Abstract

Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm2. Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

© 2014 Optical Society of America

1. Introduction

Nonlinear optical (NLO) harmonic generation [1,2] has attracted great attention due to the wide range of practical applications such as nonlinear signal data storage [35], bio-imaging [6,7], and straight frequency conversion [1,2,8]. In particular, frequency conversion based on nonlinear harmonic generation extends the coherent emission of infra-red (IR) laser to visible and near ultraviolet wavelengths. Several methods and geometries have been proposed to enhance the frequency conversion efficiency for specific applications. Examples of these include; phase matching [1,2], quasi-phase matching [911], slow light in photonic crystal (PhC) waveguides [12,13], high-Q PhC microcavities [1416], planar PhC enhanced second-harmonic generation (SHG) [1719], surface plasmons enhanced SHG [20,21], and grating-assisted enhanced SHG [2224].

Resonant waveguide grating (RWG) structures [2527] for enhanced SHG [28,29] and third harmonic generation (THG) are the focus of the present work. A RWG typically comprises a high refractive-index grating-waveguide layer and a low refractive-index supporting layer. This design can produce very sharp reflection and transmission resonances associated with coupling incident light into guided modes (GMR) [2527]. As a GMR condition is reached, strong local electric fields are excited in the vicinity of the grating, which is useful for enhancing NLO interactions and the photoluminance of fluorescent dyes and quantum dots [2731]. Recently, it has been demonstrated that SHG can be dramatically enhanced in an all-dielectric RWG comprising a low refractive index silicon dioxide grating with a square-wave profile, covered by a thick, high refractive index TiO2 layer [28,29]. The strong SHG enhancement was attributed to the strong interaction of the local electric field of the resonant waveguide mode with the inherent surface nonlinearity of the TiO2 layer [28,29]. The present work shows that by coating a textured TiO2 RWG structure with a strongly nonlinear azo polymer bulk second and third order nonlinearities (χ333(2)=1×107esu [32] and χ333(3)=1×1011esu [33] at 1.5 μm), resonant SHG and THG conversion processes can be substantially increased over those of bare TiO2 covered grating structures. The NLO polymers offer flexible processing options [11], which facilitate easy integration with a pure TiO2 RWG.

In this work, we employ a pure TiO2 RWG covered with a poled azo-polymer layer to enhance nonlinear harmonic generation using normal incidence excitation near 1300 nm. A simple and low cost two-beam interference technique is used to fabricate the grating texture. Resonant SHG and THG are measured and compared to reference samples: the enhancement factor for SHG is up to 3560 times that observed from an untextured poled azo-polymer layer.

2. Sample preparation and measurement setup

2.1 Fabrication of the azo-polymer RWG

Figure 1(a) schematically shows the azo-polymer RWG structure studied in this work. The structure from top to bottom comprises a nonlinear azo-polymer layer, a 1D sinusoidal TiO2 waveguide grating, a SU8 bottom cladding layer and an indium-tin-oxide (ITO) glass substrate. The SU8 bottom cladding layer was obtained by spin coating of SU8 photoresist on the backside of the ITO glass substrate with a thickness (TSU8) of 1.1 µm. A 1D sinusoidal grating was patterned on the top of the SU8 bottom cladding layer by a two-beam interference technique [34,35]. The TiO2 waveguide grating layer with a thickness (TTiO2) of 180 nm was deposited on the top of SU8 grating by using an electron-beam deposition system. Figure 1(b) shows the scanning electron microscopy (SEM) image of the fabricated RWG structure. The SEM image indicates that TiO2 layer is uniformly coated on the top of SU8 grating with sinusoidal modulation. The area of the RWG is 6 × 6 mm2. From SEM measurement, the period (Λ) and depth (d) of grating were determined to be 840 nm and 230 nm, respectively. The refractive indices of SU8 (nSU8), TiO2 (nTiO2) and ITO glass substrate (ng) are 1.55, 2.1 and 1.48 at 1.3 μm, respectively (the first two were obtained by ellipsometry measurements and the latter was taken from Ref. 36). A DR1-PMMA copolymer thin film with 15% molar azo-dye concentration was chosen to increase the NLO response of the device [11]. Its molecular structure is shown in Fig. 1(a). The azo-polymer was dissolved in chloroform and spin-coated on the top of the TiO2 RWG structure. The azo-polymer RWG was then baked for 1 hour at 70 °C on a hotplate before use. The thickness (Tazo) of azo-polymer layer was determined to be 650 nm by using AFM measurement and its refractive index (nazo) is 1.54 at 1.3 μm [11]. A corona poling technique was used to align azo-polymer molecules to form a noncentro-symmetric distribution at 4.5 kV and T〜100 °C for 45 minutes. The uniform poling area is about 1 cm2, which covers the whole azo-polymer RWG structure.

