding, H.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Ding, H. F.

Do, M. N.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

Edwards, C.

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

Fang-Yen, C.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Feld, M. S.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

Fiolka, R.

Fu, D.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Fürhapter, S.

García, J.

V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Georges, V.

Gillette, M. U.

Goddard, L. L.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

Golding, I.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Gorski, W.

Gov, N. S.

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Haeberlé, O.

Heger, T. J.

Heintzmann, R.

Henle, M. L.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Heo, J. H.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Higgins, J. M.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Hillman, T. R.

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

Ikeda, T.

Jang, J.

Jang, Y.

Javidi, B.

Jeong, J.

Jesacher, A.

Jo, Y. J.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Jourdain, P.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

Jung, J.

J. Jung, Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[CrossRef] [PubMed]

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Jung, J. H.

J. H. Jung, J. Jang, Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[CrossRef] [PubMed]

Kang, W.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

Kim, K.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[CrossRef] [PubMed]

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Kim, K. S.

Kim, M. W.

Kim, S.

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

Kim, T.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

Kim, W. I.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Kim, Y.

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

Kühn, J.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

Kuriabova, T.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[CrossRef] [PubMed]

Lee, D. H.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Lee, K.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Lee, S.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Leitgeb, R. A.

Levine, A. J.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Liu, J.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Magistretti, P. J.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

Marks, D. L.

Marquet, P.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Maurer, C.

Mico, V.

V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Mihi, A.

Millet, L. J.

Mir, M.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Mitchell, E. A.

Moratal, C.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

Morin, R.

Oh, S.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Osten, W.

Park, H.

K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[CrossRef] [PubMed]

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Park, J.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Park, Y.

J. Jung, Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[CrossRef] [PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

J. H. Jung, J. Jang, Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[CrossRef] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[CrossRef] [PubMed]

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Y. Jang, J. Jang, Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[CrossRef] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

S. K. Debnath, Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Park, Y. K.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Pavillon, N.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Peng, Z.

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Pham, H.

Popescu, G.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

H. Pham, B. Bhaduri, H. F. Ding, G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

Prasanth, S. G.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Rappaz, B.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Ritsch-Marte, M.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

Ryu, S. W.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Safran, S. A.

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Satterwhite, L. L.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

Shaked, N. T.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

Shen, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Shin, E. C.

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

Simanis, V.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

Simon, B.

Singh, A. S.

Singh, A. S. G.

Stemmer, A.

Sung, Y. J.

Suresh, S.

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

Wang, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

Z. Wang, L. J. Millet, M. U. Gillette, G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[CrossRef] [PubMed]

Wax, A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

Weatherall, D. J.

D. J. Weatherall, “Systems biology and red cells,” N. Engl. J. Med. 364(4), 376–377 (2011).
[CrossRef] [PubMed]

Wicker, K.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153 (1969).
[CrossRef]

Yamauchi, T.

Yaqoob, Z.

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Ye, J. C.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

Zalevsky, Z.

V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Zhou, R. J.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

Acta Biomater. (1)

H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater. 8(11), 4130–4138 (2012).
[CrossRef] [PubMed]

Am. J. Rhysiology Cell Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Rhysiology Cell Physiol. 295, 538–544 (2008).

Anal. Chem. (1)

J. H. Jung, J. Jang, Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[CrossRef] [PubMed]

Biophys. J. (1)

S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, M. S. Feld, “Label-free imaging of membrane potential using membrane electromotility,” Biophys. J. 103(1), 11–18 (2012).
[CrossRef] [PubMed]

Blood Cells Mol. Dis. (2)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

Hepatology (1)

J. Park, W. Kang, S. W. Ryu, W. I. Kim, D. Y. Chang, D. H. Lee, Y. Park, Y. H. Choi, K. Choi, E. C. Shin, C. Choi, “Hepatitis C virus infection enhances TNFα-induced cell death via suppression of NF-κB,” Hepatology 56(3), 831–840 (2012).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, G. Popescu, “Fourier Transform Light Scattering of Biological Structure and Dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[CrossRef]

J. Neurosci. (1)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best-Popescu, R. R. Dasari, G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).

B. Rappaz, E. Cano, T. Colomb, J. Kühn, V. Simanis, P. J. Magistretti, P. Marquet, C. Depeursinge, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011).

