Abstract

The rate equations for a laser with a polarization rotated optical feedback are investigated both numerically and analytically. The frequency detuning between the polarization modes is now taken into account and we review all earlier studies in order to motivate the range of values of the fixed parameters. We find that two basic Hopf bifurcations leading to either stable sustained relaxation or square-wave oscillations appear in the detuning versus feedback rate diagram. We also identify two key parameters describing the differences between the total gains of the two polarization modes and discuss their effects on the periodic square-waves.

© 2014 Optical Society of America

1. Introduction

Semiconductor lasers are popular and widely-used light sources because they are compact, can be massively produced, and are easily integrated in miniaturized electronics. They have become more and more powerful and efficient, and they have found a widespread use as pumps for solid–state lasers. Semiconductor lasers may generate high-frequency pulsating intensity outputs using all-optical feedback setups which avoid the cost and limitations of high-speed electronics. One method that allows the generation of single-wavelength optical pulses is to use orthogonal-polarization optical feedback. Following the ideas of Otsuka and Chern [1], the first experimental studies concentrated on the generation of fast optical pulses [2] but square-wave signals became more recently attractive waveforms. The polarization dynamics can be as fast as a few GHz and the plateau lengths can be controlled by simply changing the delay of the feedback.

In a polarization self-modulation regime, the laser output switches regularly between its two natural polarization modes and it can be realized entirely optically by injecting light from one laser polarization mode into the orthogonal one. This requires that the optical feedback be rotated from its original orientation by some means, typically a waveplate [3]. By using a Faraday rotator as the rotating element in the external cavity, rather than a waveplate, unidirectional coupling from the dominant, transverse electric (TE) polarization mode to the suppressed, transverse magnetic (TM) mode can be realized. From a practical point of view, polarization-rotated optical feedback (PROF) simplifies the dynamics of the laser because the feedback operates on the weaker TM mode rather than on the main TE mode. For edge-emitting lasers, square-wave self-modulation was found experimentally and simulated numerically using simple rate equations [46]. Another application of the PROF setup has recently been developed to design a random bit generator [7].

Square-wave oscillations have also been observed for vertical-cavity surface-emitting lasers (VCSELs). VCSELs may operate in a single longitudinal and transverse emission mode. Using the PROF setup the emission of the laser is split into its two linearly polarized components but only one is fed back into the laser after being rotated in the orthogonal polarization direction. It seems, however, that the range of currents for which a PROF successfully leads to square-wave modulation is limited for lasers that have a low dischroism [810]. Other experimental studies of square-wave modulations in VCSELs considered cross polarization re-injection in both polarization modes [11, 12]. These experiments have been interpreted using the standard semiconductor laser rate equations with gain saturation [12,13]. The PROF setup considerably facilitates the analysis of the laser rate equations: there exists a nonzero intensity steady state from which we may determine Hopf bifurcations. In the case of cross polarization re-injection in both modes, external cavity modes appear in the bifurcation diagram and their stability needs to be explored numerically [13].

Square-wave oscillations have also been successfully observed for a ring laser subject to a PROF-like feedback scheme [14]. Here, the counter-and clockwise waves circulating into the ring laser play the role of the two interacting modes.

Closely related to the response of a single edge-emitting laser under the PROF setup is the problem of finding square waves in two orthogonally delay-coupled lasers. The synchronization properties of this particular system were studied in detail both experimentally and numerically [1518].

The laser subject to an optical feedback as well as the recently designed opto-electro oscillators [1921] can be considered as nonlinear oscillators exhibiting damped oscillations that are subject to a delayed feedback. If the delay is sufficiently large, the feedback generates oscillatory instabilities that may either sustain the damped oscillations of the free oscillator or impose a new frequency proportional to the inverse of the delay. As a result, the stability diagram in parameter space typically exhibits two distinct Hopf bifurcations with different frequencies. This can be illustrated by analyzing the simple case of the harmonic oscillator subject to a delayed feedback of the form

x+x=a(x(tτ)x).
The two parameters a and τ represent the gain and the delay of the feedback. By analyzing the stability of the zero solution [22, 23], we find that two Hopf bifurcation lines delimit the stability domain in the (a, τ) parameter space. Figure 1 shows the two first Hopf bifurcation lines H1 and H2.

 figure: Fig. 1

Fig. 1 Stability diagram for the zero solution of Eq. (1). The Hopf bifurcation lines H1 and H2 are defined by (2) and (3), respectively. There are no other bifurcations for the chosen ranges of a and τ.

Download Full Size | PPT Slide | PDF

These bifurcations and their frequencies are defined by

H1:a=12(π2τ21)andω1=πτ1,
H2:τ=2πandω2=1.
The nature of the two Hopf bifurcation lines is clearly different. H1 admits a frequency inversely proportional to the delay while H2 exhibits the frequency of the free harmonic oscillator and is independent of the feedback strength.

In our laser delayed feedback problem, two distinct frequencies are expected to control the stability diagram, namely, the laser relaxation oscillations (ROs) frequency and the external round-trip frequency defined by

fRO12π2PTandfD12τ,
respectively. If T ∼ 103, τ ∼ 103, and P ∼ 1, fD << fRO. As we shall demonstrate in this paper, both frequencies are associated with two distinct Hopf bifurcations.

The objectives of our work are threefold. First, we will consider the frequency detuning between the polarization modes as a fixed parameter. Except in Refs [24,25], previous studies have ignored the detuning which may range from a few GHz to 100 GHz. Second, we determine two distinct Hopf bifurcations in parameter space that are leading to either sustained relaxation or square-wave oscillations. Both regimes have been observed experimentally but their bifurcation origins were only partially identified theoretically. Third, we review all previous rate equation formulations and show how they can all be reduced to the same dimensionless rate equations. These equations exhibit a reduced number of independent parameters which we evaluate from their original values. We find similar range of values for the delay of the feedback, the ratio of the carrier to photon lifetimes, as well as two important parameters measuring the difference between the total gains of the two polarization modes.