 figure: Fig. 1

Fig. 1 (a) Schematic cross-section of the azo-polymer RWG structure and the molecular structure of the azo-polymer. The rectangle-shaped dash line (red color) defines the unit cell used for simulations. (b) Cross-section view and top view (inset) of the SEM image of the fabricated RWG structure before depositing the azo-polymer layer.

Download Full Size | PPT Slide | PDF

2.2 Experimental setup

Figure 2 shows the experimental setup to measure THG and SHG spectra of the pure TiO2 and azo-polymer RWGs. The signal output from an optical parametric oscillator (OPO), with wavelength tuning range from 1200 to 1380 nm, 5 ns pulse width, and 10 Hz repetition rate, was used as the fundamental beam. The power of the fundamental beam was controlled by the combination of a half-wave plate and a polarizer. The fundamental beam was collimated by a pair of lenses (L1 and L2) with a beam diameter of 2 mm. The fundamental beam was normally incident to the sample with 3 mW of average power and its peak intensity was 2 MW/cm2. The SHG and THG output from the sample were detected by a grating spectrometer combined with a photomultiplier (PMT). The THG and SHG output detected by the PMT were integrated by a boxcar integrator. To characterize the GMR properties of the azo-polymer RWG, a transmission spectrum measurement setup, including: a halogen white light source and a grating spectrometer (Andor Shamrock SR-500i) combined with an InGaAs detector, was used.

 figure: Fig. 2

Fig. 2 Experimental setup for THG and SHG spectra measurement. λ/2: half-wave plate, L: lens and P: polarizer.

Download Full Size | PPT Slide | PDF

3. Experimental results and discussion

3.1 Transmission spectra of the azo-polymer RWG

The azo-polymer RWG was designed to exhibit resonant waveguide modes in the near IR for both transverse-magnetic (TM) and transverse-electric (TE) polarizations. Figure 3 shows the experimental and calculated transmission spectra of the pure TiO2 and azo-polymer RWGs at normal incidence. Figures 3(a) and 3(b) are the experimental transmission spectra of the pure TiO2 and azo-polymer RWGs for both TM and TE polarizations, and Figs. 3(c) and 3(d) show the corresponding spectra obtained using the rigorous coupled-wave analysis (RCWA) simulation [37,38], respectively. In the simulation, one unit cell is defined as a single sinusoidal period of both pure TiO2 and azo-polymer RWG structures with periodic boundary conditions in x direction [see Fig. 1(a)]. The RWG structures were sliced into 404 layers with a thickness of 6.56 nm. All diffraction orders were calculated by default [38]. To reach convergence, we used 25 Fourier harmonics for the construction of the periodic boundary condition. The illumination field consisted of a plane wave at normal incidence for both TE and TM polarizations, and a non-conical incident geometry was considered in the simulation. Other simulation parameters, shown in the caption of Fig. 3, were chosen based on refractive indices and thicknesses of the designed structure.

 figure: Fig. 3

Fig. 3 Experimental ((a) and (b)) and calculated ((c) and (d)) transmission spectra of the pure TiO2 and azo-polymer RWGs for TM and TE polarizations. The calculated transmission spectra were obtained by the rigorous coupled-wave analysis (RCWA) method. The parameters used in this calculation are Λ = 840 nm, d = 230 nm, TTiO2 = 180 nm, nTiO2 = 2.0, TSU8 = 1.05 µm, nSU8 = 1.55, ng = 1.48, Tazo = 0.65 µm, nazo = 1.53, and Δλ = 0.1 nm.

