Abstract

High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

© 2014 Optical Society of America

1. Introduction

High harmonic generation (HHG) of visible and infrared laser pulses in gases is a useful process for production of coherent extreme ultraviolet and soft x-ray radiation from a tabletop system [1,2]. Applications of HHG include production of attosecond pulse trains (APT) [3], isolated attosecond pulses [4], ultrafast holography [5], coherent diffractive imaging [6], and more. The most common selection rule in HHG from gases media is the absent of even harmonics. This feature reflects the inversion symmetry of the gas and the half-wave symmetry of the driver [7]. Indeed, if the molecules in the gas are oriented [8] or if the half-wave symmetry of the driver is broken [7,913] then the HHG spectrum consists of both odd and even harmonics. It is natural to ask if an HHG experiment can produce the even-order harmonics without the odd-order ones. This conceptual problem was first confronted in Ref. 14 which proposed a coupling geometry of anisotropic quantum dots that can generate terahertz high harmonics where the odd and even harmonics are polarized perpendicularly. This approach cannot be implemented for isotropic media, e.g. HHG from gases. In addition to the fundamental science interest in production of pure even harmonics spectra, it may also be useful for applications. For example, a set of phase-locked even harmonics correspond to APT at high repetition rate and stable carrier envelop phase (CEP) (in contrast, all previously proposed and demonstrated techniques for CEP stabilization of APT reduce the APT repetition rate [10,11].)

Here we suggest a scheme for generation of only even-order harmonics which is based on quasi phase matching (QPM). As in other optical nonlinear processes, HHG can be divided to a regime in which it is phase matched and a regime in which it suffers from phase mismatch. Several QPM techniques have been developed in order to enhance the HHG conversion efficiency in the phase-mismatch regime [1524]. QPM techniques amplify a spectral region, yet selective control within that region was not obtained. All-optical QPM techniques employ additional weak field in order to coherently control the re-colliding and radiating electronic wave-functions [16,1922]. The weak driver slightly modifies the electronic trajectories (e.g. by changing the recombination time with attosecond resolution), giving rise to a controlled phase-shift in the phase of the emitted harmonics. Properly designed modulations of the phase-shifts with periodicity that corresponds to two coherence length of the HHG process can lead to efficient QPM.

Here, we propose all-optical QPM of only even-order high harmonics, within a spectral region that include more than 10 harmonics. Both odd and even order high harmonics of a fundamental driver are generated in isotropic and homogeneous media when the process is driven by bi-chromatic field that does not exhibit half-wave symmetry. We first show, analytically and numerically, that an appropriate shift in the relative-phase between the bi-chromatic pumps can result with sign-flips in the fields of only the even-order harmonics (and not in the fields of the odd harmonics). Induction of this sign-flip periodically during propagation can give rise to QPM of only even-order harmonics. We demonstrate numerically QPM of only even-order plateau or cutoff harmonics using ti:sapphire pump and its second harmonic weak field that propagate in a dispersive medium. We also numerically demonstrate QPM of even harmonics using weak static field which can be approximated using CO2 or terahertz pulses. Finally, we show that the generated APT exhibits constant CEP and that it consists of two pulses per pump cycle.

2. Symmetry of HHG driven by a bi-chromatic driver

In harmonics generation from isotropic and time-independent nonlinear medium, half-wave symmetry is transferred from the pump to the nonlinear polarization [7]. For example, a quasi-monochromatic driver field, ED, at angular frequency ω0 = 2π/T, where T is the optical cycle, is half-wave symmetric: Ed(t + T/2) = -Ed(t), hence the harmonics field, EHHG, exhibits the same symmetry: EHHG(t + T/2) = -EHHG(t). The spectrum of this field consists of only odd harmonics of ω0 because symmetry dictates that even Fourier components of half-wave symmetric functions are zero. The HHG spectrum can include even-order harmonics if a secondary field breaks the half-wave symmetry. This concept was implemented in many experiments where HHG was driven by bi-chromatic drivers that consist of a strong pump and its second harmonic [9,10]. Also, HHG spectra include both odd and even harmonics of ω0 when a weak static field (or a very long-wavelength field) is added to the main strong pump [1113].

