Abstract

We design silicon ridge/rib waveguide directional couplers which are simultaneously tolerant to width, height, coupling gap, and etch depth variations. Using wafer-scale measurements of structures fabricated in the IMEC Standard Passives process, we demonstrate the normalized standard deviation in the per-length coupling coefficient (a metric for the splitting ratio variation) of the variation-tolerant directional couplers is up to 4 times smaller than that of strip waveguide designs. The variation-tolerant couplers are also the most broadband and the deviation in the coupling coefficient shows the lowest spectral dependence.

© 2014 Optical Society of America

1. Introduction

Silicon-on-insulator (SOI) is attracting significant interest for integrated optics because of its compatibility with standard CMOS fabrication processes [13]. The large index contrast between the core and cladding in SOI waveguides strongly confines light to submicron dimensions, which can enable densely integrated photonic circuits. However, a significant drawback to the high index contrast is that the optical properties of devices become sensitive to nanometer-scale dimensional variations [4, 5]. In a 248 nm or 193 nm deep UV photolithography fabrication process, dimensional variations can be tens of nanometers [6, 7], which can reduce device yields or increase tuning powers [3,5,8,9]. At the photonic circuit level, tuning power and variation tolerance can be improved using multiple devices or compound devices [5, 10]; however, the basic elements from which more complex devices are formed can also be optimized.

A common element that is sensitive to dimensional variation is the directional coupler. For a “standard” 3 dB directional coupler formed with 500 nm wide, 220 nm tall SOI strip waveguides separated by a 200 nm gap, we calculate that the splitting ratio changes by 0.7% per 1 nm change in the gap. This sensitivity is especially detrimental in interferometer and microring modulators and filters, where achieving specific splitting ratios is critical to optimal performance [1115].

In this work, we show that SOI ridge (sometimes referred to as “rib”) directional couplers can be designed to have splitting ratios that are simultaneously insensitive to variations in waveguide width, height, coupling gap, and etch depth. Especially important is the tolerance to height and etch depth, which affect the modal effective index more strongly than the waveguide width [4, 7]. We characterize directional coupler designs using wafer-scale measurements of Mach-Zehnder interferometer test structures implemented in a IMEC Standard Passives multi-project-wafer shuttle, which uses 193 nm DUV lithography and 200 mm SOI wafers. The sensitivity of the per-length coupling coefficient of the variation-tolerant design is up to 4 times smaller than that of standard strip coupler designs. The coupling coefficient and the normalized standard deviation of the variation-tolerant design also exhibited the least spectral dependence.

2. Sensitivity analysis and design of coupled waveguides

To motivate the design, we first analyze the dimensional sensitivity of a pair of coupled waveguides. Figure 1 shows a pair of symmetric, coupled waveguides and the relevant geometric parameters. The width of the waveguide core is w; the coupling gap is g; the waveguide height is h; and the slab thickness is t. The fraction of cross-coupled power, K, is

K=sin2(πΔnλL),
where Δn is the effective index difference between the symmetric and antisymmetric super-modes and L is the length of the coupler. If α is an arbitrary geometric parameter (i.e., α can be replaced by w, g, h, or t), for the shortest coupler to achieve K,
Kα=2sin1(K)K(1K)1ΔnΔnα.
The variation of K is characterized by a sensitivity parameter, Δnα/Δn, so a robust directional coupler would have Δn stationary with respect to as many dimensional variations as possible.

 

Fig. 1 Cross-section schematic of a ridge waveguide directional coupler with the geometric parameters indicated.

Download Full Size | PPT Slide | PDF

In a symmetric directional coupler, Δn is stationary with respect to asymmetric variations in waveguide widths, so Kα is only affected by a common change in w in both waveguides. An increase in w would increase the mode confinement, which reduces Δn. However, Δn is also affected by the gap between the waveguides, and a decrease in g increases the mode overlap between the two waveguides and Δn. Therefore, if an increase in w is perfectly correlated with an equal and opposite decrease in g (i.e., statistical correlation of ρw,g = −1), it is possible to balance an increase in waveguide proximity by an increase in mode confinement to achieve

ΔnwΔng0.
A perfectly anti-correlated variation in g and w implies the width variations are symmetric with respect to the waveguide centerlines. This is an approximation to actual lithography and/or etching imperfections, which can also cause asymmetric variations.