Download Full Size | PPT Slide | PDF

Table 1 summarizes the measured and simulated TE and TM resonance wavelengths for the two textured waveguide samples. The calculated spectra of both pure TiO2 and azo-polymer RWGs are close to those of experimental results, except the dip positions and transmission minimum values of resonant modes. The difference in dip position probably results from minor differences between the real grating structure and the ideal sinusoidal grating assumed in the calculation, and the use of wavelength-independent refractive indices of nazo, nTiO2 and nSU8 in the calculation. The difference in transmission minimum values might be due to the low resolution (0.5 nm) of the spectrometer used and inhomogeneous broadening.

Tables Icon

Table 1. Summary of the measured and simulated TE and TM resonance wavelengths in the pure TiO2 and azo-polymer RWGs.

Figure 4 shows the visible-harmonic generation spectra obtained from the pure TiO2 and azo-polymer RWGs, where THG and SHG are in the wavelength ranges of 400-460 nm and 600-690 nm, respectively. In contrast to previous studies [28,29], there is no observable SHG from the pure TiO2 waveguide structures. This may be in part due to the fact that the peak intensities used in Refs [28,29] were approximately 100 times larger than in the present work, and in part due to the square-wave, rather than sinusoidal grating profile. There is a resonant THG signal in the TE polarization from the bare TiO2 RWG structure at a wavelength very close to 1/3 of the wavelength of the main TE resonance measured in that sample, near 1300 nm.

 figure: Fig. 4

Fig. 4 Experimental SHG and THG spectra obtained from the pure TiO2 RWG (black line) and the azo-polymer RWG (red line) for the TM (a) and TE (b) polarizations. Inset shows the visible transmission spectra of the azo-polymer RWG for the TM (a) and TE (b) polarizations.

Download Full Size | PPT Slide | PDF

In the azo-polymer RWG sample, several THG and SHG resonances are observed. For the TM polarization, THG at 447.3 nm and SHG at 671.0 nm were simultaneously produced by setting the fundamental wavelength at 1342 nm matching with the GMR at 1343.8 nm. Another SHG at 633.0 nm corresponds to the resonant excitation of the GMR at 1266.7 nm. Note that there are two smaller SHG resonant modes (at 666.5 nm and 631.0 nm) adjacent to the two SHG modes mentioned above. These are attributed to out-going resonant extraction of the SHG via high-order GMRs, as evident in the visible transmission spectrum of the azo-polymer RWG, highlighted by the arrow in the inset of Fig. 4(a). For the TE polarization, THG at 451.3 nm and SHG at 677.0 nm result from the resonant excitation of the GMR at 1352.5 nm by the fundamental beam [Fig. 4(b)]. The SHG at 635.5 nm, is related to the fundamental resonant excitation of the GMR at 1267.4 nm, while the SHG at 632.0 nm is attributed to the resonant extraction of SHG coupled with the high-order GMR resonance highlighted by the other arrow in the inset of Fig. 4(b). When the azo-polymer RWG sample is not poled, the THG resonances are observed, but no SHG, is generated.

In order to further understand the results shown in Fig. 4, RCWA simulations were performed to calculate the electric-field intensity distributions of the azo-polymer RWG at resonant wavelengths. Figures 5(a)-5(d) display electric-field intensity profiles normalized to that of the incident light of four resonant modes in the azo-polymer RWG; in sequence are TM resonant modes at 1247.3 nm (TM, λ = 1247.3 nm) and 1337.7 nm (TM, λ = 1337.7 nm), TE resonant modes at 1250.4 nm (TE, λ = 1250.4 nm) and 1367.6 nm (TE, λ = 1367.6 nm). For short-wavelength resonant modes (TM, λ = 1247.3 nm) and (TE, λ = 1250.4 nm), strong localized electric-fields appear in the region between the SU8 and glass substrate. In contrast, for long-wavelength resonant modes (TM, λ = 1337.7 nm) and (TE, λ = 1367.6 nm), the strong electric fields are located at the borders between the azo-polymer, TiO2 and SU8 layers. The electric-field intensity distributions of these two resonant modes are slightly different; for the (TM, λ = 1247.3 nm) mode, the electric-field intensity maximizes at azo-polymer/TiO2 interface, but the electric-field intensity of the (TE, λ = 1367.6 nm) mode maximizes at the TiO2/SU8 interface. The electric-field intensity at the NLO azo-polymer layer is very crucial for the SHG output because it has the largest second order nonlinearity in the azo-polymer RWG structure. The maximum enhancement factors of electric-field intensity at the azo-polymer layer are 700 for (TM, λ = 1337.7 nm), 230 for (TM, λ = 1247.3 nm), 40 for (TE, λ = 1250.4 nm), and 10 for (TE, λ = 1367.6 nm). Their trend qualitatively agrees with that of SHG outputs associated with these four resonant modes as shown in Fig. 4; from high to low are (TM, λ = 1337.7 nm), (TM, λ = 1247.3 nm), (TE, λ = 1250.4 nm), and (TE, λ = 1367.6 nm). This indicates that the SHG outputs observed in Fig. 4 mainly result from strong localized electric field in the azo-polymer layer produced by the fundamental resonant excitation of GMRs.

