Abstract

We investigate coherent control of a single atom interacting with an optical bipartite lattice via a combined high-frequency modulation. Our analytical results show that the quantum tunneling and dynamical localization can depend on phase difference between the modulation components, which leads to a different route for the coherent destruction of tunneling and a convenient phase-control method for stabilizing the system to implement the directed transport of atom. The similar directed transport and the phase-controlled quantum transition are revealed for the corresponding many-particle system. The results can be referable for experimentally manipulating quantum transport and transition of cold atoms in the tilted and shaken optical bipartite lattice or of analogical optical two-mode quantum beam splitter, and also can be extended to other optical and solid-state systems.

© 2014 Optical Society of America

1. Introduction

Quantum control of tunneling processes of particles plays a major role in different areas of physics, optics and chemistry [14]. As early as 1986, Dunlap and Kenkre studied theoretically the quantum motion of a charged particle on a discrete lattice driven by an ac field [5], and found the surprising result that particle transport can be completely suppressed when ratio of the strength and the frequency of the ac field takes some special values. This effect of extreme localization was later found to be associated with the coherent destruction of tunneling (CDT) [2, 6, 7] at a collapse point of the Floquet quasienergy spectrum [8], and has also been observed in different systems [912]. Generally, the dynamical localization (DL) refers to the phenomenon wherein a particle initially localized in a lattice can transport within a fi-nite distance and periodically return to its original state. There has been growing interest in the quantum control of electrons in semiconductor superlattices or arrays of coupled quantum dots from both theoretical and experimental sides [2, 13]. Most of the DL and CDT of the electronic systems are generic and also can occur in atomic [8, 9, 14, 15] and optical [10, 1620] systems.

Recently, different routes to CDT were found by considering, respectively, the priori prescribed number of bosons of a many-boson system [21, 22], the distinguishable intersite separations of a bipartite lattice [23, 24], the variable driving symmetry of a two-frequency driven particle in a double-well [11, 25], and the different combined modulations to the different systems [26, 27]. The CDT mechanism has been applied to various physical fields such as the qubit control [28, 29], the quantum tunneling switch [30], and the directed transport in a bipartite lattice via the selective CDT to the two different barriers [23, 24]. It is worth noting that the CDT and DL mechanisms can also be applied to coherently control instability of the periodically driven double-well system [31], optical lattice system [32, 33] and fiber system [34]. In the sense of Lyapunov, by the instability we mean that the small initial deviation from a given solution grows without upper limit, which could lead to destruction of the solution behavior. It was found that instability of the bipartite lattice systems depends on different signs of the effective tunneling rates of two nearest-neighbor barriers [32, 33]. Therefore, one can stabilize the systems by tuning the effective tunneling rates. For a single particle held in a simple lattice with a single intersite separation, the nearest-neighbor barriers are the same such that the instability cannot be shown. For a bipartite lattice system, such an instability may be induced and suppressed alternately by adjusting the driving parameters, resulting in the directed transport of particles. Here our aim is finding a new route of CDT and supplying a simple stabilization method to realize the directed transport and quantum transition of cold atoms in a driven bipartite lattice.

The coherent control of an ac driven particle in a single-band lattice with a single intersite separation has been investigated widely in the nearest-neighbor tight binding (NNTB) approximation [5, 26]. More recently, a bipartite optical lattice or double-well train with two different intersite separations has been realized experimentally by superimposing two laser beams with two different wavelengths [35, 36]. Such a system was applied to induce the ratchet-like effect [23, 24], to transport quantum information [37] and to realize two-qubit quantum gates [38]. The periodic modulation is usually applied to the potential tilt (bias) between the lattice sites [5, 39, 40] or the tunnel coupling [4144]. The combined modulations between both have also been adopted to produce the exact solutions for a phase controllable lattice system [26] or for an analytically solvable two-level system [27, 45]. The adjustments of driving parameters can be performed in a nonadiabatic [23, 37] or adiabatic manner [46, 47]. On the other hand, the directed transports have been investigated for a single classical particle in a spatially periodic potential [48] and for a mean-field treated Bose-Einstein condensate loaded in an optical superlattice [49, 50].

In this work, we firstly consider a single atom held in an optical bipartite lattice with two different separations a and b and driven by a combined modulation of two resonant external fields with a phase difference between the bias and coupling. Such a system can also be regarded as an atomic analog of the optical two-mode quantum beam splitter [35]. In the high-frequency regime and NNTB approximation, we derive an analytical general solution for the probability amplitude of the particle in any localized state in which the quantum tunneling and stability can depend on the phase difference between the two modulation components. A new route of CDT and a simple method for stabilizing the system to perform the directed transport are found by adjusting the phase difference nonadiabatically. Such a phase-adjustment may be more convenient in experiments compared to the usual amplitude- and interaction-modulations. Finally, we suggest a scheme for extending the results to the phase-controlled directed transport and quantum transition between the superfluid and Mott insulator for the corresponding many-particle system. The results can be readily amenable with existing experimental setups [39, 40, 4244] on the periodically tilted and shaken optical lattices [26] and could be applied to simulating the different optical systems [16, 17] and solid-state systems [13].

2. General solution in the high-frequency regime

We consider a driven and tilted bipartite lattice in the form of a train of double wells formed by the tilted laser standing wave

V(x,t)=V1(t)cos(kLxθ)+V2(t)cos(2kLx2θ)+ε(t)x,
which consists of the long lattice of wave-vector kL, the short lattice of wave vector 2kL and the linear potential. Here θ denotes the laser phase [43], the potential tilt between the lattice sites takes the form [39, 40, 51] ε(t) = −ε0 cos(ωt) with amplitude ε0 and frequency ω, and the time-periodic lattice depths reads [37, 43, 44] Vi(t) = Vi0 + δVi cos(mωtϕ) for m = 0, 1, 2,..., and with constants Vi0 and δVi. The nonzero m means the frequency resonance between the modulation components. Such a lattice can be realized experimentally by a periodically shaken optical lattice [37, 43, 44], and by moving the position of a retroreflecting mirror which is mounted on a piezoelectric actuator [39] or by imposing a phase modulation to one of the standing wave component fields [51]. A single particle of mass M is initially placed near the lattice center, as shown in Fig. 1 [35], where we have adopted the spatial coordinate normalized by kL1 and the phase θ = 4.6, and selected the suitable driving parameters and initial time t0 = π/(2ω) to make ε(t0) = 0 and V1(t0) = 1, V2(t0) = 2. The different separations a and b can be adjusted by changing the laser wave vector kL and amplitudes Vi(t) [37, 43]. Quantum dynamics of such a system is governed by the Hamiltonian [23, 26, 33]
H(t)=(i,j)Jij(t)(bibj+H.C.)+ε(t)nxnbnbn.
Here (i, j) means the nearest-neighbor site pairs. Signs bj and bj are, respectively, the particle creation and annihilation operators in the site j. The spatial location of the nth lattice site reads [5]
xn=x|w(xxn)|2dx={n(a+b)/2forevenn,(n+1)a/2+(n1)b/2foroddn,
where w(xxi) is the Wannier function. Expressing the lattice depths in terms of the recoil energy Er = (h̄kL)2/(2M), the tunnel coupling is calculated by the formula [5, 43]
Jij(t)=w*(xxi)[d2dx2+V1(t)cos(kLxθ)+V2(t)cos(2kLx2θ)]w(xxj)dx.
Generally, the Jij(t) for an even i has only a small time-independent difference from that for an odd i and it will henceforth be renormalized, so we can take [23, 43] Jij(t) = J(t) = J0 + δJ cos(mωtϕ), where constant J0 is from the terms of kinetic energy and of Vi0, the shaking intensity δJ is proportional to the driving amplitudes [43] δVi. To simplify, we have set = 1 and normalized energy and time by Er and ω01=10(h¯)/Er, which are determined by the laser wave vector and atomic mass. The parameters J0, δJ and (ε0xn) are in units of ω0 = Er/10 with xn being normalized by the wave length λs = π/kL of the short lattice. Thus all the parameters are dimensionless throughout this paper. The experimentally achievable parameter regions may be selected as [4244] λs ∼ 800nm, J0ω0, δJ < J0, ε0λsω ∈ [0, 100](ω0), and a, bλs.