Figure 2(a) shows the simulated sensitivity parameter (ΔnwΔng)/Δn for various values of g and w at a wavelength of 1550 nm and assuming nominal values of h = 220 nm, t = 150 nm, as fixed by the IMEC fabrication process. The calculations are for transverse electric (TE) modes and were done using Lumerical FDTD’s built-in eigenmode solver. Because of the lower index contrast, Δnw/Δn and Δng/Δn of the ridge waveguide couplers are about 3 times smaller than that of strip waveguide couplers. For g ≳ 300 nm, g and w can be chosen such that Eq. (3) is satisfied. Additionally, at the design point w = g = 400 nm, Δnh and Δnt are also nearly zero, giving the most dimensionally tolerant design. Figures 2(b) and 2(c) show Δnh and Δnt for a few values of w and g.

 

Fig. 2 Fractional change in Δn with respect to (a) correlated changes in w and g, (b) waveguide height, h, (c) partially etched slab thickness, t. The nominal values of h and t are 220 nm and 150 nm, respectively, and the wavelength is 1550 nm. The variation-tolerant design point of w = g = 400 nm is highlighted.

Download Full Size | PPT Slide | PDF

There is no design for strip waveguide directional couplers (i.e., t = 0) which is similarly tolerant to all possible dimensional variations. For example, a standard strip waveguide directional coupler with w = 500 nm and g = 200 nm is nearly stationary with respect to correlated w and g changes, but Δnh/Δn is −0.007 nm−1.

3. Parameter extraction for measured devices

To test the variation tolerance of the directional coupler design, we implemented ridge and strip waveguide couplers in a IMEC Standard Passives run. Figure 3(a) shows the test structure, which consists of an unbalanced Mach-Zehnder interferometer (MZI), where the input 3 dB splitter is a multi-mode interference coupler (MMI) and the directional coupler to be tested is at the output end. Although MMIs tend to have higher insertion losses than directional couplers, they can more reliably achieve 50:50 splitting ratios by symmetric placement of the two output waveguides [16]. Assuming an ideal 50:50 split, K can be extracted from the extinction ratio (ER) of the spectral fringes of the MZI using [17]:

K(λ)=12±121[ER(λ)1ER(λ)+1]2.
If the MMI is unbalanced, K and ER at the output port as labelled in Fig. 3(a) are related by
ER(λ)=S[1K(λ)]+K(λ)+2SK(λ)[1K(λ)]S[1K(λ)]+K(λ)2SK(λ)[1K(λ)].
where S is the ratio between the output powers of the two MMI outputs.

 

Fig. 3 (a) Optical microscope image of the MZI test structure. (b) Output spectrum of a typical test structure with w = g = 400 nm and L = 4 μm. The extinction ratio can be clearly and reliably measured as a function of wavelength.

Download Full Size | PPT Slide | PDF

To measure the devices, light from a tunable laser was fiber-coupled into and out of the chips using grating couplers. We measured directional couplers of different lengths and fit the data to K = sin2(κLL + κ0) to determine κL, the per-length coupling coefficient, and κ0, the residual coupling in the transition regions of the coupler. Figure 3(b) shows the transmission spectrum of a typical MZI test structure and the fringes. Because the parameter extraction only relies on ER, the grating coupler bandwidth does not affect the extracted values of κL. As shown in Fig. 4, the R2 values of the fits are better than 0.995. The agreement between the measured κL and the theoretical value πΔnλ from simulation was the best for the variation-tolerant ridge design. For ridge couplers, the agreement was within 0.2% for g = 400 nm and 1% for g = 500 nm. For the more sensitive strip couplers, the agreement was within 7% for g = 250 nm, 15% for g = 200 nm, and 25% for g = 150 nm. The discrepancy is attributed to deviations between the nominal and fabricated dimensions, which become more pronounced as g approaches the minimum allowed by the IMEC process.

 

Fig. 4 K vs. coupling length for (a) strip and (b) ridge waveguide couplers from a representative die. A 50:50 MMI splitting ratio is assumed in this case. The fits of the data to K = sin2(κLL + κ0) have R2 > 0.995.