 figure: Fig. 5

Fig. 5 Calculated electric-field intensity distributions normalized to the incident intensity of resonant modes (TM, λ = 1247.3 nm) (a), (TM, λ = 1337.7 nm) (b), (TE, λ = 1250.4 nm) (c) and (TE, λ = 1367.6 nm) (d) of the azo-poymer RWG.

Download Full Size | PPT Slide | PDF

Finally, we employed the comparison method used in Ref [28] to determine the SHG enhancement factor of the azo-polymer RWG compared with an azo-polymer reference sample which is identical to the azo-polymer RWG except that there was no grating texture. Since the SHG output of the azo-polymer reference sample is too weak to detect by using the collimated-beam setup shown in Fig. 2, instead, a focused-beam setup was used. A LBO nonlinear crystal with thickness of 2 mm was used to link results obtained from the collimated- and focused-beam setups. In the collimated-beam setup samples were placed at the center of the rotational stage of the SHG measurement setup shown in Fig. 2, while in the focused-beam setup samples were placed at the focus position of L1. The diameter of the focusing spot is about 50 μm. The LBO crystal can produce detectable SHG but no detectable THG using both setups. We only determined the enhancement factor of SHG for the long-wavelength TM resonate mode of the azo-polymer RWG. The SHG ratio of the azo-polymer RWG to the LBO crystal obtained in the collimated-beam setup is 8.9, and the SHG ratio of the LBO crystal to the azo-polymer reference to that obtained in the focused-beam setup is 400. Accordingly, compared to the azo-polymer reference, the SHG output of the azo-polymer RWG for the long-wavelength TM resonate mode is enhanced by 3560 times.

4. Conclusions

This work presents a promising method to promote harmonic conversion in NLO polymers by incorporating a poled azo-polymer thin film on the top of a pure TiO2 RWG to form an azo-polymer RWG. By arranging either in-coming fundamental or out-going harmonic wavelengths to match with the wavelengths of GMRs of the azo-polymer RWG, strong THG and SHG are observed. The azo-polymer RWG possesses two GMRs for both TM and TE polarizations at wavelength range between 1200 nm and 1400 nm, and all these four GMRs result in resonant-enhanced SHG. This is very different to the result of the pure TiO2 RWG, in which no SHG signal is detected under the same excitation conditions. The long-wavelength TM resonate mode produces ~3560 times more SH signal than a reference sample that does not include the RWG structure. The electric-field intensity distributions of the GMRs obtained by the RCWA calculation reveal that a strong local electric field is generated at the interface of the TiO2 grating and azo-polymer which facilitates its strong interaction with the azo-polymer and results in large enhancement of SHG and THG outputs.

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Council, Taiwan, under grant Nos. NSC 98-2112-M194-008-MY3, NSC 99-2112-M194-008-MY3 and NSC 98-2811-M194-007. J. H. Lin acknowledges the support of postdoctoral fellowship from National Science Council, Taiwan. J. F. Young acknowledges the financial support of the Natural Sciences and Engineering Research Council in Canada. The authors are grateful to Dr. G. W. Rieger, for his assistance to this work.