The paper is organized as follows. In Section 2, we formulate the laser rate equations for a laser subject to the PROF setup and discuss the range of values of the parameters. The detuning between the polarization modes, ignored in previous studies, is now taken into account. The basic steady state solution is a mixed mode solution and two Hopf bifurcations control its stability in the detuning versus feedback amplitude parameter space. They are described in Section 3. The two bifurcations lead to either fast sustained ROs or slower square-wave oscillations if the feedback rate is sufficiently large. The two polarization modes exhibit similar but different differential gain coefficients and cavity lifetimes. In Section 4, we discuss the effect of these parameters.

2. Formulation

Previous modeling approaches considered the effect of the feedback in the TE mode as incoherent [1] which allows to formulate two rate equations for the TE field and the carrier density. Because these equations cannot explain the onset of square-wave oscillations, current models consider both the TM and TE fields as dependent variables. The rate equations for the TE electric field (ETE), the TM electric field (ETM) and the carrier density (n) are given by (equations formulated in [26] and supplemented by the frequency detuning between the polarization modes as in [25])

dETEdt=12(1+iα)(G1(nn0)γ1)ETE,
dETMdt=12(1+iα)(G2(nn0)γ2)ETM+γETE(tτ)exp(iΔtiC),
dndt=Jγsn(nn0)(G1|ETE|2+G2|ETM|2).
In these equations, G1 and G2 are the gain coefficients for the TE and TM mode, respectively and n0 is the carrier density at transparency. γ is the feedback amplitude, γ1 and γ2 are the cavity decay rates for the TE and TM modes, respectively, γs is the inverse of the carrier lifetime, α is the linewidth enhancement factor, J is the injection current, ω1 and ω2 are defined as the angular frequencies of the TE and TM modes, respectively. Cω1τ is the feedback phase which will be removed later and Δ ≡ ω1ω2 is defined as the frequency detuning. In the appendix, we list the values of the fixed parameters considered in [26] and introduce dimensionless variables and parameters. The values of the dimensionless parameters are then computed and shown in the first line of Table 1. The rate equations in dimensionless form are simpler than the original equations (5)(7) and exhibit a lower number of independent parameters. They are given by
dY1ds=(1+iα)NY1,
dY2ds=(1+iα)k(Nβ)Y2+ηkY1(sθ)exp(iΩsiC),
TdNds=PN(1+2N)[|Y1|2+|Y2|2].
where Y1, Y2, and N are the new TE field, TM field, and carrier density, respectively. The new time is s = γ1t, Ω = (ω1ω2)/γ1, and θ = γ1τ. η is the feedback strength, T is the ratio of carrier to cavity lifetimes, and P is the pump parameter above threshold. Two important parameters measure the differences between the total gains of the TE and TM modes. They are defined as
kG2G1andβ12(γ2G1γ1G21).
k is the ratio of the gain coefficients of the TM and TE modes. β measures the losses of the TM mode compared to the TE mode. It depends on both the ratio of the gains coefficients and the ratio of the cavity rates for the two modes. The TM mode has greater inherent losses than the natural TE mode as expressed by the inequality β > 0. The rotated optical feedback—delayed by one cavity round-trip θ— appears in Eq. (9) through the term Y1(sθ). The TM mode does not influence the TE mode directly, but instead is mediated through the carrier equation (10).

Tables Icon

Table 1. Dimensionless parameters.

Other independent formulations of the original rate equations are documented in the appendix. They all considered the same PROF setup [4, 15, 2527]. We reformulate these equations in the same form as Eqs. (8)(10) and compute the values of the dimensionless parameters. They are documented in Table 1. Note that the three first lines assumed equal cavity decay rates for the two polarization modes (γ1 = γ2). From (11), β then simplifies as

β=12k(1k)
and is directly related to the value of k < 1. In Ref. [15], k = 1 and only β = 0.03 marks the difference between the total gains for the polarizations.

Table 1 is instructive showing similar range of values of the parameters. Except for the two last lines, k ∼ 0.8 and β ∼ 0.1. For all references, α = 2 − 3 and P = 0.5 − 0.6. The delay θ = 103 − 6 × 103 and the ratio of carrier to cavity lifetimes T = 102 − 103 are large. The feedback amplitude η = 3 × 10−2 − 10−1.

Introducing the new variables Y1 = E1 and Y2 = E2 exp(−iC + iΩs) allows us to remove the feedback phase C and the exponential in Eq. (9). Equations (8)(10) become

dE1ds=(1+iα)NE1,
dE2ds=iΩE2+(1+iα)k(Nβ)E2+ηkE1(sθ),
TdNds=PN(1+2N)[|E1|2+|E2|2].
We next introduce the decomposition Ej = Aj exp(j) (j = 1, 2) and obtain five equations for A1, ϕ1, A2, ϕ2, and N. By formulating an equation for Φ ≡ ϕ1(sθ) − ϕ2, it is possible to reduce the problem to the following four equations
dA1ds=NA1,
dA2ds=k(Nβ)A2+ηkA1(sθ)cos(Φ),
dΦds=Ω+α[N(sθ)k(Nβ)]ηkA1(sθ)A2sin(Φ),
TdNds=PN(1+2N)(A12+A22).

We first analyze the steady state solutions of Eqs. (16)(19). The zero intensity solution A1 = A2 = 0 is always unstable if P > 0. We have verified that there exists no pure mode solution with A1 = 0 and A2 ≠ 0. There exists a mixed mode solution A1 ≠ 0 and A2 ≠ 0 if N = 0. We find that the intensities of the two polarization modes are given by

A12=[(kβ)2+(Ω+αkβ)2]P(kβ)2+(Ω+αkβ)2+η2k,
A22=η2kP(kβ)2+(Ω+αkβ)2+η2k
and the phase Φ satisfies
tan(Φ)=Ω+αkβkβ.