 

Fig. 1 A single particle is initially placed in the driven bipartite lattice centered at coordinate 0 with two different separations a and b, where the curve denotes the initial potential V(x, t0) = cos(x − 4.6) + 2cos(2x − 9.2). Hereafter all the quantities plotted in the figures are dimensionless.

Download Full Size | PPT Slide | PDF

Letting |n〉 be the localized state at the site n, we expand the quantum state |ψ(t)〉 as the linear superposition |ψ(t)〉 = ∑n cn(t)|n〉. Combining this with Eq. (1), from the time-dependent Schrödinger equation it|ψ(t)=H(t)|ψ(t) we derive the coupled equations of the probability amplitudes [5, 33, 47]

ic˙n(t)=J(t)(cn+1+cn1)ε0cos(ωt)xncn,
where the dot denotes the derivative with respect to time. To solve Eq. (2), we make the function transformation cn(t) = An(t) exp(0ω−1xn sinωt) which leads Eq. (2) to the form
iA˙n(t)=J(t)(An+1eiΔnsinωt+An1eiΔn1sinωt).
In this equation, we have defined Δn=ε0ω(xn+1xn) such that there are the relations Δn=ε0ωa, Δn1=ε0ωb for even n, and Δn=ε0ωb, Δn1=ε0ωa for odd n.

We focus our attention on the situation of high-frequency regime with ω ≫ 1. The selective CDT has been illustrated analytically and numerically under this limit for an amplitude modulation [23]. Here we shall give a general analytical solution of the system, which reveals the phase-controlled CDT and directed transport for the considered combined modulation, then extend the results to a many-particle system. Note that in Eq. (3), An(t) may be treated as a set of slowly varying functions of time, and the coupling

F(t,m,ϕ,Δn)=J(t,m,ϕ)eiΔnsinωt={J0+12δJ[ei(mωtϕ)+ei(mωtϕ)]}l𝒥l(Δn)eilωt
is a rapidly oscillating function which can be replaced by its time-average
F¯(m,ϕ,Δn)=J0𝒥0(Δn)+12δJ[eiϕ+(1)meiϕ]𝒥m(Δn)=J0𝒥0(Δn)+{δJcosϕ𝒥m(Δn)forevenm,iδJsinϕ𝒥m(Δn)foroddm
with 𝒥mn) = (−1)m𝒥mn) = (−1)m𝒥m(−Δn) being the mth Bessel function of the first kind [33]. Similarly, the time-average of F(t, ϕ, −Δn−1) = J(t)eiΔn−1sinωt in Eq. (3) reads (m, ϕ, − Δn−1), which is evaluated from Eq. (4) by using −Δn−1 instead of Δn. For an even (odd) n, (m, ϕ, Δn) and (m, ϕ, − Δn−1) are associated with the effective tunneling rates of the lattice separations a (b) and b (a), respectively. Clearly, they may be real or complex, corresponding to the even or odd m. Given Eq. (4), Eq. (3) is transformed to
iA˙n(t)=F¯(m,ϕ,Δn)An+1+F¯(m,ϕ,Δn1)An1.
Comparing this equation with Eq. (9) of Ref. [33], we find that the former can become the latter by using the new effective tunneling rates instead of the old. Thus we can construct the exact general solution of Eq. (5) by applying the same discrete Fourier transformation [5, 33]
A(k,t)=nAn(t)eink=Ae(k,t)+Ao(k,t)
to transform Eq. (5) into the equations
iA˙e(k,t)=f¯(k)Ao(k,t),iA˙o(k,t)=f¯*(k)Ae(k,t)
with Ae and Ao being the sums of even terms and odd terms respectively in the Fourier series. From the two first order equations of Ae and Ao we derive the second order equation Ä(k, t) = −|(k)|2A(k, t) with the well-known general solution
A(k,t)=α(k)ei|f¯(k)|t+β(k)ei|f¯(k)|t.
Inserting this solution into the inverse Fourier transformation, we immediately obtain the general solution of Eq. (5) as
An(t)=12πππ[α(k)ei|f¯(k)|t+β(k)ei|f¯(k)|t]einkdk.
Here (k) takes the form
f¯(k)=J+cosk+iJsink,J±=F¯(m,ϕ,Δn)±F¯(m,ϕ,Δn1),
where |(k)| and *(k) are the corresponding modulus and complex conjugate, α(k) and β(k) are adjusted by the initial conditions. It should be noticed that the parameters J± in Eq. (7) may be complex, while the same parameters in Ref. [33] are real. Such a difference may result in some different properties of the solutions. Without loss of generality, let the initially occupied state be |ψ(t0 = 0)〉 = |N〉 with a fixed integer N, namely the initial conditions read AN(0) = 1, AnN(0) = 0. Combining the conditions with the discrete Fourier transformation and general solution of A(k, t) produces
A(k,0)=α(k)+β(k)=eiNk,iA˙(k,0)=|f¯(k)|[α(k)β(k)]=inA˙n(0)eink=F¯(m,ϕ,ΔN)ei(N+1)k+F¯(m,ϕ,ΔN1)ei(N1)k.
The final equation is derived from the initial conditions and Eq. (5). Solving the two equations of α(k) and β(k) yields
α(k)=12|f¯(k)|[|f¯(k)|eiNkF¯(m,ϕ,ΔN)ei(N+1)kF¯(m,ϕ,ΔN1)ei(N1)k],β(k)=12|f¯(k)|[|f¯(k)|eiNk+F¯(m,ϕ,ΔN)ei(N+1)k+F¯(m,ϕ,ΔN1)ei(N1)k].
Given the general solution (6) with Eqs. (7) and (8), we can investigate the general transport characterization for the different initial conditions |ψ(t0)〉 and the different effective tunneling rates (m, ϕ, Δn) and (m, ϕ, −Δn−1). In the general cases, the particle may be in the expanded states or localized states, depending on the system parameters.

3. Unusual transport phenomena

We are interested in the unusual transport phenomena such as the DL, CDT, instability and directed transport. It will be found that such unusual phenomena can be controlled under the initial condition |ψ(t0)〉 and for some special parameter sets with different phases. The routes for implementing the phase-controlled transport are very different from that of the previously considered case δJ = 0 with a constant tunneling rate J0 [23, 33].

Phase-controlled CDT. The CDT conditions mean the zero effective tunneling rates (m, ϕ0, Δn) = (m, ϕ0, −Δn−1) = 0 in Eq. (5), and (k) = 0 in Eq. (7). Substituting the latter into Eq. (6), the probability amplitudes becomes some constants An(t) = An(t0) determined by the initial conditions, which means the occurrence of CDT. Applying the CDT conditions to Eq. (4), we get

J0𝒥0(Δn)+δJcosϕ0𝒥m(Δn)=J0𝒥0(Δn1)+δJcosϕ0𝒥m(Δn1)=0
for an even m, and
J0𝒥0(Δn)+iδJsinϕ0𝒥m(Δn)=J0𝒥0(Δn1)iδJsinϕ0𝒥m(Δn1)=0
for an odd m. Therefore, we can arrive at or deviate from the CDT conditions by fixing the parameters m, J0, δJ, Δn, Δn−1 and adjusting the phase to arrive at or deviate from the phase ϕ0. In the general case, 𝒥0n) ≠ 𝒥0n−1), for an even m the above CDT conditions imply −δJ cosϕ/J0 = 𝒥0n)/𝒥mn) = 𝒥0n−1)/𝒥mn−1). For example, applying the parameters J0 = 1, δJ = 0.8, m = 2 to the CDT conditions produces the required values Δn ≈ 2.01717, Δn−1 ≈ 5.37977. Adopting these parameters, we plot the effective tunneling rates as functions of phase, as in Fig. 2. It is shown that the effective tunneling rates are tunable by varying the phase, and the CDT conditions (m, ϕ0, Δn) = (m, ϕ0, −Δn−1) = 0 are established at the phase ϕ0 ≈ 2.4.