We first present a new symmetry feature for harmonics that are generated by bi-chromatic drivers. We will later employ this feature for QPM of only even-order harmonics. Consider bi-chromatic drivers EBC = A0cos(ω0t + φ0) + A1cos(ω1t + φ0 + Δφ) where ω0 = 2π/T0 and ω1 = 2π/T1 are angular optical frequencies, T0 and T1 are optical cycles, A0 and A1 are real amplitudes, φ0 is a global phase, and Δφ is the relative phase between the two components. We compare between the harmonic fields driven by the bi-chromatic fields with the two following relative phases: Δφa = 0 and Δφb = π(1-ω10). We assign the generated harmonic fields by EHHGa(t)and EHHGb(t), respectively. It is straight forward to verify that EBC(t,Δφ = Δφa) = -EBC(t + T0/2,Δφ = Δφb). The harmonics fields also conform to this symmetry, hence

EHHGa(t)=EHHGb(t+T0/2)
Inserting the Fourier decomposition of the emitted harmonic field, EHHGa,b(t)=Eqa,beiqω0tdq, into Eq. (1) leads to
Eqaeiπq=Eqb
Equation (2) shows that the odd-order harmonics of the bi-chromatic drivers are invariant to a π(1-ω10) phase-shift of the relative phase, while at the same time, the sign of the even-order harmonics is flipped. This feature is the source for our proposal for QPM of only even-order harmonics. Here, we explore numerically two specific configurations for the bi-chromatic drivers where in both cases the strong pump corresponds to a ti:sapphire laser pulse with central frequency ω0 = 2.3 × 1015Hz. In the first case, the secondary driver is at much smaller frequency than the pump ω1<<ω0 (e.g. terahertz or CO2 laser) such that within the pulse-duration of the strong pulse, the field is approximately constant. Numerically, we use a static field for this case. In the second case, the second driver is the second harmonic of the strong pump. We get Δφb = π for both cases which corresponds to a change in the sign of the static or second harmonic fields.

Having found asymmetry feature that distinguishes between odd and even harmonics, we now explore it numerically for two specific examples that we will later employ for QPM. In our numerical calculations, we applied the single effective electron approximation and solved the propagation of the electron wave-packet, ψ(t), using one-dimensional time-dependent Schrodinger (1D TDSE) solver. The atomic potential is given by V(x)=v0exp(x2/Δ2)where v0 = 1.3 and Δ = 1 in atomic units and x is the polarization direction of the laser pulse. The ground state ionization energy of this symmetric potential is Ip = 21 eV, corresponding, for example, to neutral neon and singly-ionized xenon ion. Initially, i.e. in the leading edge of the driver pulses, the electron fully populates the ground state. The polarization is calculated by: PHHG=eψ(t)|x|ψ(t) where e is the electron charge. The emitted field is proportional to the second time-derivative of PHHG [2]. In the first case, the bi-chromatic drivers are EBC=I0A0(t)cos(ω0t)+EDCwhereI0=6×1014W/cm2,A0(t)=exp[(2t/τ)10],τ=50fs is the pulse duration, and EDC is the amplitude of the static field. The cutoff frequency of the HHG spectrum corresponds to the 87th harmonic of the strong pump. Figures 1(a)-1(c) display the emitted phase of several harmonics order as a function of the static field. As expected from our symmetry feature, the phases of even-order harmonics, both at the cutoff and plateau spectral regions, are flipped by π when the static field changes sign. The phases of odd harmonics, on the other hand, do not exhibit such a flip (Fig. 1(c)). Figures 1(d)-1(f) show the intensity of the harmonics as a function of the static field. As shown, the strength of the even harmonics at EDC~2 × 106 V/cm is comparable to the strength of odd harmonics without static field. In the second case, we used a bi-chromatic driver ofEBC=A0(t)[I0cos(ω0t)+I1cos(2ω0t+Δφ)] where we use three different values for the peak intensity of the secondary field: I1=0.6×1011W/cm2, 2.4×1011W/cm2 and 9.6×1011W/cm2. Figures 2(a)-2(c) display the emitted phase of several harmonics order as a function of the relative phase (i.e. of Δφ). As expected from Eq. (2), the field of even harmonics flip their sign (acquire a π phase shift) as a result of a π-shift in the relative phase. At the same time, the phases of odd harmonics are quite constant [Fig. 2(c)]. Notably, within the range shown in Figs. 2(a)-2(c), the variations of the harmonic phases are largely insensitive to the intensity of the second harmonic. Figures 2(d)-2(f) show the intensity of the harmonics as a function of the relative phase. As shown, the strength of even harmonics is in the same order of magnitude as the strength of odd harmonics.

 

Fig. 1 Influence of secondary static field on the phases and intensities of even and odd harmonics. Phases (a-c) and intensities (d-f) of the 86th, 70th and 85th harmonics as a function of the static field. The phases of even and odd harmonics are odd and even functions of the static field, respectively.