In the next section we analyze the stability of this steady state.

3. Hopf stability boundaries

We first concentrate on the emergence of the square-wave oscillations. To this end, we analyze the conditions for a Hopf bifurcation in the limit of large delays and then investigate equations for a nonlinear map that are obtained from Eqs. (16)(19) using the same limit.

We start with the characteristic equation for the growth rate λ. Assuming λ = O(θ−1), we find

P+A22(exp(λθ)1)=0
as θ → ∞. Inserting λ = into Eq. (23) and separating the real and imaginary parts, we find that the first Hopf bifurcation satisfies the conditions
A22=P/2andω=π/θ.
Using (21), the location of this Hopf bifurcation in the Ω vs η diagram is given by
η2k=(kβ)2+(Ω+αkβ)2.

We next wish to determine an approximation of the square-waves directly from Eqs. (16)(19). In the limit θ large, we expect 2θ–periodic square-waves with two constant plateaus connected by fast transition layers. The mathematical analysis is similar to the one documented in [4] except that we take into account the frequency detuning between the two polarization modes. We briefly describe the main results. Assuming that θ is sufficiently large and provided Φ remains bounded, we may neglect all the time derivatives in Eqs. (16)(19). Equation (16) then requires that

NA1=0.
Equation (26) motivates to seek a 2θ–periodic square wave exhibiting (1) N = 0 during the time interval 0 < s < θ and (2) A1 = 0 during the time interval θ < s < 2θ. But because of the periodicity condition, A1(sθ) = 0 in part (1) and N(sθ) = 0 in part (2). From the remaining equations we then determine the values of the other variables. We obtain
(1):N=A1(sθ)=0,A2=0,A1=P,
(2):A1=N(sθ)=0,A1(sθ)=P.
In part (2), the solutions for A2 and N are given by (in parametric form - N is the parameter)
A2=PN1+2N,
tan(Φ)=Ωαk(Nβ)k(Nβ),
η2kP={k2(Nβ)2+[Ωαk(Nβ)]2}PN1+2N.
The stability of the two plateaus of the square-wave oscillations can be analyzed by linearizing Eqs. (16)(19) along each constant plateau [28]. From Eq. (16), the linearized equation is
da1ds=Na1
for part (2). A1 = a1(s) is the small perturbation from A1 = 0 and N is the constant value obtained from (31). Stability clearly requires N < 0. The stability boundary corresponding to N = 0 is determined from Eq. (31) and is exactly the same as the Hopf bifurcation approximation (25). This suggests that a nearly vertical branch of periodic solutions emerges from the unstable steady state, stabilizes at a fixed amplitude, and leads to the stable square-waves described in (27)(31). Figure 2 represents (25) in the Ω versus η diagram (line HSW).

 figure: Fig. 2

Fig. 2 Stability diagram in terms of the frequency detuning Ω versus feedback rate η. The values of the fixed parameters are k = 0.8 (implying β = 0.125), α = 2, P = 0.5, T = 150, and θ = 103. Figure left: The line HRO corresponds to the first Hopf bifurcation of the steady state that leads to fast relaxation oscillations. The line HSW marks the transition to the square-wave oscillations. It is given by (25). Triangles mark parameter values chosen for the numerical simulations. Figure right: blow-up of the region where the two Hopf bifurcation lines are close. They intersect at two codimension 2 bifurcation points characterized by two pairs of distinct imaginary eigenvalues.

Download Full Size | PPT Slide | PDF

We now examine the other Hopf bifurcation (line HRO) which leads to sustained ROs. In order to determine this Hopf bifurcation condition, we insert λ = into the full characteristic equation and separate the real and imaginary parts. An approximation based on the large value of θ is delicate because of the presence of fast changing trigonometric functions of ωθ ( ω~ωRO=2P/T and ωθ = O(θ1/2) if T = O(θ)), in the Hopf bifurcation conditions. However, it is possible to reduce the two Hopf conditions to a single transcendental equation which we solved numerically. The analysis is long and tedious and we omit all details [28]. The Hopf line is denoted by HRO in Fig. 2. The fast periodic pulsating oscillations were observed experimentally [Fig. 11(a) in [29]].

In summary, two distinct Hopf bifurcation lines control the stability diagram. We now investigate their effects by simulating numerically Eqs. (16)(19). As we progressively increase the feedback amplitude from zero, the basic steady state first exchanges its stability to fast sustained relaxation oscillations. The transition is smooth and the amplitude of the oscillations gradually increases with the feedback amplitude. Above a critical feedback rate, the waveform of the oscillations suddenly change from pulses to much slower square-waves exhibiting a period equal to twice the delay. We have found that this critical rate is close to the second Hopf bifurcation HSW from the steady state. The Hopf bifurcation now admits a frequency close to π/θ. The simulations shown in Fig. 3 illustrate the transition from the RO oscillations to the square-waves. Figures 3(c)–3(e) correspond to the points labeled by c, d, and e in Fig. 2 left. As the feedback rate increases, the oscillations are first harmonic, then grow in amplitude and become square-waves as anticipated from the stability diagram.

 figure: Fig. 3

Fig. 3 At Ω = −0.2, the first Hopf bifurcation leads to relaxation oscillations. (c) η = 0.078, small amplitude oscillations near the Hopf bifurcation point; (d) η = 0.105, fast relaxation oscillations slightly before the bifurcation of the Period 2 square-wave oscillations; (e) η = 0.12, square-wave oscillations slightly above its bifurcation point.

Download Full Size | PPT Slide | PDF

There exists a small domain of overlap between fast pulsating and square-wave regimes near the HSW critical point. Moreover, solutions combining pulsating and square-wave forms have been found numerically. They were observed experimentally and were called ”complex oscillations” [Figs. 8 and 10 in [29]]. Note that the two Hopf bifurcation lines are both moving to smaller feedback rates if the detuning is negative (but not too large). A negative detuning is thus favourable for the observations of RO and square-wave oscillations.