 

Fig. 2 The effective tunneling rates as functions of phase for the parameters J0 = 1, δJ = 0.8, m = 2, Δn = 2.01717, Δn−1 = 5.37977. The solid and dashed curves describe (m, ϕ, Δn) and (m, ϕ, −Δn−1) respectively, which have the same zero point ϕ0 ≈ 2.4.

Download Full Size | PPT Slide | PDF

As a simplest example, we can fix the lattice separations a, b and tune the ratio ε0/ω to obey 𝒥0n) = 𝒥0n−1) = 0 with Δn=ε0ωa2.4048, Δn1=ε0ωb5.5201, then Eq. (4) becomes

F¯(m,ϕ,Δn)={δJcosϕ𝒥m(Δn)forevenm,iδJsinϕ𝒥m(Δn)foroddm,
Thus we can achieve the CDT by varying value of the phase to ϕ0 = π/2 for an even m or to ϕ0 = 0 for an odd m in a nonadiabatic manner [23, 37].

Phase-controlled DL and selective CDT. The DL conditions mean one of the two effective tunneling rates vanishing, which leads to selective CDT to the two different barriers [23, 24]. When (m, ϕ, −Δn−1) = 0 and |ψ(0)〉 = |N〉 are set, from Eqs. (7) and (8) we obtain the constant modulus |(k)| = |(m, ϕ, Δn)| and the periodic functions

α(k)=12eiNkF¯(m,ϕ,ΔN)2|F¯(m,ϕ,Δn)|ei(N+1)k,β(k)=12eiNk+F¯(m,ϕ,ΔN)2|F¯(m,ϕ,Δn)|ei(N+1)k
of k. Inserting these into Eq. (6) produces the probability amplitudes
AnN,N+1(t)=0,AN(t)=cos(ω1t),AN+1(t)=iF¯(m,ϕ,ΔN)|F¯(m,ϕ,ΔN)|sin(ω1t).
They describe Rabi oscillation of the particle between the localized states |N〉 and |N + 1〉 with oscillating frequency ω1 = |(m, ϕ, ΔN)|. Here the selective CDTs between the states |N − 1〉 and |N〉, and between the states |N + 1〉 and |N + 2〉 occur. Similarly, taking (m, ϕ, Δn) = 0 leads to the probability amplitudes
AnN,N1(t)=0,AN(t)=cos(ω2t),AN1(t)=iF¯(m,ϕ,ΔN1)|F¯(m,ϕ,ΔN1)|sin(ω2t),
which describe Rabi oscillation of the particle between the localized states |N〉 and |N − 1〉 with oscillating frequency ω2 = |(m, ϕ, −ΔN−1)|. Here the DL conditions and the different oscillating frequencies are modulated by the phase for a set of other parameters.

Phase-controlled instability. Now we prove that the solutions of Eq. (5) are unstable under the condition

F¯(m,ϕc,ΔN)=F¯(m,ϕc,Δn1)
for the phase ϕ = ϕc. In fact, when Eq. (12) is satisfied, Eq. (5) can be written as
dAn(τ)/dτ=12[An1(τ)An+1(τ)]
with variable τ = 2iF̄(m, ϕ, ΔN)t being proportional to time, whose general solution is well-known as
An(τ)=Bn𝒥n(τ)+Dn𝒩n(τ),
where 𝒥n(τ) and 𝒩n(τ) are the Bessel and Neuman functions respectively, and Bn, Dn the expansion coefficients determined by means of the initial conditions. For the complex variable τ with nonzero imaginary part, this general solution has the asymptotic property limtAn(τ)~limteτ/2πτ= of the Bessel function, which implies that the initially small deviation δAn(τ) from the given solution An(τ) can grow exponentially fast, meaning the Lyapunov instability of solution An(τ). In fact, by using δAn(τ) + An(τ) instead of An(τ) in the linear Eq. (5), we can find that the deviated solution possesses the same form as that of the given solution,
δAn(τ)=δBn𝒥n(τ)+δDn𝒩n(τ)
with constants δBn and δDn determined by the initial deviation, and has the same asymptotic property, namely limt→∞δAn(τ) tends to infinity exponentially fast. Obviously such an instability can be controlled by tuning the phase to arrive at or deviate from ϕc in the condition (12), as shown in Fig. 3(a).

 

Fig. 3 The effective tunneling rates versus phase (a) and the time evolutions of the original tunneling rates (b) for the parameters J0 = 1, δJ = 0.8, m = 2, ω = 30, Δn = 2, Δn−1 = 2.2. In (a), the solid curve describes (m, ϕ, Δn) with zero point ϕ2 ≈ 2.49 and the dashed curve labels −(m, ϕ, −Δn−1) with zero point ϕ1 ≈ 1.93. The phase value ϕc ≈ 2.17 corresponds to the cross point of the two curves, where the instability condition (12) holds. In (b), the solid and dashed curves are associated with the original tunneling rates J(t, ϕ1) and J(t, ϕ2), respectively. At the time t = T1 = π/ω1 = 25.2001, the J(t, ϕ1) is nonadiabatically changed to J(t, ϕ2).

Download Full Size | PPT Slide | PDF

Phase-controlled directed transport. For a set of given parameters J0, δJ, Δn and Δn−1, we define two different phases ϕ1 and ϕ2 to obey

F¯(m,ϕ1,Δn1)=J0𝒥0(Δn1)+δJcosϕ1𝒥m(Δn1)=0,F¯(m,ϕ2,Δn)=J0𝒥0(Δn)+δJcosϕ2𝒥m(Δn)=0
for an even m, which result in the selective CDT between the localized states |n〉 and |n − 1〉 or between the localized states |n〉 and |n + 1〉, respectively. By nonadiabatically tuning the phase to alternately change between ϕ1 and ϕ2 just after the two different time intervals T1 = π/ω1 and T2 = π/ω2, the original tunneling rate becomes the continuous and piecewise analytic function
J(t,m,ϕ)={J(t,m,ϕ1)fort[nT,nT+T1],J(t,m,ϕ2)fort[nT+T1,(n+1)T]
with T = T1 + T2 and n′ = 0, 1, 2,.... The instability condition (12) will be reached in each process changing phase from ϕi to ϕj for i, j = 1, 2. As an example, this is indicated by ϕc in Fig. 3(a) for the parameter set J0 = 1, δJ = 0.8, m = 2, ω = 30, Δn = 2, Δn−1 = 2.2, where Eqs. (12) and (13) give ϕc ≈ 2.17, ϕ1 ≈ 1.93 and ϕ2 ≈ 2.49, and the Rabi frequencies and half-periods of Eqs. (10) and (11) read ω1 = (m, ϕ1, Δn) ≈ 0.124666, ω2 = |(m, ϕ2, −Δn−1)| ≈ 0.140933 and T1 ≈ 25.2001, T2 ≈ 22.2914, respectively. The corresponding adjustment to the time-dependent tunneling rate J(t, ϕ) = 1 + 0.8cos(60t + ϕ) is exhibited in Fig. 3(b) for the time interval including t = T1, which only transforms the phase of J(t, ϕ) from ϕ1 to ϕ2 and does not change its magnitude. Clearly, at the time t = T1 + T2, the tunneling rate will change from J(t, ϕ2) to J(t, ϕ1). By repeatedly using such operations, the initially stable Rabi oscillation is broken under the conditions (12), then the instability is suppressed by the conditions (13) with phase ϕ1 or ϕ2 such that the particle is forced to transit repeatedly between the two stable oscillation states |ψn(t)〉 = An|n〉 + An+1|n + 1〉 and |ψn′ (t)〉 = An′ |n′〉 + An′+1|n′ + 1〉 with the amplitudes and frequencies of Eqs. (10) and (11) for (n, n′) = (N, N +1);(N +1, N +2);... that lead to the directed motion toward the right [23,33]. Because the phase-transformation does not change the magnitude of J(t, ϕ) at the operation moment, it supplies a more convenient method to manipulate the directed transport, compared to the previous amplitude-modulation schemes to the coupling [37] or to the tilt [23].