Download Full Size | PPT Slide | PDF

 

Fig. 2 Influence of the relative phase between the fundamental and its second harmonic drivers, Δφ, on the phases and intensities of even and odd harmonics. Phases (a-c) and intensities (d-f) of the 84th, 60th and 85th harmonics as a function of the relative phase for different intensities of the second harmonic field: 0.6×1011W/cm2 (blue), 2.4×1011W/cm2 (red) and 9.6×1011W/cm2(black).A π shift in the relative phase results with a π-shift in phases of even harmonics (sign flip of their fields) and no shift in phases of odd harmonics.

Download Full Size | PPT Slide | PDF

3. QPM of only even-order harmonics

Figures 1 and 2 clearly demonstrate a new symmetry feature of bi-chromatic pumps (Eq. (2) with angular frequencies ω0 (primary field) and ω1 (secondary field). We employ this symmetry feature for QPM of only the even-order harmonics. The method is based on the following concept: The setting is engineered such that the relative phase between the primary and secondary fields is shifted by Δφb = π(1-ω10) every propagation distance that corresponds to the coherence length of a q-order harmonic, LC. (The coherence length is calculated when only the primary field is present because the secondary field is relatively weak; hence it approximately does not change the plasma density which is the main source for the phase mismatch). For large q, the coherence lengths for consecutive odd and even harmonic are very similar. But, there is also additional phase that results from the presence of the weak field. This additional phase is described by Eq. (2). For an even q harmonic, the fields emitted at propagation distances z and z + LC interfere constructively because the π phase-shift due to the phase-mismatch is canceled by the π phase of Eq. (2). On the other hand, odd-order harmonics that are generated in z and z + LC interfere destructively because they experience π phase-shift due to the phase mismatch and 0 phase shift due to the symmetry feature of Eq. (2). Thus, only the even order harmonics experience QPM in such a setting.

Next, we demonstrate numerically QPM of only even-order harmonics in a gas of singly-ionized xenon ions and their free electrons [18] (we used this medium because it exhibits large and relatively constant dispersion, facilitating the generation of APT with stable CEP that are presented in Fig. 4). The strong driver component is a ti:sapphire laser pulse (central wavelength is 0.8 µm) that is initially in the form of E0(z=0,t)=A0(t)cos(ω0t) where A0(t)=I0exp[(2t/τ0)4], τ0=36fs, I0=6×1014W/cm2 and it propagates in z direction. In the first scheme, the secondary driver is a static field that flips its sign every propagation distance dDC: EDC(z)=g(z)2.6×106V/cm where g(z) = ± 1 and g(z + dDC) = -g(z). This scheme can be implemented experimentally using the setup proposed in Ref. 21. We simulated the propagation of the driver and harmonic fields using the one dimensional version of the model presented in Ref. 25 (Transverse effects, e.g. transversal intensity variation and diffraction, somewhat reduce QPM efficiencies, yet they are secondary and therefore neglected in our simulation). The nonlinear evolution of the strong driver in the moving frame of light velocity in vacuum, c, is given by:

E0z=12cτωp2E0dτ2πIP(E0+EDC)cne[E0+EDC]τ
where τ = t-z/c, ωp=4πe2ne/m is the plasma frequency, where e and m are the electron charge and mass, respectively. The density of free electrons, ne, takes into account the pre-formed plasma and the ionization that is calculated by using the ADK model [26]. The high-order polarization, PHHG, is calculated through numerical calculation of the 1D TDSE under the influence of the total field E0 + EDC. The generation and evolution of the HHG field up to a constant factor (which is associated with the gas density and is unimportant in our case because the gas density is constant), EHHG, is described by:
EHHGz=2πcPHHGτ
Figure 3(a) shows the HHG spectrum after propagation distance of 0.5 mm with gas pressure of 25 torr when dDC = 18 µm which corresponds to the coherence length of the 88th cutoff harmonic. For comparison, the generated spectrum with constant static field is also presented. A clear QPM enhancement is obtained around the 88th harmonic when the static field flips sign periodically. Figure 3(b) shows the coherent buildup of the 88th and 87th harmonic fields, showing clearly that the even harmonic experience a QPM enhancement while the odd harmonic suffers from phase-mismatch. Notably, the QPM efficiency of the 88th harmonic is 0.27, which is relatively high for QPM in HHG [27]. Figure 3(c) shows the HHG spectrum that is generated when dDC = 28 µm which corresponds to the coherence length of the 70th plateau harmonic. Clear QPM enhancement is obtained around the 72th harmonic. Figure 3(d) shows the coherent buildup of the 70th and 71th harmonic fields, showing again that the even harmonic experience a QPM enhancement (with 0.23 QPM efficiency) while the odd harmonic suffers from phase-mismatch.