Specific features of the stability diagram have been checked. The black dots in Fig. 2 left indicate the observation of the RO instability and they correctly match the Hopf line HRO. Figure 2 right indicates that near Ω = −0.15, the second Hopf line HSW appears before the first Hopf line HRO. Consequently, the bifurcation to square-waves appears first as we increase the feedback rate and if the bifurcation is supercritical, we may expect a gradual change from nearly sinusoidal to square-waves close to HSW. This is exactly what we observe numerically in Fig. 4. In Fig. 4(a), the oscillations are of small amplitude and nearly sinusoidal but the period is already close to 2 (two delays). They have been obtained numerically very close to HSW [red triangle labelled by a in Fig. 2]. If we slightly increases the feedback rate, square-wave oscillations clearly appear [Fig. 4(b) and red triangle labelled by b in Fig. 2]. Note the damped RO oscillations on the upper plateaus.

 figure: Fig. 4

Fig. 4 At Ω = −0.15, the first Hopf bifurcation corresponds to a bifurcation to Period 2 square-waves. (a) η = 0.125 small amplitude oscillations very close to the bifurcation point (b) η = 0.13 fully developed square-waves. The values of the other parameters are the same as in Fig. (2).

Download Full Size | PPT Slide | PDF

4. Discussion

In this paper, we combine asymptotic and numerical techniques to explore the bifurcation possibilities of a semiconductor laser with a PROF setup. We have included the frequency detuning into our analysis, which is a parameter that is most often present experimentally and that plays a crucial role, often in combination with the α factor and the gain/loss difference. We found that two basic Hopf bifurcations leading to stable solutions appear in parameter space. Except for a small range of detuning, the bifurcation to sustained ROs always appears before the bifurcation to the square-wave oscillations as we increase the feedback rate from zero. Close to the bifurcation to the square-waves, regimes involving both RO and square-wave oscillations have been found numerically. For other ranges of the fixed parameters, square-waves with rapidly sustained ROs on the top of one of the two plateaus have been found numerically but not observed experimentally yet.

Two parameters defined in (11) measure small differences between the total gains of the two polarization modes. They are k, the ratio of the differential gain coefficients and β, the dimensionless cavity loss parameter of the passive TM mode with respect to the TE mode. Assuming equal cavity decay rate for both the TE and TM modes, only k controls the differences between the total gains. We have investigated the limit k → 1 (β = (1 − k)/(2k) → 0) both numerically and analytically [28]. We found that the 2θ–periodic square-wave progressively degrades both in form and stability. Specifically, the 2θ-periodic square-wave becomes asymmetric and exhibit more than 2 plateaus. Figure 5 gives a typical example of this behaviour. The total period becomes larger than 2θ and the periodic regime is highly sensitive to noise. Our results suggest that the total gains of the two polarization modes cannot be too close for a successful generation of stable and robust square-waves. This is in agreement with recent work on VCSELs with the PROF setup [9] for which square-waves regimes are not observed for lasers with a low dischroism.

 figure: Fig. 5

Fig. 5 Asymmetric square-waves. The values of the parameters are P = 0.5, α = 2, T = 150, θ = 2000, k = 0.9, Ω = 0, and η = 0.4.

Download Full Size | PPT Slide | PDF

A. Appendix: Dimensionless equations

Heil et al [26], Takeuchi et al [25], and Fischer et al [27] simulated their experiments by solving numerically rate equations. In this appendix, we formulate their equations in the same dimensionless form and evaluate the values of the dimensionless parameters.

4.1. Equations by Heil et al [26]

The optical fields in [26] are defined as TE,TM(t) = ETE,TM(t) exp(TE,TMt). The rate equations are given by

dETEdt=12(1+iα)(G1(nn0)γp)ETE,
dETMdt=12(1+iα)(G2(nn0)γp)ETM+γETE(tτ)exp(iC),
dndt=Jγsn(nn0)(G1|ETE|2+G2|ETM|2)
where C = ωTEτ. The values of the parameters are listed in Table 2.

Tables Icon

Table 2. Values of the parameters

Introducing the new variables

s=γpt,N=12[G1γp1(nn0)1],Y1=γs1G12ETE,Y2=γs1G22ETM
into Eqs. (33)(35), we find
dY1ds=(1+iα)NY1,
dY2ds=(1+iα)k(Nβ)Y2+ηkY1(sθ)exp(iC),
TdNds=PN(1+2N)(|Y1|2+|Y2|2)
where
T=γpγs,θ=γpτ,k=G2G1,β=12(G1G21),
P=G1γp1γs12(JJth),Jth=(n0+1G1γp1)1γs1.
Using the two first columns of Table 2, we compute the values of the dimensionless parameters (two last columns in Table 2).

4.2. Takeuchi et al equations [25]

The optical fields in [25] are defined as TE,TM(t) = ETE,TM(t) exp(−TE,TMt). The rate equations are now formulated as

dETEdt=12(1iα)G1(nnthTE)ETE,
dETMdt=12(1iα)G2(nnthTM)ETM+γETE(tτ)exp[i(Δt+C)],
dndt=Jnτs(nn0)(G1|E1|2+G2|E2|2)
where Δ = ωTEωTM and C = ωTEτ. The values of the parameters are listed in Table 3.

Tables Icon

Table 3. Values of the parameters. Questions marks indicate unclear or non documented values.