4. Extension to a many-particle system

It is worth noting that the method realizing the directed transport can be extended to controlling the transport of a many-particle system in an optical bipartite lattice, where a Bose-Hubbard interaction energy Hb=12U0nn^(n^1) for n^=bnbn should be added into Eq. (1). It is well known that for an undriven simple lattice system with J = J0, ε = ε0, a = b and the interaction strength U0 > 0, the characteristic parameter is the ratio [39, 40] r = U0/J0. For U0J0 the ground state of the system describes a superfluid, whereas it has the properties of a Mott insulator for UJ0. Quantum transition between the superfluid and Mott insulator can occur at the critical value r = rc. It has been argued that in the presence of a high-frequency driving the system behaves similar to the undriven system, but with the tunneling rate J0 of the latter being replaced by the effective tunneling rate Jeff = J0𝒥0(ε0/ω) for the simple lattice system. Thus one can control the quantum transition and transport by adjusting the driving parameters [39, 40]. Another interesting scheme for controlling the quantum transition has also been suggested in which the periodically modulated interactions were applied [52]. In the Mott insulating state, average atomic current along any direction approximately vanishes.

However, in the case of many particles held in the considered optical bipartite lattice, the effective tunneling rates of the lattice separations a and b can be different, (m, ϕ, Δn) ≠ (m, ϕ, −Δn−1). After transformation into the interaction picture by the unitary operator

U^=exp[iε(t)dtnxnbnbn],
from Eq. (1) and the considered Bose-Hubbard energy we arrive at the transformed interaction Hamiltonian
Hint=U^HIU^=(i,j)F¯(m,ϕ,Δij)(bibj+H.C.)+12U0nn^(n^1)
in the high-frequency limit. Here we have set
HI=(i,j)J(t,m,ϕ)(bibj+H.C.)+12U0nn^(n1),
and Δij = Δn and −Δn−1 alternately. In such a system, we have two parameter ratios r1 = U0/(m, ϕ, Δn) and r2 = U0/(m, ϕ, −Δn−1), whose values are associated with the following cases:
  • Case 1. The system becomes a Mott insulator with r1rc and r2rc;
  • Case 2. There is a superfluid state with r1rc and r2rc;
  • Case 3. There exist two different states for r1rc, r2 < rc or r1 < rc, r2rc, respectively.

We call the two states the local superfluid states, which may be gone through in the process of transformations between case 1 and case 2.

When the ratios ri are changed between the case 1 and case 2, the system undergoes a quantum transition between the superfluid and Mott insulator. Because the ratios depends on the effective tunneling rates and the latter can be tuned by varying the driving phase, we can control the quantum transition by the phase-modulation. On the other hand, to realize the directed transport of the many-particle system, the possible experiment can begin by loading a Bose-Einstein condensate into the long lattice of wave-vector kL, then one can increase the lattice depth to make the atomic sample in the Mott insulating state with a single atom per well [42,43]. Further one can divide every well into a double-well by ramping up the short lattice of wave-vector 2kL and tilting the double-well train, that achieve the load of single atoms into the “left” sides of tilted double-wells [43]. In such a state with a single atom per double-well such that the interatomic interaction could be negligible and the phase-modulation method for the single atom system becomes valid for the many-body system. Therefore, we can tune the driving phase according to Eqs. (13) and (14) such that the parameter ratios change alternately between r1 < rc, r2rc and r1rc, r2 < rc, leading to the nonzero average atomic current along a sin-gle direction. Such a phase-controlled directed transport of many particles will form a stronger particle current compared to the single particle case. Particularly, the dynamics of the super-fluid and Mott insulator is very different from that of the single-atom case. The scheme of the phase-controlled quantum transition and directed transport through the local superfluid states also differs from the previous amplitude-modulation [39, 40] and interaction-modulation [52] proposals on controlling quantum transitions and transports in simple optical lattices. In the latter case, the local superfluid states and the directed motion cannot exist for a symmetric driving. It is interesting for us to compare our results with those of a repulsive Bose-Einstein condensate loaded in the spatially asymmetric optical superlattice without tilt potential and treated in mean-field approximation [50]. Differing from the quantum states governed by the spatially discrete and linear Eq. (2), the governing Schrödinger equation of the latter system are spatially continuous and nonlinear. Therefore, quantum transition and directed transport of the former system can be described by the ratios of the interaction strength and the effective tunneling rates associated with the time-periodic lattice tilt, while the directed atomic current of the latter system is expressed by the time-averaged momentum expectation and this transport phenomenon can occur only if the interaction strength exceeds a critical value for a symmetric driving [50]. Thus one can steer the directed current by adjusting the s-wave scattering length to vary the interaction strength.

5. Conclusions and discussion

We have investigated the coherent control of a single atom held in the optical bipartite lattice with two different separations a and b and driven by a combined modulation of two resonant external fields with a phase difference between the bias and coupling. In the high-frequency regime and NNTB approximation, we derive an analytical general solution of the time-dependent Schrödinger equation, which quantitatively describes the dependence of the tunneling dynamics on the phase difference between the modulation components. It is demonstrated that a new route of CDT (or DL) can be formed by tuning the phase to make two (or one) of the effective tunneling rates of the lattice separations a and b vanishing. When the two effective tunneling rates are adjusted to go through the values of the same magnitude and opposite signs, the system loses its stability. The phase-controlled selective CDT enables the system to be stabilized and the directed tunneling of the particle to be coherently manipulated. In the process of control, the appropriate operation times are fixed by the two tunneling half-periods. The theoretical results have also been extended to the phase-controlled directed transport and quantum transition between the superfluid and Mott insulator for the corresponding many-particle system. The analytic results based on the high-frequency approximation should have an advantage over a direct numerical integration of the Schröedinger equation for transparently predicting or explaining the experimental results.

The obtained results can be tested by employing the current accessible experimental setups [39, 40, 42, 43], and may be applicable for investigating atomic transport, quantum transition and quantum information processing [37, 38]. In experiments, the periodic modulations of the tunneling rate [37, 43, 44] and the potential tilt [12, 39, 51] have been realized through different methods. In order to experimentally implement the directed transport of the bipartite lattice systems, the effective tunneling rate must be changed alternately between two different values. The previous schemes [23,37] suggested that one can achieve the modulation by rapidly changing the amplitudes of driving fields. In such a process, the deviation from the probability amplitude of the initial Rabi-oscillation state crossing the separation a linearly grows in time, then the system is stabilized to the final oscillation state crossing the separation b. This mechanism is similar to the resonance transition in standard quantum mechanics [33]. In contrast, when the phase-modulation is adopted, the deviation from the the initial state can grow exponentially fast, as indicated below Eq. (12), that may result in faster transition to the final state. The difference between both implies that the phase-modulation offers new dynamics of tunneling. In addition, in Fig. 3 we show that the phase-transformation does not change the magnitude of the original tunneling rate at the operation moment. Therefore, the phase-modulation scheme of the periodic shaking may be more convenient and experimentally feasible compared to the previous amplitude modulations. The directed tunneling is related to the ratchetlike effect of quantum particles in the periodically tilted and shaken optical bipartite lattices and could be well suited to simulating the different optical systems [16,17] and solid-state systems [13]. Particularly, the optical analog of such a system may be realized by an optical two-mode quantum beam splitter [35].

Acknowledgments

This work was supported by the NNSF of China under Grant Nos. 11204027, 11175064 and 11205021, the Construct Program of the National Key Discipline of China, the Hunan Provincial NSF ( 11JJ7001) and the Scientific Research Fund of Hunan Provincial Education Department ( 12B082).