 

Fig. 3 Numerical demonstration of QPM of only even harmonics using a periodic static field. (a) Harmonic spectra driven by a fundamental driver and a static field with sign (direction of polarization) that is flipped periodically during propagation with periodicity that corresponds to the coherence length of the 88th cutoff harmonic (red) and with static field with a constant sign (black). The inset shows the spectra near the 88th harmonic, showing that only even order harmonics are enhanced. (b) Buildup of the 88th harmonic (red), the 87th harmonic with periodic static field (dashed blue) and the 88th harmonic with constant static field (dotted black). The buildup of the 88th harmonic with periodic static field exhibits a typical QPM structure. (c) and (d) show the same data as (a) and (b), respectively, with the only difference that the periodicity of the static field corresponds to the coherence length of the 70th plateau harmonic.

Download Full Size | PPT Slide | PDF

The generated even-harmonics correspond to high repetition-rate APT with stable CEP. This feature is demonstrated in Fig. 4. Figure 4(a) shows the normalized APT, EQPM(t) that corresponds to the red spectrum in Fig. 3(a) in the spectral region 83 ± 5 harmonics. Figure 4(b) shows the average of EQPM and its T0/2 time-delayed, showing that this APT has a stable CEP. Notably, the temporal distance between consecutive pulses is T0/2. That is, in contrast to previous methods [10,11], APT with stable CEP is obtained without reduction of the repetition rate. For comparison, Fig. 4(c) shows ESA (SA stands for single atom) which corresponds to the APT generated by the same strong pump beam, but without propagation and without the static field. The average of ESA and its T0/2 time-delayed show that consecutive pulses have opposite phases (Fig. 4(d)).

 

Fig. 4 Generation of APT with stable CEP without reducing the repetition rate. (a) Normalized APT, EQPM(t), corresponds to the red spectrum in Fig. 3(a) in the spectral region 83 ± 5 harmonics. (b) Averaged sum of EQPM and its T0/2 time-shifted field. The fact that the average sum is very similar to EQPM shows that consecutive pulses are very similar, i.e. they all have the same CEP. (c) Normalized APT, ESA(t), corresponds to the spectral region 83 ± 5 harmonics of a spectrum generated by only the fundamental driver and without propagation. (d) Averaged sum of ESA and its T0/2 time-shifted field. The fact that the central pulses of the average are almost zero corresponds to the known fact that consecutive pulses in ordinarily generated APT have opposite phases.

Download Full Size | PPT Slide | PDF

Next, we demonstrate numerically QPM of only even-order harmonics when the secondary driver is the second harmonic of the strong pump. We assume that the second harmonic field experiences an effective refractive index that is Δn smaller than the refractive index of the strong pump. This scenario can be implemented experimentally by using highly dispersive nonlinear medium [28], or by utilizing spatial dispersion in hollow planar waveguide [20,29]. As a result of the dispersion, the relative phase between the drivers evolves during propagation, and after some propagation distance, Lπ, it acquires a π shift. QPM is obtained if this distance corresponds to the coherence length of the process, Lπ = LC. The incident beam in our simulation is EBC = E0 + E1 where E0 is the same as in the previous section andE1=I1exp[(2t/τ1)4]cos(2ω0t)whereτ1=72fsandI1=2.4×1011W/cm2. We simulated the propagation of the beam using the following equation:

EBCz=12cτωp2EBCdτ2πIPEcneEBCτ1cτΔn˜(t')EBC(τt')dt'
Where Δn˜(t') is the inverse Fourier transform of the dispersion Δn(ω), which is zero at the spectral region near ω0 and -Δn in the region around 2ω0. The third term in Eq. (5) gives rise to the assumed dispersion, only. Figure 5(a) shows the HHG spectrum when Δn = 8.7 × 10−3 (Lπ = 46 µm) and after propagation distance of 1 mm. For compression, the generated spectrum when Δn = 0 is also presented. A clear QPM enhancement is obtained around the 86th harmonic. Figure 5(b) shows the coherent buildup of the 86th and 85th harmonic fields, showing clearly that the even harmonic experience a QPM enhancement (QPM efficiency is 0.27) while the odd harmonic suffers from phase-mismatch. Figure 5(c) shows the HHG spectra when Δn = 7 × 10−3 (Lπ = 57µm) and, for compression also the Δn = 0 case. A clear QPM enhancement is obtained around the 70th harmonic. Figure 5(d) shows the coherent buildup of the 70th and 71th harmonic fields, showing that the even harmonic experience a QPM enhancement (QPM efficiency is 0.14) while the odd harmonic suffers from phase-mismatch.