In [25], it is assumed that the two modes admit the same carrier number at transparency (n0). n0 is related to the carrier threshold number nthTE and nthTM as

G1(nn0)=τph1+G1(nnthTE),G2(nn0)=τph1+G2(nnthTM).
Assuming the same carrier number at transparency, Eqs. (45) implies the relation
nthTM=nthTE+τph1(G21G11).
Introducing
N=G1τph2(nnthTE),Y1=G1τs2ETE,Y2=G2τs2ETM,s=t/τph
and noting that
nn2=nn1+n1n2=2NG1τph2τphG112(G1G21)=2NG1τph2τphG1β
where β=12(G1G21), our rate equations become
dY1ds=(1iα)NY1
dY2ds=(1iα)k(Nβ)Y2+ηkY1(sθ)exp[i(Ωs+C)]
TdNds=PN(1+2N)(|Y1|2+|Y2|2)
where
k=G2/G1,η=γτph,T=τsτph1,Jth=ntτs,P=G1τphτs2(JJth),θ=ττph1,Ω=Δτph.
The values of the dimensionless parameters are computed using the values shown in the third column of Table 3 and listed in two last columns.

4.3. Fischer et al equations [27]

The equations used by Hicke, Fischer and their collaborators [27] are given by

dE||dt=12(1+iα)(g||(NNT)γ||)E||,
dEdt=12(1+iα)(g(NNT)γ)E+κE||(tτec),
dNdt=IeγeN(NNT)(g|||E|||2+g|E|2).
The values of the parameters are listed in Table 4.

Tables Icon

Table 4. Values of the parameters.

Introducing the new variables

s=γ||t,n=12[g||γ||1(NNT)1],Y1=γe1g||2E||,Y2=γe1g2E,
the evolution equations become
dY1ds=(1+iα)NY1,
dY2ds=(1+iα)k(Nβ)Y2+ηkY1(sθ),
TdNds=PN(1+2N)(|Y1|2+|Y2|2)
where
T=γ||/γe,k=g/g||,β=(1k)/(2k),η=κ/γ||,
P=12g||γ||1γe1(IeIthe),andIthe=γe(N++1g||γ||1).
The values of the dimensionless parameters are listed in the last two columns in Table 4.

Acknowledgments

The authors benefited from fruitful discussions with I. Fischer and A. Gavrielides. TE acknowledges the support of the F.N.R.S. (Belgium). GF and LW acknowledge the support of the Belgian F.R.I.A. for PhD scholarships. This work benefited from the support of the Belgian Science Policy Office under Grant No IAP-7/35 “photonics@be”.

References and links

1. K. Otsuka and J.-L. Chern, “High-speed picosecond pulse generation in semiconductor lasers with incoherent optical feedback,” Opt. Lett. 16, 1759–1761 (1991). [CrossRef]   [PubMed]  

2. D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003). [CrossRef]  

3. W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990). [CrossRef]  

4. A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006). [CrossRef]   [PubMed]  

5. A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

6. A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

7. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011). [CrossRef]   [PubMed]  

8. J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007). [CrossRef]  

9. M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013). [CrossRef]  

10. D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012). [CrossRef]  

11. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993). [CrossRef]  

12. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998). [CrossRef]  

13. M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002). [CrossRef]  

14. L. Mashal, G. Van der Sande, L. Gelens, J. Danckaert, and G. Verschaffelt, “Square-wave oscillations in semiconductor ring lasers with delayed optical feedback,” Opt. Express 20, 22503–22516 (2012). [CrossRef]   [PubMed]  

15. D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010). [CrossRef]  

16. C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011). [CrossRef]  

17. M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011). [CrossRef]  

18. C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013). [CrossRef]  

19. M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009). [CrossRef]  

20. L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012). [CrossRef]  

21. L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013). [CrossRef]   [PubMed]  

22. S.A. Campbell, “Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops,” Dynamics of Continuous, Discrete and Impulsive Systems 5, 225–235 (1999).

23. F. M. Atay, “Oscillation control in delayed feedback systems,” in Dynamics, Bifurcations, and Control, F. Colonius and L. Grne, eds. (Lect. Notes in Control and Information Sciences 273, 2002), pp. 103–116. [CrossRef]  

24. Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008). [CrossRef]  

25. Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010). [CrossRef]  

26. T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003). [CrossRef]  

27. K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013). [CrossRef]  

28. G. Friart, “Routes to square-wave oscillations in a semiconductor laser subject to polarization rotated feedback”, MS Thesis in Physics, Université Libre de Bruxelles (2013).

29. A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. K. Otsuka and J.-L. Chern, “High-speed picosecond pulse generation in semiconductor lasers with incoherent optical feedback,” Opt. Lett. 16, 1759–1761 (1991).
    [Crossref] [PubMed]
  2. D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
    [Crossref]
  3. W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
    [Crossref]
  4. A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
    [Crossref] [PubMed]
  5. A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).
  6. A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).
  7. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011).
    [Crossref] [PubMed]
  8. J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
    [Crossref]
  9. M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
    [Crossref]
  10. D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
    [Crossref]
  11. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
    [Crossref]
  12. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
    [Crossref]
  13. M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
    [Crossref]
  14. L. Mashal, G. Van der Sande, L. Gelens, J. Danckaert, and G. Verschaffelt, “Square-wave oscillations in semiconductor ring lasers with delayed optical feedback,” Opt. Express 20, 22503–22516 (2012).
    [Crossref] [PubMed]
  15. D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
    [Crossref]
  16. C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
    [Crossref]
  17. M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
    [Crossref]
  18. C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
    [Crossref]
  19. M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
    [Crossref]
  20. L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
    [Crossref]
  21. L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
    [Crossref] [PubMed]
  22. S.A. Campbell, “Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops,” Dynamics of Continuous, Discrete and Impulsive Systems 5, 225–235 (1999).
  23. F. M. Atay, “Oscillation control in delayed feedback systems,” in Dynamics, Bifurcations, and Control, F. Colonius and L. Grne, eds. (Lect. Notes in Control and Information Sciences 273, 2002), pp. 103–116.
    [Crossref]
  24. Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
    [Crossref]
  25. Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
    [Crossref]
  26. T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
    [Crossref]
  27. K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
    [Crossref]
  28. G. Friart, “Routes to square-wave oscillations in a semiconductor laser subject to polarization rotated feedback”, MS Thesis in Physics, Université Libre de Bruxelles (2013).
  29. A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
    [Crossref]