References and links

1. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000). [CrossRef]   [PubMed]  

2. M. Grifoni and P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998). [CrossRef]  

3. P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007). [CrossRef]  

4. J. Thom, G. Wilpers, E. Riis, and A. G. Sinclair, “Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems,” Opt. Express 21, 18712–18723 (2013). [CrossRef]   [PubMed]  

5. D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986). [CrossRef]  

6. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991). [CrossRef]   [PubMed]  

7. F. Grossmann and P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992). [CrossRef]  

8. M. Holthaus, “Collapse of minibands in far-infrared irradiated superlattices,” Phys. Rev. Lett. 69, 351–354 (1992). [CrossRef]   [PubMed]  

9. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007). [CrossRef]  

10. G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, and S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007). [CrossRef]   [PubMed]  

11. E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008). [CrossRef]   [PubMed]  

12. A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009). [CrossRef]  

13. J. M. Villas-Boas, S. E. Ulloa, and N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004). [CrossRef]  

14. C. Weiss and N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008). [CrossRef]   [PubMed]  

15. C. Ding, J. Li, R. Yu, X. Hao, and Y. Wu, “High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system,” Opt. Express 20, 7870–7885 (2012). [CrossRef]   [PubMed]  

16. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012). [CrossRef]  

17. F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, and A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013). [CrossRef]  

18. R.-G. Wan and T.-Y. Zhang, “Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission,” Opt. Express 19, 25823–25832 (2011). [CrossRef]  

19. Q. T. Xie, X. B. Luo, and B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010). [CrossRef]   [PubMed]  

20. X. B. Luo, Q. T. Xie, and B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007). [CrossRef]  

21. J. Gong, L. Morales-Molina, and P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009). [CrossRef]   [PubMed]  

22. S. Longhi, “Many-body selective destruction of tunneling in a bosonic junction,” Phys. Rev. A 86, 044102, 2012). [CrossRef]  

23. C. E. Creffield, “Quantum control and entanglement using periodic driving fields,” Phys. Rev. Lett. 99, 110501, 2007). [CrossRef]   [PubMed]  

24. K. Hai, W. Hai, and Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010). [CrossRef]  

25. G. Lu, W. Hai, and H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009). [CrossRef]  

26. N. Singh, “Phase controllable dynamical localization of a quantum particle in a driven optical lattice,” Phys. Lett. A 376, 1593–1595 (2012). [CrossRef]  

27. W. Hai, K. Hai, and Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013). [CrossRef]  

28. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009). [CrossRef]  

29. C. Padurariu and Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012). [CrossRef]  

30. G. Lu and W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011). [CrossRef]  

31. K. Xiao, W. Hai, and J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012). [CrossRef]  

32. C. E. Creffield, “Instability and control of a periodically driven Bose-Einstein condensate,” Phys. Rev. A 79, 063612, 2009). [CrossRef]  

33. K. Hai, Q. Chen, and W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011). [CrossRef]  

34. N. Korneev, V. A. Vysloukh, and E. M. Rodríguez, “Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos,” Opt. Express 11, 3574–3582 (2003). [CrossRef]   [PubMed]  

35. J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, and P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007). [CrossRef]   [PubMed]  

36. S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008). [CrossRef]  

37. O. Romero-Isart and J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007). [CrossRef]  

38. G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, and J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008). [CrossRef]  

39. A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009). [CrossRef]  

40. A. Eckardt, C. Weiss, and M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005). [CrossRef]  

41. F. Massel, M. J. Leskinen, and P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009). [CrossRef]   [PubMed]  

42. R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, and M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011). [CrossRef]   [PubMed]  

43. Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, and I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011). [CrossRef]   [PubMed]  

44. C. Schori, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004). [CrossRef]  

45. F. T. Hioe and C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985). [CrossRef]   [PubMed]  

46. Y. Qian, M. Gong, and C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011). [CrossRef]  

47. S. Longhi and G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012). [CrossRef]  

48. A. P. Itin and A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012). [CrossRef]  

49. D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, and Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008). [CrossRef]   [PubMed]  

50. D. Poletti, G. Benenti, G. Casati, P. Hänggi, and B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009). [CrossRef]   [PubMed]  

51. K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, and M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998). [CrossRef]  

52. Á. Rapp, X. Deng, and L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
    [CrossRef] [PubMed]
  2. M. Grifoni, P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998).
    [CrossRef]
  3. P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
    [CrossRef]
  4. J. Thom, G. Wilpers, E. Riis, A. G. Sinclair, “Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems,” Opt. Express 21, 18712–18723 (2013).
    [CrossRef] [PubMed]
  5. D. H. Dunlap, V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
    [CrossRef]
  6. F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
    [CrossRef] [PubMed]
  7. F. Grossmann, P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992).
    [CrossRef]
  8. M. Holthaus, “Collapse of minibands in far-infrared irradiated superlattices,” Phys. Rev. Lett. 69, 351–354 (1992).
    [CrossRef] [PubMed]
  9. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
    [CrossRef]
  10. G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
    [CrossRef] [PubMed]
  11. E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
    [CrossRef] [PubMed]
  12. A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
    [CrossRef]
  13. J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
    [CrossRef]
  14. C. Weiss, N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008).
    [CrossRef] [PubMed]
  15. C. Ding, J. Li, R. Yu, X. Hao, Y. Wu, “High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system,” Opt. Express 20, 7870–7885 (2012).
    [CrossRef] [PubMed]
  16. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
    [CrossRef]
  17. F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
    [CrossRef]
  18. R.-G. Wan, T.-Y. Zhang, “Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission,” Opt. Express 19, 25823–25832 (2011).
    [CrossRef]
  19. Q. T. Xie, X. B. Luo, B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010).
    [CrossRef] [PubMed]
  20. X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
    [CrossRef]
  21. J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
    [CrossRef] [PubMed]
  22. S. Longhi, “Many-body selective destruction of tunneling in a bosonic junction,” Phys. Rev. A 86, 044102, 2012).
    [CrossRef]
  23. C. E. Creffield, “Quantum control and entanglement using periodic driving fields,” Phys. Rev. Lett. 99, 110501, 2007).
    [CrossRef] [PubMed]
  24. K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
    [CrossRef]
  25. G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
    [CrossRef]
  26. N. Singh, “Phase controllable dynamical localization of a quantum particle in a driven optical lattice,” Phys. Lett. A 376, 1593–1595 (2012).
    [CrossRef]
  27. W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
    [CrossRef]
  28. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
    [CrossRef]
  29. C. Padurariu, Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012).
    [CrossRef]
  30. G. Lu, W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011).
    [CrossRef]
  31. K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
    [CrossRef]
  32. C. E. Creffield, “Instability and control of a periodically driven Bose-Einstein condensate,” Phys. Rev. A 79, 063612, 2009).
    [CrossRef]
  33. K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
    [CrossRef]
  34. N. Korneev, V. A. Vysloukh, E. M. Rodríguez, “Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos,” Opt. Express 11, 3574–3582 (2003).
    [CrossRef] [PubMed]
  35. J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
    [CrossRef] [PubMed]
  36. S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
    [CrossRef]
  37. O. Romero-Isart, J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007).
    [CrossRef]
  38. G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
    [CrossRef]
  39. A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
    [CrossRef]
  40. A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
    [CrossRef]
  41. F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
    [CrossRef] [PubMed]
  42. R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
    [CrossRef] [PubMed]
  43. Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
    [CrossRef] [PubMed]
  44. C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
    [CrossRef]
  45. F. T. Hioe, C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985).
    [CrossRef] [PubMed]
  46. Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
    [CrossRef]
  47. S. Longhi, G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012).
    [CrossRef]
  48. A. P. Itin, A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012).
    [CrossRef]
  49. D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
    [CrossRef] [PubMed]
  50. D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
    [CrossRef] [PubMed]
  51. K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
    [CrossRef]
  52. Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
    [CrossRef] [PubMed]

2013 (3)

J. Thom, G. Wilpers, E. Riis, A. G. Sinclair, “Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems,” Opt. Express 21, 18712–18723 (2013).
[CrossRef] [PubMed]

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
[CrossRef]

2012 (9)

N. Singh, “Phase controllable dynamical localization of a quantum particle in a driven optical lattice,” Phys. Lett. A 376, 1593–1595 (2012).
[CrossRef]

C. Padurariu, Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012).
[CrossRef]

K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
[CrossRef]

S. Longhi, “Many-body selective destruction of tunneling in a bosonic junction,” Phys. Rev. A 86, 044102, 2012).
[CrossRef]

C. Ding, J. Li, R. Yu, X. Hao, Y. Wu, “High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system,” Opt. Express 20, 7870–7885 (2012).
[CrossRef] [PubMed]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