 

Fig. 5 Numerical demonstration of QPM of only even harmonics using a bi-chromatic drivers that consists of a fundamental pump field and its second harmonic. (a) Harmonic spectra when the two drivers experience dispersion Δn = 8.7 × 10−3 (red) and Δn = 0. The inset shows the spectrum near the 86th harmonic, showing that it consists of only even order harmonic. (b) Coherent buildups of the 86th (red) and the 85th (dashed blue) with Δn = 8.7 × 10−3 and the 86th harmonic with Δn = 0 (dotted black). The 86th harmonic Δn = 8.7 × 10−3 rises much more rapidly than the other buildup curves. (c) Harmonic spectra when the two drivers experience dispersion Δn = 7 × 10−3 (red) and Δn = 0 (black). The inset shows the spectrum near the 70th harmonic, showing that it consists of only even order harmonic. (d) Coherent buildups of the 70th (red) and the 71th (dashed blue) with Δn = 7 × 10−3 and the 70th harmonic with Δn = 0 (dotted black). The 70th harmonic Δn = 7 × 10−3 rises much more rapidly than the other buildup curves.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusions, we propose and demonstrated numerically an all-optical QPM technique for generating only even-order harmonics of a strong driver, within a spectral region that contains ~10 harmonics. This technique shows that symmetry arguments can be employed for selective control over the spectral features of HHG.

Acknowledgment

This research was support by ICore: the Israeli Excellence Center “Circle of Light”.

References and links

1. H. Kapteyn, O. Cohen, I. Christov, and M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007). [CrossRef]   [PubMed]  

2. T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006). [CrossRef]  

3. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001). [CrossRef]   [PubMed]  

4. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef]   [PubMed]  

5. R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, and K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007). [CrossRef]   [PubMed]  

6. R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007). [CrossRef]   [PubMed]  

7. N. Ben-Tal, N. Moiseyev, and A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993). [CrossRef]  

8. E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, and P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012). [CrossRef]   [PubMed]  

9. M. D. Perry and J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993). [CrossRef]   [PubMed]  

10. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006). [CrossRef]   [PubMed]  

11. W. Hong, P. Lu, P. Lan, Q. Zhang, and X. Wang, “Few-cycle attosecond pulses with stabilized-carrier-envelope phase in the presence of a strong terahertz field,” Opt. Express 17(7), 5139–5146 (2009). [CrossRef]   [PubMed]  

12. S. Odžak and D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005). [CrossRef]  

13. M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012). [CrossRef]  

14. S. Guo, S. Q. Duan, N. Yang, W. D. Ch, and W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011). [CrossRef]  

15. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003). [CrossRef]   [PubMed]  

16. X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007). [CrossRef]  

17. J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, and F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007). [CrossRef]  

18. M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007). [CrossRef]   [PubMed]  

19. O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007). [CrossRef]   [PubMed]  

20. P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, and O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010). [CrossRef]   [PubMed]  

21. C. Serrat and J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010). [CrossRef]   [PubMed]  

22. D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, and J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010). [CrossRef]  

23. L. Z. Liu, K. O’Keeffe, and S. M. Hooker, “Optical rotation quasi-phase-matching for circularly polarized high harmonic generation,” Opt. Lett. 37(12), 2415–2417 (2012). [CrossRef]   [PubMed]  

24. L. Z. Liu, K. OKeeffe, and S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012). [CrossRef]  

25. M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, and T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999). [CrossRef]  

26. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

27. O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, and H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007). [CrossRef]   [PubMed]  

28. D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, and J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006). [CrossRef]   [PubMed]  

29. O. Kfir, P. Sidorenko, A. Paul, T. Popmintchev, H. Kapteyn, M. Murnane, and O. Cohen, “Extended Phase-Matching of High Harmonics Driven by Focusing Light in Planar Waveguide”, Frontiers in Optic (Optical Society of America, Rochester, NY, 2012), paper LTh1H.4.