2013 (4)

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
[Crossref]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

2012 (3)

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

L. Mashal, G. Van der Sande, L. Gelens, J. Danckaert, and G. Verschaffelt, “Square-wave oscillations in semiconductor ring lasers with delayed optical feedback,” Opt. Express 20, 22503–22516 (2012).
[Crossref] [PubMed]

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

2011 (3)

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011).
[Crossref] [PubMed]

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

2010 (3)

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
[Crossref]

2009 (1)

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

2008 (1)

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
[Crossref]

2007 (1)

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

2006 (1)

2003 (2)

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

2002 (1)

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

1999 (1)

S.A. Campbell, “Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops,” Dynamics of Continuous, Discrete and Impulsive Systems 5, 225–235 (1999).

1998 (1)

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

1993 (1)

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

1991 (1)

1990 (1)

W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
[Crossref]

Aida, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

Amonette, J.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Atay, F. M.

F. M. Atay, “Oscillation control in delayed feedback systems,” in Dynamics, Bifurcations, and Control, F. Colonius and L. Grne, eds. (Lect. Notes in Control and Information Sciences 273, 2002), pp. 103–116.
[Crossref]

Balle, S.

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

Barland, S.

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

Blondel, M.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

Brunner, D.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

Burner, G.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Campbell, S.A.

S.A. Campbell, “Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops,” Dynamics of Continuous, Discrete and Impulsive Systems 5, 225–235 (1999).

Chang, J.-W.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

Chembo, Y.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

Cheng, D.-L.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

Chern, J.-L.

Choquette, K. D.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

d’Huys, O.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

Dagenais, M.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

Danckaert, J.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

L. Mashal, G. Van der Sande, L. Gelens, J. Danckaert, and G. Verschaffelt, “Square-wave oscillations in semiconductor ring lasers with delayed optical feedback,” Opt. Express 20, 22503–22516 (2012).
[Crossref] [PubMed]

Davis, J.

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

Davis, P.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

Deparis, O.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

Erneux, T.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Escalona-Moran, M.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

Fischer, I.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011).
[Crossref] [PubMed]

Friart, G.

G. Friart, “Routes to square-wave oscillations in a semiconductor laser subject to polarization rotated feedback”, MS Thesis in Physics, Université Libre de Bruxelles (2013).

Gavrielides, A.

C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
[Crossref]

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

Gelens, L.

Gilfillan, T.

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

Giudici, M.

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

Heil, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

Hicke, K.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

Hohl, A.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

Hou, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

Jacquot, M.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

Javaloyes, J.

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

Jiang, S.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

Kojima, K.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

Kouomou Chembo, Y.

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

Larger, L.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

Lee, K.

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

Li, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

Loh, W. H.

W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
[Crossref]

Marconi, M.

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

Mashal, L.

Masoller, C.

C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
[Crossref]

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

McKay, J.

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

McLachlan, T.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Megret, P.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

Miller, J.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

Mirasso, C. R.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

Mooneyham, B.

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

Morgan, R. A.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

Mulet, J.

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

Ohtsubo, J.

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
[Crossref]

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
[Crossref]

Oliver, N.

Otsuka, K.

Ozeki, Y.

W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
[Crossref]

Pan, Z.

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

Peil, M.

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

Pope, B.

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

Rogister, F.

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

Sciamanna, M.

C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
[Crossref]

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

Shogenji, R.

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
[Crossref]

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
[Crossref]

Soriano, M. C.

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011).
[Crossref] [PubMed]

Sukow, D.

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

Sukow, D. W.

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36, 4632–4634 (2011).
[Crossref] [PubMed]

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Sukow, D.W.

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave self-modulation in diode lasers with polarization-rotated optical feedback,” Opt. Lett. 31, 2006–2008 (2006).
[Crossref] [PubMed]

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

Takeuchi, Y.

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
[Crossref]

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
[Crossref]

Tang, C. L.

W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
[Crossref]

Torre, M. S.

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

Tsai, J.-K.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

Uchida, A.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

Van der Sande, G.

Verschaffelt, G.

Virte, M.

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

Weicker, L.

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

Yen, T.-C.

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

Appl. Phys. Lett. (4)

W. H. Loh, Y. Ozeki, and C. L. Tang, “High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers,” Appl. Phys. Lett. 56, 2613–2615 (1990).
[Crossref]

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547, (1993).
[Crossref]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357, (1998).
[Crossref]

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaotic dynamics in semiconductor lasers subjected to polarization-rotated optical feedback,” Appl. Phys. Lett. 93,181105 (2008).
[Crossref]

Dynamics of Continuous, Discrete and Impulsive Systems (1)

S.A. Campbell, “Stability and bifurcation in the harmonic oscillator with multiple, delayed feedback loops,” Dynamics of Continuous, Discrete and Impulsive Systems 5, 225–235 (1999).

IEEE J. Sel. Top. Quantum Electron. (1)

K. Hicke, M. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19,1501610 (2013).
[Crossref]

Opt. Commun. (1)

D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Rev. (1)

Y. Takeuchi, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Opt. Rev. 17, 144–151 (2010).
[Crossref]

Phil. Trans. R. Soc. A (1)

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Slow-fast dynamics of a time-delayed electro-optic oscillator,” Phil. Trans. R. Soc. A 371,20120459 (2013).
[Crossref] [PubMed]

Phil. Transac. Roy. Soc. A (1)

C. Masoller, M. Sciamanna, and A. Gavrielides, “Two-parameter study of square-wave switching dynamics in orthogonally delay-coupled semiconductor lasers,” Phil. Transac. Roy. Soc. A 371,20120471 (2013).
[Crossref]

Phys. Rev. A (6)

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68,033811 (2003).
[Crossref]