Download Full Size | PPT Slide | PDF

4. Wafer-scale measurements

To characterize the wafer-scale variation tolerance, we measured test structures on 16 dies across the 200 mm SOI wafer. Figure 5 shows the wafer maps of κL at a wavelength of 1550 nm. From Eq. (2), an experimental measure of the coupler sensitivity is σκLκL, where σκL is the standard deviation of κL. Table 1 summarizes the results. The quoted uncertainty includes uncertainty in the fitting and MMI splitting ratio. Using a separate test structure, we estimated a ±5% variation in the MMI splitting ratio, so S in Eq. (5) varied from 4555 to 5545. We repeated the parameter extraction with these values of S to obtain the uncertainties in the average κL and σκL. The MMI splitting ratio causes the dominant source of uncertainty in κL. The uncetainty in the ER only contributes to an uncertainty of ±1% in the extracted values.

 

Fig. 5 Wafer maps of κL in μm−1 for three coupler geometries. The designed values of w and g in nm are noted. The black dots denote the positions of the measured dies.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Wafer-scale measurements of strip and ridge directional couplers at λ = 1550 nm

In terms of σκLκL, ridge couplers with w = g = 400 nm are more tolerant than the other strip and ridge couplers by a factor of about 2 at 1550 nm. The improvement may be limited by the imperfect anti-correlation between g and w. From the metrology data from 7 dies provided by IMEC, we calculated a statistical correlation coefficient of ρw,g = −0.55 between w and g, rather than −1 as assumed in our analysis.

Lastly, for the spectral characteristics of the coupler, we first note that the wavelength dependent change in the coupling ratio is given by

Kλ=2sin1(K)K(1K)1κLκLλ.
A broadband coupler should have a small value of κLλ/κL. Figure 6(a) shows the extracted K from a representative die for several designs with similar values of K. The variation-tolerant design has the lowest Kλ. The die-averaged extracted value of κLλ/κL is 1.3 ×10−3 nm−1 for this design, while it is 4.2 × 10−3 nm−1 for the g = 200 nm strip waveguide design, agreeing well with simulations. Figure 6(b) shows the spectrum of σκLκL. The spectral dependence of the normalized standard deviation is the lowest for the variation-tolerant design across the wavelength range from 1535 to 1565 nm, as limited by the grating coupler bandwidth. The maximum measured improvement in σκLκL of the variation-tolerant design compared to strip waveguide couplers is by about a factor of 4.

 

Fig. 6 (a) K vs. wavelength for different coupler designs of a representative die. The dashed lines denote the linear least squares fits to the measured data (solid lines) (b) The per-length coupling variation σκLκL as a function of wavelength.

Download Full Size | PPT Slide | PDF

5. Conclusions

By exploiting correlations between the waveguide width and gap variations, we designed and tested silicon ridge waveguide directional couplers that are up to about 4 times more tolerant to wafer-scale variation than fully-etched couplers. Integrating variation-tolerant couplers within microring and interferometer devices can lead to more reliable performance, for example, in terms of the extinction ratio, passband flatness, and rejection ratio.

Acknowledgments

Access to the IMEC Standard Passives MPW was supported by CMC Microsystems. We thank Dan Deptuck and Jessica Zhang of CMC Microsystems for their assistance. The support of the Natural Science and Engineering Research Council of Canada is gratefully acknowledged.

References and links

1. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009). [CrossRef]  

2. “Simply silicon,” Nat. Photonics4, 491 (2008).

3. T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012). [CrossRef]  

4. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010). [CrossRef]   [PubMed]  

5. A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011). [CrossRef]  

6. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010). [CrossRef]  

7. S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73. [CrossRef]  

8. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010). [CrossRef]   [PubMed]  

9. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010). [CrossRef]   [PubMed]  

10. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013). [CrossRef]  

11. C. K. Madesen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley, 1999). [CrossRef]  

12. B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]  

13. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14, 483–485 (2002). [CrossRef]  

14. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, P. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21, 9722–9733 (2013). [CrossRef]   [PubMed]  

15. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013). [CrossRef]  

16. D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010). [CrossRef]  

17. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
    [Crossref]
  2. “Simply silicon,” Nat. Photonics4, 491 (2008).
  3. T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
    [Crossref]
  4. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [Crossref] [PubMed]
  5. A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
    [Crossref]
  6. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [Crossref]
  7. S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
    [Crossref]
  8. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
    [Crossref] [PubMed]
  9. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
    [Crossref] [PubMed]
  10. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).
    [Crossref]
  11. C. K. Madesen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley, 1999).
    [Crossref]
  12. B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  13. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14, 483–485 (2002).
    [Crossref]
  14. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, P. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21, 9722–9733 (2013).
    [Crossref] [PubMed]
  15. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
    [Crossref]
  16. D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
    [Crossref]
  17. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
    [Crossref]

2013 (3)

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

2011 (1)

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

2010 (5)

2009 (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14, 483–485 (2002).
[Crossref]

1997 (1)

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Absil, P.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).
[Crossref]

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Asghari, M.