References

  • View by:
  • |
  • |
  • |

  1. H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
    [CrossRef] [PubMed]
  2. T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
    [CrossRef]
  3. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
    [CrossRef] [PubMed]
  4. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
    [CrossRef] [PubMed]
  5. R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
    [CrossRef] [PubMed]
  6. R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
    [CrossRef] [PubMed]
  7. N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
    [CrossRef]
  8. E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
    [CrossRef] [PubMed]
  9. M. D. Perry, J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993).
    [CrossRef] [PubMed]
  10. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
    [CrossRef] [PubMed]
  11. W. Hong, P. Lu, P. Lan, Q. Zhang, X. Wang, “Few-cycle attosecond pulses with stabilized-carrier-envelope phase in the presence of a strong terahertz field,” Opt. Express 17(7), 5139–5146 (2009).
    [CrossRef] [PubMed]
  12. S. Odžak, D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005).
    [CrossRef]
  13. M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
    [CrossRef]
  14. S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
    [CrossRef]
  15. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
    [CrossRef] [PubMed]
  16. X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
    [CrossRef]
  17. J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
    [CrossRef]
  18. M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
    [CrossRef] [PubMed]
  19. O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
    [CrossRef] [PubMed]
  20. P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
    [CrossRef] [PubMed]
  21. C. Serrat, J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010).
    [CrossRef] [PubMed]
  22. D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
    [CrossRef]
  23. L. Z. Liu, K. O’Keeffe, S. M. Hooker, “Optical rotation quasi-phase-matching for circularly polarized high harmonic generation,” Opt. Lett. 37(12), 2415–2417 (2012).
    [CrossRef] [PubMed]
  24. L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
    [CrossRef]
  25. M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
    [CrossRef]
  26. M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).
  27. O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
    [CrossRef] [PubMed]
  28. D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
    [CrossRef] [PubMed]
  29. O. Kfir, P. Sidorenko, A. Paul, T. Popmintchev, H. Kapteyn, M. Murnane, and O. Cohen, “Extended Phase-Matching of High Harmonics Driven by Focusing Light in Planar Waveguide”, Frontiers in Optic (Optical Society of America, Rochester, NY, 2012), paper LTh1H.4.

2012 (4)

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

L. Z. Liu, K. O’Keeffe, S. M. Hooker, “Optical rotation quasi-phase-matching for circularly polarized high harmonic generation,” Opt. Lett. 37(12), 2415–2417 (2012).
[CrossRef] [PubMed]

L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
[CrossRef]

2011 (1)

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

2010 (3)

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

C. Serrat, J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010).
[CrossRef] [PubMed]

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

2009 (1)

2007 (8)

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
[CrossRef] [PubMed]

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

2006 (3)

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
[CrossRef]

2005 (1)

S. Odžak, D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005).
[CrossRef]

2003 (1)

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

2001 (2)

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

1999 (1)

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

1993 (2)

N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
[CrossRef]

M. D. Perry, J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993).
[CrossRef] [PubMed]

1986 (1)

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Agostini, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Augé, F.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Backus, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Bahabad, A.

Balcou, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Bartal, G.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Bartels, R. A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Ben-Tal, N.

N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
[CrossRef]

Berrill, M.

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Bertrand, J. B.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Beswick, A.

N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
[CrossRef]

Biegert, J.

C. Serrat, J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010).
[CrossRef] [PubMed]

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

Breger, P.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Carmon, T.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Cela, J. M.

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Ch, W. D.

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

Christov, I.

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

Christov, I. P.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Cohen, O.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
[CrossRef] [PubMed]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Corkum, P. B.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Crane, J. K.

M. D. Perry, J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993).
[CrossRef] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Di Trapani, P.

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Dromey, B.

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

Duan, S. Q.

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

Faccio, D.

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Farrés, A.

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Fleischer, A.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Foster, P.

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

Frumker, E.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Gaarde, M. B.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Gaudiosi, D. M.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Geissler, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

Gerber, G.

T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
[CrossRef]

Green, H.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Grisham, M.

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Guo, S.

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

Gustafsson, E.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Hädrich, S.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Hebeisen, C. T.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Heinzmann, U.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Holtsnider, J.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Hong, W.

Hooker, S. M.

L. Z. Liu, K. O’Keeffe, S. M. Hooker, “Optical rotation quasi-phase-matching for circularly polarized high harmonic generation,” Opt. Lett. 37(12), 2415–2417 (2012).
[CrossRef] [PubMed]

L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
[CrossRef]

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

Johnsson, P.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Kajumba, N.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Kaplan, A.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Kapteyn, H.

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

Kapteyn, H. C.

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
[CrossRef] [PubMed]

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Kfir, O.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Kienberger, R.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Kozlov, M.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Krausz, F.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

L’Huillier, A.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Lan, P.

Landreman, M.

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

Liu, L. Z.

L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
[CrossRef]

L. Z. Liu, K. O’Keeffe, S. M. Hooker, “Optical rotation quasi-phase-matching for circularly polarized high harmonic generation,” Opt. Lett. 37(12), 2415–2417 (2012).
[CrossRef] [PubMed]

Liu, Y.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Lu, P.

Lytle, A. L.

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

Mauritsson, J.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Miao, J.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Miloševic, D. B.

S. Odžak, D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005).
[CrossRef]

Moiseyev, N.

N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
[CrossRef]

Muller, H. G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Mullot, G.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Murnane, M.

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

Murnane, M. M.

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
[CrossRef] [PubMed]

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Naumov, A.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Nelson, K. A.

O’Keeffe, K.

Odžak, S.

S. Odžak, D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005).
[CrossRef]

OKeeffe, K.