J. Mulet, M. Giudici, J. Javaloyes, and S. Balle, “Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers,” Phys. Rev. A 76,043801 (2007).
[Crossref]

M. Marconi, J. Javaloyes, S. Barland, M. Giudici, and S. Balle, “Robust square-wave polarization switching in vertical-cavity surface-emitting lasers,” Phys. Rev. A 87,013827 (2013).
[Crossref]

D. W. Sukow, T. Gilfillan, B. Pope, M. S. Torre, A. Gavrielides, and C. Masoller, “Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: experiments and simulations,” Phys. Rev. A 86,033818 (2012).
[Crossref]

M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Megret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65,041801 (2002).
[Crossref]

C. Masoller, D. Sukow, A. Gavrielides, and M. Sciamanna, “Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment,” Phys. Rev. A 84,023838 (2011).
[Crossref]

Phys. Rev. E (5)

M. Sciamanna, M. Virte, C. Masoller, and A. Gavrielides, “Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers,” Phys. Rev. E 86,016218 (2011).
[Crossref]

D. W. Sukow, A. Gavrielides, T. Erneux, B. Mooneyham, K. Lee, J. McKay, and J. Davis, “Asymmetric square waves in mutually coupled semiconductor lasers with orthogonal optical injection,” Phys. Rev. E 81,025206 (2010).
[Crossref]

M. Peil, M. Jacquot, Y. Kouomou Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic-oscillators,” Phys. Rev. E 79,026208 (2009).
[Crossref]

L. Weicker, T. Erneux, O. d’Huys, J. Danckaert, M. Jacquot, Y. Chembo, and L. Larger, “Strongly asymmetric square-waves of time delayed systems,” Phys. Rev. E 86,055201 (2012).
[Crossref]

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81,056209 (2010).
[Crossref]

Other (4)

F. M. Atay, “Oscillation control in delayed feedback systems,” in Dynamics, Bifurcations, and Control, F. Colonius and L. Grne, eds. (Lect. Notes in Control and Information Sciences 273, 2002), pp. 103–116.
[Crossref]

G. Friart, “Routes to square-wave oscillations in a semiconductor laser subject to polarization rotated feedback”, MS Thesis in Physics, Université Libre de Bruxelles (2013).

A. Gavrielides, T. Erneux, D.W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-waveforms in edge-emitting diode lasers subject to polarization rotated optical feedback,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE6115, 60–69 (2006).

A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Square-wave oscillations in edge-emitting diode lasers with polarization rotated optical feedback,” in Semiconductor Laser and Laser Dynamics II, D. Lenstra, M. Pessa, and I. H. White, eds., Proc. SPIE6184, 255–261 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Stability diagram for the zero solution of Eq. (1). The Hopf bifurcation lines H1 and H2 are defined by (2) and (3), respectively. There are no other bifurcations for the chosen ranges of a and τ.
Fig. 2
Fig. 2 Stability diagram in terms of the frequency detuning Ω versus feedback rate η. The values of the fixed parameters are k = 0.8 (implying β = 0.125), α = 2, P = 0.5, T = 150, and θ = 103. Figure left: The line HRO corresponds to the first Hopf bifurcation of the steady state that leads to fast relaxation oscillations. The line HSW marks the transition to the square-wave oscillations. It is given by (25). Triangles mark parameter values chosen for the numerical simulations. Figure right: blow-up of the region where the two Hopf bifurcation lines are close. They intersect at two codimension 2 bifurcation points characterized by two pairs of distinct imaginary eigenvalues.
Fig. 3
Fig. 3 At Ω = −0.2, the first Hopf bifurcation leads to relaxation oscillations. (c) η = 0.078, small amplitude oscillations near the Hopf bifurcation point; (d) η = 0.105, fast relaxation oscillations slightly before the bifurcation of the Period 2 square-wave oscillations; (e) η = 0.12, square-wave oscillations slightly above its bifurcation point.
Fig. 4
Fig. 4 At Ω = −0.15, the first Hopf bifurcation corresponds to a bifurcation to Period 2 square-waves. (a) η = 0.125 small amplitude oscillations very close to the bifurcation point (b) η = 0.13 fully developed square-waves. The values of the other parameters are the same as in Fig. (2).
Fig. 5
Fig. 5 Asymmetric square-waves. The values of the parameters are P = 0.5, α = 2, T = 150, θ = 2000, k = 0.9, Ω = 0, and η = 0.4.

Tables (4)

Tables Icon

Table 1 Dimensionless parameters.

Tables Icon

Table 2 Values of the parameters

Tables Icon

Table 3 Values of the parameters. Questions marks indicate unclear or non documented values.

Tables Icon

Table 4 Values of the parameters.