Assefa, S.

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Barwicz, T.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Cunningham, J.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

Cunningham, J. E.

Danziger, S.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

De Coster, J.

De Heyn, P.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Fedeli, J. M.

D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Fedeli, J.-M.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Feng, D.

Feng, N.-N.

Fernandez, L.

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Green, W. M. J.

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Hautala, J.

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Hochberg, M.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Hu, Y.

D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Krishnamoorthy, A.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

Krishnamoorthy, A. V.

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Laine, J. P.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lepage, G.

Li, G.

Liang, H.

Liao, S.

Little, B.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lo, G.-Q.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Luo, Y.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Madesen, C. K.

C. K. Madesen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley, 1999).
[Crossref]

Mekis, A.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Mookherjea, S.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Pan, P.

Pantouvaki, M.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Poon, J. K. S.

Prather, D.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Raj, K.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Reed, G.

D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Rosseel, E.

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Sacher, W. D.

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Shafiiha, R.

Shank, S. M.

Shubin, I.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Tabat, M.

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

Thacker, H.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Thomson, D.

D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Trotter, D. C.

Van Campenhout, J.

Van Thourhout, D.

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Verheyen, P.

Vlasov, Y. A.

Watts, M. R.

Yao, J.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14, 483–485 (2002).
[Crossref]

Zhao, J. H.

C. K. Madesen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley, 1999).
[Crossref]

Zheng, X.

Zortman, W. A.

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

IEEE Photonics J. (1)

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3, 567–579 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14, 483–485 (2002).
[Crossref]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

D. Thomson, Y. Hu, G. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance mzi modulators,” IEEE Photonics Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Nat. Photonics (1)

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Opt. Express (4)

Other (3)

C. K. Madesen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley, 1999).
[Crossref]

S. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in IEEE International Conference on Group IV Photonics (GFP)(2011), pp. 71–73.
[Crossref]

“Simply silicon,” Nat. Photonics4, 491 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-section schematic of a ridge waveguide directional coupler with the geometric parameters indicated.

Fig. 2
Fig. 2

Fractional change in Δn with respect to (a) correlated changes in w and g, (b) waveguide height, h, (c) partially etched slab thickness, t. The nominal values of h and t are 220 nm and 150 nm, respectively, and the wavelength is 1550 nm. The variation-tolerant design point of w = g = 400 nm is highlighted.

Fig. 3
Fig. 3

(a) Optical microscope image of the MZI test structure. (b) Output spectrum of a typical test structure with w = g = 400 nm and L = 4 μm. The extinction ratio can be clearly and reliably measured as a function of wavelength.

Fig. 4
Fig. 4

K vs. coupling length for (a) strip and (b) ridge waveguide couplers from a representative die. A 50:50 MMI splitting ratio is assumed in this case. The fits of the data to K = sin2(κLL + κ0) have R2 > 0.995.

Fig. 5
Fig. 5

Wafer maps of κL in μm−1 for three coupler geometries. The designed values of w and g in nm are noted. The black dots denote the positions of the measured dies.

Fig. 6
Fig. 6

(a) K vs. wavelength for different coupler designs of a representative die. The dashed lines denote the linear least squares fits to the measured data (solid lines) (b) The per-length coupling variation σ κ L κ L as a function of wavelength.

Tables (1)

Tables Icon

Table 1 Wafer-scale measurements of strip and ridge directional couplers at λ = 1550 nm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K = sin 2 ( π Δ n λ L ) ,
K α = 2 sin 1 ( K ) K ( 1 K ) 1 Δ n Δ n α .
Δ n w Δ n g 0 .
K ( λ ) = 1 2 ± 1 2 1 [ E R ( λ ) 1 E R ( λ ) + 1 ] 2 .
E R ( λ ) = S [ 1 K ( λ ) ] + K ( λ ) + 2 S K ( λ ) [ 1 K ( λ ) ] S [ 1 K ( λ ) ] + K ( λ ) 2 S K ( λ ) [ 1 K ( λ ) ] .
K λ = 2 sin 1 ( K ) K ( 1 K ) 1 κ L κ L λ .

Metrics