L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
[CrossRef]

Paul, A.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Paul, P. M.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Perry, M. D.

M. D. Perry, J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993).
[CrossRef] [PubMed]

Pfeifer, T.

T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
[CrossRef]

Popmintchev, T.

P. Sidorenko, M. Kozlov, A. Bahabad, T. Popmintchev, M. Murnane, H. Kapteyn, O. Cohen, “Sawtooth grating-assisted phase-matching,” Opt. Express 18(22), 22686–22692 (2010).
[CrossRef] [PubMed]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Raymondson, D. A.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Reagan, B.

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Rocca, J. J.

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Salmassi, F.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Sandberg, R. L.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Schafer, K. J.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

Schnürer, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

Schwefel, H. G.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Scrinzi, A.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

Seres, E.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Seres, J.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Serrat, C.

C. Serrat, J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010).
[CrossRef] [PubMed]

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

Sidorenko, P.

Siemens, M. E.

Song, C.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Spanner, M.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Spielmann, C.

T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
[CrossRef]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Spielmann, Ch.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Streli, Ch.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Tempea, G.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

Tobey, R.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Tobey, R. I.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

R. I. Tobey, M. E. Siemens, O. Cohen, M. M. Murnane, H. C. Kapteyn, K. A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32(3), 286–288 (2007).
[CrossRef] [PubMed]

Toma, E. S.

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

Villeneuve, D. M.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Walker, B. C.

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

Wang, X.

Weiman, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Wobrauschek, P.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Wörner, H. J.

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

Yakovlev, V. S.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Yang, N.

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

Zepf, M.

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Zhang, W.

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

Zhang, X.

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, H. C. Kapteyn, “Optimizing quasi-phase matching of high harmonic generation using counterpropagating pulse trains,” Opt. Lett. 32(20), 2975–2977 (2007).
[CrossRef] [PubMed]

Zhou, X.

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

J. Phys. B (1)

N. Ben-Tal, N. Moiseyev, A. Beswick, “The effect of Hamiltonian symmetry on generation of odd and even harmonics,” J. Phys. B 26(18), 3017–3024 (1993).
[CrossRef]

Nat. Phys. (2)

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, O. Cohen, “Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3(4), 270–275 (2007).
[CrossRef]

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, F. Krausz, “Coherent superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007).
[CrossRef]

Nature (2)

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. Schwefel, G. Bartal, O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys. 14(6), 063036 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (5)

M. D. Perry, J. K. Crane, “High-order harmonic emission from mixed fields,” Phys. Rev. A 48(6), 4051–4054 (1993).
[CrossRef] [PubMed]

S. Odžak, D. B. Milošević, “High-order harmonic generation in the presence of a static electric field,” Phys. Rev. A 72(3), 033407 (2005).
[CrossRef]

S. Guo, S. Q. Duan, N. Yang, W. D. Ch, W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84(1), 015803 (2011).
[CrossRef]

D. Faccio, C. Serrat, J. M. Cela, A. Farrés, P. Di Trapani, J. Biegert, “Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase,” Phys. Rev. A 81(1), 011803 (2010).
[CrossRef]

L. Z. Liu, K. OKeeffe, S. M. Hooker, “Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides,” Phys. Rev. A 85(5), 053823 (2012).
[CrossRef]

Phys. Rev. Lett. (8)

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1999).
[CrossRef]

C. Serrat, J. Biegert, “All-Regions Tunable High Harmonic Enhancement by a Periodic Static Electric field,” Phys. Rev. Lett. 104(7), 073901 (2010).
[CrossRef] [PubMed]

D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, J. J. Rocca, “High-Order Harmonic Generation from Ions in a Capillary Discharge,” Phys. Rev. Lett. 96(20), 203001 (2006).
[CrossRef] [PubMed]

M. Zepf, B. Dromey, M. Landreman, P. Foster, S. M. Hooker, “Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions,” Phys. Rev. Lett. 99(14), 143901 (2007).
[CrossRef] [PubMed]

O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007).
[CrossRef] [PubMed]

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, M. B. Gaarde, “Attosecond Pulse Trains Generated Using Two Color Laser Fields,” Phys. Rev. Lett. 97(1), 013001 (2006).
[CrossRef] [PubMed]

E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner, M. Spanner, D. M. Villeneuve, A. Naumov, P. B. Corkum, “Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation,” Phys. Rev. Lett. 109(11), 113901 (2012).
[CrossRef] [PubMed]

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, “Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams,” Phys. Rev. Lett. 99(9), 098103 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Pfeifer, C. Spielmann, G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69(2), 443–505 (2006).
[CrossRef]

Science (2)