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[CrossRef] [PubMed]

Light: Sci. Appl. (1)

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Sci. Appl. 1(9), e30 (2012).
[CrossRef]

N. Engl. J. Med. (1)

D. J. Weatherall, “Systems biology and red cells,” N. Engl. J. Med. 364(4), 376–377 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[CrossRef]

Opt. Commun. (2)

V. Mico, Z. Zalevsky, J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153 (1969).
[CrossRef]

Opt. Express (11)

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Y. Jang, J. Jang, Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
[CrossRef] [PubMed]

J. Jung, Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[CrossRef] [PubMed]

K. Kim, K. S. Kim, H. Park, J. C. Ye, Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21(26), 32269–32278 (2013).
[CrossRef] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

A. S. Singh, A. Anand, R. A. Leitgeb, B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[CrossRef] [PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[CrossRef] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

R. Fiolka, K. Wicker, R. Heintzmann, A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17(15), 12407–12417 (2009).
[CrossRef] [PubMed]

Opt. Lett. (8)

M. Debailleul, V. Georges, B. Simon, R. Morin, O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009).
[CrossRef] [PubMed]

W. Gorski, W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[CrossRef] [PubMed]

H. Pham, B. Bhaduri, H. F. Ding, G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

S. K. Debnath, Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[CrossRef] [PubMed]

PLoS ONE (1)

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography,” PLoS ONE 7(6), e39816 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

S. Cho, S. Kim, Y. Kim, Y. K. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[CrossRef] [PubMed]

Other (6)

K. Kaushansky, Williams Hematology (McGraw-Hill Medical New York, 2010).

Y. Kim, K. Kim, and Y. Park, “Measurement Techniques for Red Blood Cell Deformability: Recent Advances,” in Blood Cell - An Overview of Studies in Hematology, T. E. Moschandreou, ed. (INTECH, 2012), pp. 167–194.

M. K. Kim, Digital Holography and Microscopy: Principles, Techniques, and Applications (Springer Verlag, 2011), Vol. 162.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

G. G. Levin, G. N. Vishnyakov, C. S. Zakarian, A. V. Likhachov, V. V. Pickalov, G. I. Kozinets, J. K. Novoderzhkina, and E. A. Streletskaya, “Three-dimensional limited-angle microtomography of blood cells: experimental results,” in Proceedings of SPIE, 1998), 159.

Y. K. Park, C. A. Best, and G. Popescu, “Optical sensing of red blood cell dynamics,” in Mechanobiology of Cell-cell and Cell-matrix Interactions (Springer, 2011), p. 279.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and principle of cDOT. (a) The cDOT setup is composed of two galvanometric mirrors (GM1, GM2) synchronized with each other and a laser-interferometric microscope in a common-path geometry. A sample is positioned between the condenser and objective lenses. OL: objective lens; CL: condenser lens; GM1-2: galvanometric mirrors; M1-2: mirrors; L1-8: lenses. (b) The angle of an illumination beam impinging onto the sample is scanned by rotating GM1 and is de-scanned by GM2 in a synchronized manner such that the angle of the beam reflected from GM2 remains unchanged. (Inset) The sample is illuminated with a plane wave at different angles of illumination

Fig. 2
Fig. 2

(a)-(d) Representative logarithmic Fourier spectra corresponding to specific illumination angles. The dashed circle in (b) represents the cut-off frequency for diffraction-limited optical fields. (e) The maximum intensity value of Fourier spectra as a function of illumination angle. (f) The temporal fluctuations of the intensity at the normal illumination (0°).

Fig. 3
Fig. 3

3D RI tomogram of a polystyrene bead with a diameter of 3 μm. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 0.5 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the values of RI.

Fig. 4
Fig. 4

3-D RI tomogram of a RBC from a healthy individual. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 0.5 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the values of RI and corresponding Hb concentration. (d) 3D rendered isosurfaces of RI maps of individual RBCs from a healthy individual and (e) Height fluctuation of the positions indicated as A and B in (d), and a position in the background as a function of time.

Fig. 5
Fig. 5

3-D RI tomogram of a hepatocyte. (a)-(c) Each cross-sectional slice corresponds to (a) the x-y plane at the focus, (b) the x-y plane at 1 μm above the focus, and (c) the x-z plane in the middle of the sample, respectively. The color map indicates the RI value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h(x,y;t)= λ 2π( n c n m ) Δϕ(x,y;t),

Metrics