S. Longhi, G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012).
[CrossRef]

A. P. Itin, A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012).
[CrossRef]

Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
[CrossRef] [PubMed]

2011 (6)

Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
[CrossRef]

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
[CrossRef]

R.-G. Wan, T.-Y. Zhang, “Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission,” Opt. Express 19, 25823–25832 (2011).
[CrossRef]

G. Lu, W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011).
[CrossRef]

2010 (2)

Q. T. Xie, X. B. Luo, B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010).
[CrossRef] [PubMed]

K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
[CrossRef]

2009 (8)

G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
[CrossRef]

C. E. Creffield, “Instability and control of a periodically driven Bose-Einstein condensate,” Phys. Rev. A 79, 063612, 2009).
[CrossRef]

J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
[CrossRef] [PubMed]

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
[CrossRef] [PubMed]

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

2008 (5)

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

C. Weiss, N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008).
[CrossRef] [PubMed]

2007 (7)

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

C. E. Creffield, “Quantum control and entanglement using periodic driving fields,” Phys. Rev. Lett. 99, 110501, 2007).
[CrossRef] [PubMed]

X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
[CrossRef]

O. Romero-Isart, J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

2005 (1)

A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
[CrossRef]

2004 (2)

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
[CrossRef]

2003 (1)

2000 (1)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

1998 (2)

M. Grifoni, P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998).
[CrossRef]

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

1992 (2)

F. Grossmann, P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992).
[CrossRef]

M. Holthaus, “Collapse of minibands in far-infrared irradiated superlattices,” Phys. Rev. Lett. 69, 351–354 (1992).
[CrossRef] [PubMed]

1991 (1)

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

1986 (1)

D. H. Dunlap, V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[CrossRef]

1985 (1)

F. T. Hioe, C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985).
[CrossRef] [PubMed]

Aidelsburger, M.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

Alexander, T. J.

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

Anderlini, M.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Arimondo, E.

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Atala, M.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

Bakr, W. S.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Bayer, M.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Benenti, G.

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

Bloch, I.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Brown, B. L.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Calarco, T.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

Carroll, C. E.

F. T. Hioe, C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985).
[CrossRef] [PubMed]

Casati, G.

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

Cheinet, P.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Chen, Q.

W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
[CrossRef]

K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
[CrossRef]

K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
[CrossRef]

Chen, Y.-A.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

Ciampini, D.

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Cianci, E.

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Creffield, C. E.

C. E. Creffield, “Instability and control of a periodically driven Bose-Einstein condensate,” Phys. Rev. A 79, 063612, 2009).
[CrossRef]

C. E. Creffield, “Quantum control and entanglement using periodic driving fields,” Phys. Rev. Lett. 99, 110501, 2007).
[CrossRef] [PubMed]

De Chiara, G.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Della Valle, G.

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Demler, E. A.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Deng, X.

Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
[CrossRef] [PubMed]

Diener, R. B.

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Ding, C.

Dittrich, T.

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

Dreisow, F.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Dunlap, D. H.

D. H. Dunlap, V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[CrossRef]

Eckardt, A.

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
[CrossRef]

Economou, S. E.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Esslinger, T.

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

Feld, M.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Fischer, M. C.

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Foglietti, V.

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Folling, S.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Garanovich, I. L.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

García-Ripoll, J. J.

O. Romero-Isart, J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007).
[CrossRef]

Gong, J.

J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
[CrossRef] [PubMed]

Gong, M.

Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
[CrossRef]

Greilich, A.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Greiner, M.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Grifoni, M.

M. Grifoni, P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998).
[CrossRef]

Grossmann, F.

F. Grossmann, P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992).
[CrossRef]

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

Hai, K.

W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
[CrossRef]

K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
[CrossRef]

K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
[CrossRef]

Hai, W.

W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
[CrossRef]

K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
[CrossRef]

G. Lu, W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011).
[CrossRef]

K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
[CrossRef]

K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
[CrossRef]

G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
[CrossRef]

Hänggi, P.

J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
[CrossRef] [PubMed]

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

M. Grifoni, P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998).
[CrossRef]

F. Grossmann, P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992).
[CrossRef]

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

Hao, X.

Heinrich, M.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Hioe, F. T.

F. T. Hioe, C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985).
[CrossRef] [PubMed]

Holthaus, M.

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
[CrossRef]

M. Holthaus, “Collapse of minibands in far-infrared irradiated superlattices,” Phys. Rev. Lett. 69, 351–354 (1992).
[CrossRef] [PubMed]

Itin, A. P.

A. P. Itin, A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012).
[CrossRef]

Johnson, P. R.

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Jung, P.

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

Kartashov, Y. V.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Kenkre, V. M.

D. H. Dunlap, V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[CrossRef]

Kierig, E.

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

Kivshar, Y. S.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

Kivshar, Yuri S.

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

Köhl, M.

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Korneev, N.

Král, P.

P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Laporta, P.

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Lee, P. J.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Leskinen, M. J.

F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
[CrossRef] [PubMed]

Li, B.

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

Li, J.

Lignier, H.

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Liu, J.

K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
[CrossRef]

Longhi, S.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

S. Longhi, “Many-body selective destruction of tunneling in a bosonic junction,” Phys. Rev. A 86, 044102, 2012).
[CrossRef]

S. Longhi, G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012).
[CrossRef]

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Lu, G.

G. Lu, W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011).
[CrossRef]

G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
[CrossRef]

Lukin, M. D.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Luo, X. B.

Q. T. Xie, X. B. Luo, B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010).
[CrossRef] [PubMed]

X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
[CrossRef]

Ma, R.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Madison, K. W.

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Massel, F.

F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
[CrossRef] [PubMed]

Montangero, S.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

Morales-Molina, L.

J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
[CrossRef] [PubMed]

Moritz, H.

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

Morsch, O.

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Motzkus, M.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Nascimbéne, S.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

Nazarov, Y. V.

C. Padurariu, Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012).
[CrossRef]

Neishtadt, A. I.

A. P. Itin, A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012).
[CrossRef]

Niu, Q.

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Nolte, S.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Oberthaler, M. K.

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

Ornigotti, M.

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

Ostrovskaya, E. A.

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

Padurariu, C.

C. Padurariu, Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012).
[CrossRef]

Phillips, W. D.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Poletti, D.

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

Polkovnikov, A.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Porto, J. V.

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Preiss, P. M.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Qian, Y.

Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
[CrossRef]

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Raizen, M. G.

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Rapp, Á.

Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
[CrossRef] [PubMed]

Reinecke, T. L.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Reuter, D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Rey, A. M.

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Riis, E.

Rodríguez, E. M.

Romero-Isart, O.

O. Romero-Isart, J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007).
[CrossRef]

Santos, L.

Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
[CrossRef] [PubMed]

Schietinger, A.

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

Schnorrberger, U.

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Schori, C.

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

Sebby-Strabley, J.

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

Shapiro, M.

P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Sias, C.

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Simon, J.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Sinclair, A. G.

Singh, N.

N. Singh, “Phase controllable dynamical localization of a quantum particle in a driven optical lattice,” Phys. Lett. A 376, 1593–1595 (2012).
[CrossRef]

Singh, Y.

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Spatzek, S.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Stöferle, T.

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

Studart, N.

J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
[CrossRef]

Sukhorukov, A. A.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

Szameit, A.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Tai, M. E.

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Teichmann, N.

C. Weiss, N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008).
[CrossRef] [PubMed]

Thanopulos, I.

P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Thom, J.

Tomkovic, J.

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

Törmä, P.

F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
[CrossRef] [PubMed]

Torner, L.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Trotzky, S.

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Tünnermann, A.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

Ulloa, S. E.

J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
[CrossRef]

Valle, G. D.

S. Longhi, G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012).
[CrossRef]

Villas-Boas, J. M.

J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
[CrossRef]

Vysloukh, V. A.

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

N. Korneev, V. A. Vysloukh, E. M. Rodríguez, “Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos,” Opt. Express 11, 3574–3582 (2003).
[CrossRef] [PubMed]

Wan, R.-G.

Weiss, C.