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

x + x = a ( x ( t τ ) x ) .
H 1 : a = 1 2 ( π 2 τ 2 1 ) and ω 1 = π τ 1 ,
H 2 : τ = 2 π and ω 2 = 1 .
f R O 1 2 π 2 P T and f D 1 2 τ ,
d E T E d t = 1 2 ( 1 + i α ) ( G 1 ( n n 0 ) γ 1 ) E T E ,
d E T M d t = 1 2 ( 1 + i α ) ( G 2 ( n n 0 ) γ 2 ) E T M + γ E T E ( t τ ) exp ( i Δ t i C ) ,
d n d t = J γ s n ( n n 0 ) ( G 1 | E T E | 2 + G 2 | E T M | 2 ) .
d Y 1 d s = ( 1 + i α ) N Y 1 ,
d Y 2 d s = ( 1 + i α ) k ( N β ) Y 2 + η k Y 1 ( s θ ) exp ( i Ω s i C ) ,
T d N d s = P N ( 1 + 2 N ) [ | Y 1 | 2 + | Y 2 | 2 ] .
k G 2 G 1 and β 1 2 ( γ 2 G 1 γ 1 G 2 1 ) .
β = 1 2 k ( 1 k )
d E 1 d s = ( 1 + i α ) N E 1 ,
d E 2 d s = i Ω E 2 + ( 1 + i α ) k ( N β ) E 2 + η k E 1 ( s θ ) ,
T d N d s = P N ( 1 + 2 N ) [ | E 1 | 2 + | E 2 | 2 ] .
d A 1 d s = N A 1 ,
d A 2 d s = k ( N β ) A 2 + η k A 1 ( s θ ) cos ( Φ ) ,
d Φ d s = Ω + α [ N ( s θ ) k ( N β ) ] η k A 1 ( s θ ) A 2 sin ( Φ ) ,
T d N d s = P N ( 1 + 2 N ) ( A 1 2 + A 2 2 ) .
A 1 2 = [ ( k β ) 2 + ( Ω + α k β ) 2 ] P ( k β ) 2 + ( Ω + α k β ) 2 + η 2 k ,
A 2 2 = η 2 k P ( k β ) 2 + ( Ω + α k β ) 2 + η 2 k
tan ( Φ ) = Ω + α k β k β .
P + A 2 2 ( exp ( λ θ ) 1 ) = 0
A 2 2 = P / 2 and ω = π / θ .
η 2 k = ( k β ) 2 + ( Ω + α k β ) 2 .
N A 1 = 0 .
( 1 ) : N = A 1 ( s θ ) = 0 , A 2 = 0 , A 1 = P ,
( 2 ) : A 1 = N ( s θ ) = 0 , A 1 ( s θ ) = P .
A 2 = P N 1 + 2 N ,
tan ( Φ ) = Ω α k ( N β ) k ( N β ) ,
η 2 k P = { k 2 ( N β ) 2 + [ Ω α k ( N β ) ] 2 } P N 1 + 2 N .
d a 1 d s = N a 1
d E T E d t = 1 2 ( 1 + i α ) ( G 1 ( n n 0 ) γ p ) E T E ,
d E T M d t = 1 2 ( 1 + i α ) ( G 2 ( n n 0 ) γ p ) E T M + γ E T E ( t τ ) exp ( i C ) ,
d n d t = J γ s n ( n n 0 ) ( G 1 | E T E | 2 + G 2 | E T M | 2 )
s = γ p t , N = 1 2 [ G 1 γ p 1 ( n n 0 ) 1 ] , Y 1 = γ s 1 G 1 2 E T E , Y 2 = γ s 1 G 2 2 E T M
d Y 1 d s = ( 1 + i α ) N Y 1 ,
d Y 2 d s = ( 1 + i α ) k ( N β ) Y 2 + η k Y 1 ( s θ ) exp ( i C ) ,
T d N d s = P N ( 1 + 2 N ) ( | Y 1 | 2 + | Y 2 | 2 )
T = γ p γ s , θ = γ p τ , k = G 2 G 1 , β = 1 2 ( G 1 G 2 1 ) ,
P = G 1 γ p 1 γ s 1 2 ( J J t h ) , J t h = ( n 0 + 1 G 1 γ p 1 ) 1 γ s 1 .
d E T E d t = 1 2 ( 1 i α ) G 1 ( n n t h T E ) E T E ,
d E T M d t = 1 2 ( 1 i α ) G 2 ( n n t h T M ) E T M + γ E T E ( t τ ) exp [ i ( Δ t + C ) ] ,
d n d t = J n τ s ( n n 0 ) ( G 1 | E 1 | 2 + G 2 | E 2 | 2 )
G 1 ( n n 0 ) = τ p h 1 + G 1 ( n n t h T E ) , G 2 ( n n 0 ) = τ p h 1 + G 2 ( n n t h T M ) .
n t h T M = n t h T E + τ p h 1 ( G 2 1 G 1 1 ) .
N = G 1 τ p h 2 ( n n t h T E ) , Y 1 = G 1 τ s 2 E T E , Y 2 = G 2 τ s 2 E T M , s = t / τ p h
n n 2 = n n 1 + n 1 n 2 = 2 N G 1 τ p h 2 τ p h G 1 1 2 ( G 1 G 2 1 ) = 2 N G 1 τ p h 2 τ p h G 1 β
d Y 1 d s = ( 1 i α ) N Y 1
d Y 2 d s = ( 1 i α ) k ( N β ) Y 2 + η k Y 1 ( s θ ) exp [ i ( Ω s + C ) ]
T d N d s = P N ( 1 + 2 N ) ( | Y 1 | 2 + | Y 2 | 2 )
k = G 2 / G 1 , η = γ τ p h , T = τ s τ p h 1 , J t h = n t τ s , P = G 1 τ p h τ s 2 ( J J t h ) , θ = τ τ p h 1 , Ω = Δ τ p h .
d E | | d t = 1 2 ( 1 + i α ) ( g | | ( N N T ) γ | | ) E | | ,
d E d t = 1 2 ( 1 + i α ) ( g ( N N T ) γ ) E + κ E | | ( t τ e c ) ,
d N d t = I e γ e N ( N N T ) ( g | | | E | | | 2 + g | E | 2 ) .
s = γ | | t , n = 1 2 [ g | | γ | | 1 ( N N T ) 1 ] , Y 1 = γ e 1 g | | 2 E | | , Y 2 = γ e 1 g 2 E ,
d Y 1 d s = ( 1 + i α ) N Y 1 ,
d Y 2 d s = ( 1 + i α ) k ( N β ) Y 2 + η k Y 1 ( s θ ) ,
T d N d s = P N ( 1 + 2 N ) ( | Y 1 | 2 + | Y 2 | 2 )
T = γ | | / γ e , k = g / g | | , β = ( 1 k ) / ( 2 k ) , η = κ / γ | | ,
P = 1 2 g | | γ | | 1 γ e 1 ( I e I t h e ) , and I t h e = γ e ( N + + 1 g | | γ | | 1 ) .

Metrics