P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation,” Science 292(5522), 1689–1692 (2001).
[CrossRef] [PubMed]

H. Kapteyn, O. Cohen, I. Christov, M. Murnane, “Harnessing Attosecond Science in the Quest for Coherent X-rays,” Science 317(5839), 775–778 (2007).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

Other (1)

O. Kfir, P. Sidorenko, A. Paul, T. Popmintchev, H. Kapteyn, M. Murnane, and O. Cohen, “Extended Phase-Matching of High Harmonics Driven by Focusing Light in Planar Waveguide”, Frontiers in Optic (Optical Society of America, Rochester, NY, 2012), paper LTh1H.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Influence of secondary static field on the phases and intensities of even and odd harmonics. Phases (a-c) and intensities (d-f) of the 86th, 70th and 85th harmonics as a function of the static field. The phases of even and odd harmonics are odd and even functions of the static field, respectively.

Fig. 2
Fig. 2

Influence of the relative phase between the fundamental and its second harmonic drivers, Δφ, on the phases and intensities of even and odd harmonics. Phases (a-c) and intensities (d-f) of the 84th, 60th and 85th harmonics as a function of the relative phase for different intensities of the second harmonic field: 0.6 × 10 11 W / c m 2 (blue), 2.4 × 10 11 W / c m 2 (red) and 9.6 × 10 11 W / c m 2 (black).A π shift in the relative phase results with a π-shift in phases of even harmonics (sign flip of their fields) and no shift in phases of odd harmonics.

Fig. 3
Fig. 3

Numerical demonstration of QPM of only even harmonics using a periodic static field. (a) Harmonic spectra driven by a fundamental driver and a static field with sign (direction of polarization) that is flipped periodically during propagation with periodicity that corresponds to the coherence length of the 88th cutoff harmonic (red) and with static field with a constant sign (black). The inset shows the spectra near the 88th harmonic, showing that only even order harmonics are enhanced. (b) Buildup of the 88th harmonic (red), the 87th harmonic with periodic static field (dashed blue) and the 88th harmonic with constant static field (dotted black). The buildup of the 88th harmonic with periodic static field exhibits a typical QPM structure. (c) and (d) show the same data as (a) and (b), respectively, with the only difference that the periodicity of the static field corresponds to the coherence length of the 70th plateau harmonic.

Fig. 4
Fig. 4

Generation of APT with stable CEP without reducing the repetition rate. (a) Normalized APT, EQPM(t), corresponds to the red spectrum in Fig. 3(a) in the spectral region 83 ± 5 harmonics. (b) Averaged sum of EQPM and its T0/2 time-shifted field. The fact that the average sum is very similar to EQPM shows that consecutive pulses are very similar, i.e. they all have the same CEP. (c) Normalized APT, ESA(t), corresponds to the spectral region 83 ± 5 harmonics of a spectrum generated by only the fundamental driver and without propagation. (d) Averaged sum of ESA and its T0/2 time-shifted field. The fact that the central pulses of the average are almost zero corresponds to the known fact that consecutive pulses in ordinarily generated APT have opposite phases.

Fig. 5
Fig. 5

Numerical demonstration of QPM of only even harmonics using a bi-chromatic drivers that consists of a fundamental pump field and its second harmonic. (a) Harmonic spectra when the two drivers experience dispersion Δn = 8.7 × 10−3 (red) and Δn = 0. The inset shows the spectrum near the 86th harmonic, showing that it consists of only even order harmonic. (b) Coherent buildups of the 86th (red) and the 85th (dashed blue) with Δn = 8.7 × 10−3 and the 86th harmonic with Δn = 0 (dotted black). The 86th harmonic Δn = 8.7 × 10−3 rises much more rapidly than the other buildup curves. (c) Harmonic spectra when the two drivers experience dispersion Δn = 7 × 10−3 (red) and Δn = 0 (black). The inset shows the spectrum near the 70th harmonic, showing that it consists of only even order harmonic. (d) Coherent buildups of the 70th (red) and the 71th (dashed blue) with Δn = 7 × 10−3 and the 70th harmonic with Δn = 0 (dotted black). The 70th harmonic Δn = 7 × 10−3 rises much more rapidly than the other buildup curves.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E HHG a ( t )= E HHG b ( t+ T 0 /2 )
E q a e iπq = E q b
E 0 z = 1 2 c τ ω p 2 E 0 d τ 2 π I P ( E 0 + E D C ) c n e [ E 0 + E D C ] τ
E H H G z = 2 π c P H H G τ
E B C z = 1 2 c τ ω p 2 E B C d τ 2 π I P E c n e E B C τ 1 c τ Δ n ˜ ( t ' ) E B C ( τ t ' ) d t '

Metrics