C. Weiss, N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008).
[CrossRef] [PubMed]

A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
[CrossRef]

Wieck, A. D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Wilpers, G.

Wu, B.

Q. T. Xie, X. B. Luo, B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010).
[CrossRef] [PubMed]

X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
[CrossRef]

Wu, Y.

Xiao, K.

K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
[CrossRef]

Xie, Q. T.

Q. T. Xie, X. B. Luo, B. Wu, “All-optical switch with two periodically modulated nonlinear waveguides,” Opt. Lett. 35, 321–323 (2010).
[CrossRef] [PubMed]

X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
[CrossRef]

Yakovlev, D. R.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Yu, R.

Zenesini, A.

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

Zhang, C.

Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
[CrossRef]

Zhang, T.-Y.

Zhong, H.

G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
[CrossRef]

EPL (1)

C. Padurariu, Y. V. Nazarov, “Spin blockade qubit in a superconducting junction,” EPL 100, 57006, 2012).
[CrossRef]

Europhys. Lett. (2)

F. Grossmann, P. Hänggi, “Localization in a driven two-level dynamics,” Europhys. Lett. 18, 571–576 (1992).
[CrossRef]

F. Dreisow, Y. V. Kartashov, M. Heinrich, V. A. Vysloukh, A. Tünnermann, S. Nolte, L. Torner, S. Longhi, A. Szameit, “Spatial light rectification in an optical waveguide lattice,” Europhys. Lett. 101, 44002, 2013).
[CrossRef]

J. Phys. B At. Mol. Opt. Phys. (1)

K. Hai, Q. Chen, W. Hai, “Instability inducing directed tunnelling of a single particle in a bipartite lattice,” J. Phys. B At. Mol. Opt. Phys. 44, 035507, 2011).
[CrossRef]

Nat. Phys. (1)

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Lett. A (1)

N. Singh, “Phase controllable dynamical localization of a quantum particle in a driven optical lattice,” Phys. Lett. A 376, 1593–1595 (2012).
[CrossRef]

Phys. Rep. (2)

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012).
[CrossRef]

M. Grifoni, P. Hänggi, “Driven quantum tunneling,” Phys. Rep. 304, 229–354 (1998).
[CrossRef]

Phys. Rev. A (14)

A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, “Exploring dynamic localization with a Bose-Einstein condensate,” Phys. Rev. A 79, 013611, 2009).
[CrossRef]

X. B. Luo, Q. T. Xie, B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802(R) (2007).
[CrossRef]

W. Hai, K. Hai, Q. Chen, “Transparent control of an exactly solvable two-level system via combined modulations,” Phys. Rev. A 87, 023403, 2013).
[CrossRef]

S. Longhi, “Many-body selective destruction of tunneling in a bosonic junction,” Phys. Rev. A 86, 044102, 2012).
[CrossRef]

K. Hai, W. Hai, Q. Chen, “Controlling transport and entanglement of two particles in a bipartite lattice,” Phys. Rev. A 82, 053412, 2010).
[CrossRef]

G. Lu, W. Hai, H. Zhong, “Quantum control in a double-well with symmetric or asymmetric driving,” Phys. Rev. A 80, 013411, 2009).
[CrossRef]

G. Lu, W. Hai, “Quantum tunneling switch in a planar four-well,” Phys. Rev. A 83, 053424, 2011).
[CrossRef]

K. Xiao, W. Hai, J. Liu, “Coherent control of quantum tunneling in an open double-well system,” Phys. Rev. A 85, 013410, 2012).
[CrossRef]

C. E. Creffield, “Instability and control of a periodically driven Bose-Einstein condensate,” Phys. Rev. A 79, 063612, 2009).
[CrossRef]

O. Romero-Isart, J. J. García-Ripoll, “Quantum ratchets for quantum communication with optical superlat-tices,” Phys. Rev. A 76, 052304, 2007).
[CrossRef]

G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices,” Phys. Rev. A 77, 052333, 2008).
[CrossRef]

F. T. Hioe, C. E. Carroll, “Two-state problems involving arbitrary amplitude and frequency modulations,” Phys. Rev. A 32, 1541–1549 (1985).
[CrossRef] [PubMed]

Y. Qian, M. Gong, C. Zhang, “Quantum transport of bosonic cold atoms in double-well optical lattices,” Phys. Rev. A 84, 013608, 2011).
[CrossRef]

S. Longhi, G. D. Valle, “Quantum transport in bipartite lattices via Landau-Zener tunneling,” Phys. Rev. A 86, 043633, 2012).
[CrossRef]

Phys. Rev. B (2)

J. M. Villas-Boas, S. E. Ulloa, N. Studart, “Selective coherent destruction of tunneling in a quantum-dot array,” Phys. Rev. B 70, 041302(R) (2004).
[CrossRef]

D. H. Dunlap, V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[CrossRef]

Phys. Rev. E (1)

A. P. Itin, A. I. Neishtadt, “Directed transport in a classical lattice with a high-frequency driving,” Phys. Rev. E 86, 016206, 2012).
[CrossRef]

Phys. Rev. Lett. (19)

D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, Yuri S. Kivshar, “Dynamics of matter-wave solitons in a ratchet potential,” Phys. Rev. Lett. 101, 150403, 2008).
[CrossRef] [PubMed]

D. Poletti, G. Benenti, G. Casati, P. Hänggi, B. Li, “Steering Bose-Einstein condensates despite time symmetry,” Phys. Rev. Lett. 102, 130604, 2009).
[CrossRef] [PubMed]

K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, “Dynamical Bloch band suppression in an optical lattice,” Phys. Rev. Lett. 81, 5093–5096 (1998).
[CrossRef]

Á. Rapp, X. Deng, L. Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005, 2012).
[CrossRef] [PubMed]

A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, “Coherent control of sressed matter waves,” Phys. Rev. Lett. 102, 100403, 2009).
[CrossRef]

A. Eckardt, C. Weiss, M. Holthaus, “Superfluid-insulator transition in a periodically driven optical lattice,” Phys. Rev. Lett. 95, 260404, 2005).
[CrossRef]

F. Massel, M. J. Leskinen, P. Törmä, “Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian,” Phys. Rev. Lett. 103, 066404, 2009).
[CrossRef] [PubMed]

R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, M. Greiner, “Photon-assisted tunneling in a biased strongly correlated Bose gas,” Phys. Rev. Lett. 107, 095301, 2011).
[CrossRef] [PubMed]

Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, “Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices,” Phys. Rev. Lett. 107, 210405, 2011).
[CrossRef] [PubMed]

C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, “Excitations of a superfluid in a three-dimensional optical lattice,” Phys. Rev. Lett. 93, 240402, 2004).
[CrossRef]

F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516–519 (1991).
[CrossRef] [PubMed]

M. Holthaus, “Collapse of minibands in far-infrared irradiated superlattices,” Phys. Rev. Lett. 69, 351–354 (1992).
[CrossRef] [PubMed]

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403, 2007).
[CrossRef]

G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601, 2007).
[CrossRef] [PubMed]

E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, “Single-particle tunneling in strongly driven double-well potentials,” Phys. Rev. Lett. 100, 190405, 2008).
[CrossRef] [PubMed]

C. Weiss, N. Teichmann, “Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement,” Phys. Rev. Lett. 100, 140408, 2008).
[CrossRef] [PubMed]

J. Gong, L. Morales-Molina, P. Hänggi, “Many-body coherent destruction of tunneling,” Phys. Rev. Lett. 103, 133002, 2009).
[CrossRef] [PubMed]

J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, P. R. Johnson, “Preparing and probing atomic number states with an atom interferometer,” Phys. Rev. Lett. 98, 200405, 2007).
[CrossRef] [PubMed]

C. E. Creffield, “Quantum control and entanglement using periodic driving fields,” Phys. Rev. Lett. 99, 110501, 2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

P. Král, I. Thanopulos, M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007).
[CrossRef]

Science (2)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, I. Bloch, “Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices,” Science 319, 295–299 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A single particle is initially placed in the driven bipartite lattice centered at coordinate 0 with two different separations a and b, where the curve denotes the initial potential V(x, t0) = cos(x − 4.6) + 2cos(2x − 9.2). Hereafter all the quantities plotted in the figures are dimensionless.

Fig. 2
Fig. 2

The effective tunneling rates as functions of phase for the parameters J0 = 1, δJ = 0.8, m = 2, Δn = 2.01717, Δn−1 = 5.37977. The solid and dashed curves describe (m, ϕ, Δn) and (m, ϕ, −Δn−1) respectively, which have the same zero point ϕ0 ≈ 2.4.

Fig. 3
Fig. 3

The effective tunneling rates versus phase (a) and the time evolutions of the original tunneling rates (b) for the parameters J0 = 1, δJ = 0.8, m = 2, ω = 30, Δn = 2, Δn−1 = 2.2. In (a), the solid curve describes (m, ϕ, Δn) with zero point ϕ2 ≈ 2.49 and the dashed curve labels −(m, ϕ, −Δn−1) with zero point ϕ1 ≈ 1.93. The phase value ϕc ≈ 2.17 corresponds to the cross point of the two curves, where the instability condition (12) holds. In (b), the solid and dashed curves are associated with the original tunneling rates J(t, ϕ1) and J(t, ϕ2), respectively. At the time t = T1 = π/ω1 = 25.2001, the J(t, ϕ1) is nonadiabatically changed to J(t, ϕ2).

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

V ( x , t ) = V 1 ( t ) cos ( k L x θ ) + V 2 ( t ) cos ( 2 k L x 2 θ ) + ε ( t ) x ,
H ( t ) = ( i , j ) J i j ( t ) ( b i b j + H . C . ) + ε ( t ) n x n b n b n .
x n = x | w ( x x n ) | 2 d x = { n ( a + b ) / 2 for even n , ( n + 1 ) a / 2 + ( n 1 ) b / 2 for odd n ,
J i j ( t ) = w * ( x x i ) [ d 2 d x 2 + V 1 ( t ) cos ( k L x θ ) + V 2 ( t ) cos ( 2 k L x 2 θ ) ] w ( x x j ) d x .
i c ˙ n ( t ) = J ( t ) ( c n + 1 + c n 1 ) ε 0 cos ( ω t ) x n c n ,
i A ˙ n ( t ) = J ( t ) ( A n + 1 e i Δ n sin ω t + A n 1 e i Δ n 1 sin ω t ) .
F ( t , m , ϕ , Δ n ) = J ( t , m , ϕ ) e i Δ n sin ω t = { J 0 + 1 2 δ J [ e i ( m ω t ϕ ) + e i ( m ω t ϕ ) ] } l 𝒥 l ( Δ n ) e i l ω t
F ¯ ( m , ϕ , Δ n ) = J 0 𝒥 0 ( Δ n ) + 1 2 δ J [ e i ϕ + ( 1 ) m e i ϕ ] 𝒥 m ( Δ n ) = J 0 𝒥 0 ( Δ n ) + { δ J cos ϕ 𝒥 m ( Δ n ) for even m , i δ J sin ϕ 𝒥 m ( Δ n ) for odd m
i A ˙ n ( t ) = F ¯ ( m , ϕ , Δ n ) A n + 1 + F ¯ ( m , ϕ , Δ n 1 ) A n 1 .
A ( k , t ) = n A n ( t ) e i n k = A e ( k , t ) + A o ( k , t )
i A ˙ e ( k , t ) = f ¯ ( k ) A o ( k , t ) , i A ˙ o ( k , t ) = f ¯ * ( k ) A e ( k , t )
A ( k , t ) = α ( k ) e i | f ¯ ( k ) | t + β ( k ) e i | f ¯ ( k ) | t .
A n ( t ) = 1 2 π π π [ α ( k ) e i | f ¯ ( k ) | t + β ( k ) e i | f ¯ ( k ) | t ] e i n k d k .
f ¯ ( k ) = J + cos k + i J sin k , J ± = F ¯ ( m , ϕ , Δ n ) ± F ¯ ( m , ϕ , Δ n 1 ) ,
A ( k , 0 ) = α ( k ) + β ( k ) = e i N k , i A ˙ ( k , 0 ) = | f ¯ ( k ) | [ α ( k ) β ( k ) ] = i n A ˙ n ( 0 ) e i n k = F ¯ ( m , ϕ , Δ N ) e i ( N + 1 ) k + F ¯ ( m , ϕ , Δ N 1 ) e i ( N 1 ) k .
α ( k ) = 1 2 | f ¯ ( k ) | [ | f ¯ ( k ) | e i N k F ¯ ( m , ϕ , Δ N ) e i ( N + 1 ) k F ¯ ( m , ϕ , Δ N 1 ) e i ( N 1 ) k ] , β ( k ) = 1 2 | f ¯ ( k ) | [ | f ¯ ( k ) | e i N k + F ¯ ( m , ϕ , Δ N ) e i ( N + 1 ) k + F ¯ ( m , ϕ , Δ N 1 ) e i ( N 1 ) k ] .
J 0 𝒥 0 ( Δ n ) + δ J cos ϕ 0 𝒥 m ( Δ n ) = J 0 𝒥 0 ( Δ n 1 ) + δ J cos ϕ 0 𝒥 m ( Δ n 1 ) = 0
J 0 𝒥 0 ( Δ n ) + i δ J sin ϕ 0 𝒥 m ( Δ n ) = J 0 𝒥 0 ( Δ n 1 ) i δ J sin ϕ 0 𝒥 m ( Δ n 1 ) = 0
F ¯ ( m , ϕ , Δ n ) = { δ J cos ϕ 𝒥 m ( Δ n ) for even m , i δ J sin ϕ 𝒥 m ( Δ n ) for odd m ,
α ( k ) = 1 2 e i N k F ¯ ( m , ϕ , Δ N ) 2 | F ¯ ( m , ϕ , Δ n ) | e i ( N + 1 ) k , β ( k ) = 1 2 e i N k + F ¯ ( m , ϕ , Δ N ) 2 | F ¯ ( m , ϕ , Δ n ) | e i ( N + 1 ) k
A n N , N + 1 ( t ) = 0 , A N ( t ) = cos ( ω 1 t ) , A N + 1 ( t ) = i F ¯ ( m , ϕ , Δ N ) | F ¯ ( m , ϕ , Δ N ) | sin ( ω 1 t ) .
A n N , N 1 ( t ) = 0 , A N ( t ) = cos ( ω 2 t ) , A N 1 ( t ) = i F ¯ ( m , ϕ , Δ N 1 ) | F ¯ ( m , ϕ , Δ N 1 ) | sin ( ω 2 t ) ,
F ¯ ( m , ϕ c , Δ N ) = F ¯ ( m , ϕ c , Δ n 1 )
d A n ( τ ) / d τ = 1 2 [ A n 1 ( τ ) A n + 1 ( τ ) ]
A n ( τ ) = B n 𝒥 n ( τ ) + D n 𝒩 n ( τ ) ,
δ A n ( τ ) = δ B n 𝒥 n ( τ ) + δ D n 𝒩 n ( τ )
F ¯ ( m , ϕ 1 , Δ n 1 ) = J 0 𝒥 0 ( Δ n 1 ) + δ J cos ϕ 1 𝒥 m ( Δ n 1 ) = 0 , F ¯ ( m , ϕ 2 , Δ n ) = J 0 𝒥 0 ( Δ n ) + δ J cos ϕ 2 𝒥 m ( Δ n ) = 0
J ( t , m , ϕ ) = { J ( t , m , ϕ 1 ) for t [ n T , n T + T 1 ] , J ( t , m , ϕ 2 ) for t [ n T + T 1 , ( n + 1 ) T ]
U ^ = exp [ i ε ( t ) d t n x n b n b n ] ,
H int = U ^ H I U ^ = ( i , j ) F ¯ ( m , ϕ , Δ i j ) ( b i b j + H . C . ) + 1 2 U 0 n n ^ ( n ^ 1 )
H I = ( i , j ) J ( t , m , ϕ ) ( b i b j + H . C . ) + 1 2 U 0 n n ^ ( n 1 ) ,

Metrics