References and links

1. R. W. Boyd, Nonlinear Optics (Academic, 1992).

2. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

3. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006). [CrossRef]   [PubMed]  

4. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000). [CrossRef]  

5. S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 13(2), 505–510 (2005). [CrossRef]   [PubMed]  

6. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004). [CrossRef]   [PubMed]  

7. T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008). [CrossRef]   [PubMed]  

8. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

9. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]  

10. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000). [CrossRef]   [PubMed]  

11. J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008). [CrossRef]   [PubMed]  

12. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]  

13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef]   [PubMed]  

14. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007). [CrossRef]   [PubMed]  

15. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005). [CrossRef]  

16. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007). [CrossRef]  

17. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28(24), 2500–2502 (2003). [CrossRef]   [PubMed]  

18. A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002). [CrossRef]  

19. A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005). [CrossRef]  

20. H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988). [CrossRef]  

21. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007). [CrossRef]   [PubMed]  

22. G. Blau, E. Popov, F. Kajzar, A. Raimond, J. F. Roux, and J. L. Coutaz, “Grating-assisted phase-matched second-harmonic generation from a polymer waveguide,” Opt. Lett. 20(10), 1101–1103 (1995). [CrossRef]   [PubMed]  

23. G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, and R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett. 29(10), 1108–1110 (2004). [CrossRef]   [PubMed]  

24. F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006). [CrossRef]   [PubMed]  

25. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef]   [PubMed]  

26. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006). [CrossRef]  

27. W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008). [CrossRef]  

28. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007). [CrossRef]  

29. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010). [CrossRef]   [PubMed]  

30. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]   [PubMed]  

31. J. H. Lin, C.-Y. Tseng, C.-T. Lee, H.-C. Kan, and C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating,” Opt. Express 21(20), 24318–24325 (2013). [CrossRef]   [PubMed]  

32. M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990). [CrossRef]  

33. M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990). [CrossRef]  

34. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005). [CrossRef]   [PubMed]  

35. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005). [CrossRef]   [PubMed]  

36. Http://refractiveindex.info/?group = GLASSES&material = FK51A.

37. J. Turunen, In Micro-optics: Elements, Systems, and Applications, edited by H. P. Herzig (Taylor & Francis, 1997), Chap. 2.

38. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]  

References

  • View by:

  1. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  2. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).
  3. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006).
    [Crossref] [PubMed]
  4. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
    [Crossref]
  5. S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 13(2), 505–510 (2005).
    [Crossref] [PubMed]
  6. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
    [Crossref] [PubMed]
  7. T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008).
    [Crossref] [PubMed]
  8. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).
  9. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [Crossref]
  10. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
    [Crossref] [PubMed]
  11. J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008).
    [Crossref] [PubMed]
  12. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref] [PubMed]
  14. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
    [Crossref] [PubMed]
  15. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
    [Crossref]
  16. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
    [Crossref]
  17. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28(24), 2500–2502 (2003).
    [Crossref] [PubMed]
  18. A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002).
    [Crossref]
  19. A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005).
    [Crossref]
  20. H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
    [Crossref]
  21. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [Crossref] [PubMed]
  22. G. Blau, E. Popov, F. Kajzar, A. Raimond, J. F. Roux, and J. L. Coutaz, “Grating-assisted phase-matched second-harmonic generation from a polymer waveguide,” Opt. Lett. 20(10), 1101–1103 (1995).
    [Crossref] [PubMed]
  23. G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, and R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett. 29(10), 1108–1110 (2004).
    [Crossref] [PubMed]
  24. F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
    [Crossref] [PubMed]
  25. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  26. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
    [Crossref]
  27. W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
    [Crossref]
  28. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
    [Crossref]
  29. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
    [Crossref] [PubMed]
  30. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [Crossref] [PubMed]
  31. J. H. Lin, C.-Y. Tseng, C.-T. Lee, H.-C. Kan, and C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating,” Opt. Express 21(20), 24318–24325 (2013).
    [Crossref] [PubMed]
  32. M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990).
    [Crossref]
  33. M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
    [Crossref]
  34. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005).
    [Crossref] [PubMed]
  35. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [Crossref] [PubMed]
  36. Http://refractiveindex.info/?group = GLASSES&material = FK51A.
  37. J. Turunen, In Micro-optics: Elements, Systems, and Applications, edited by H. P. Herzig (Taylor & Francis, 1997), Chap. 2.
  38. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]

2013 (1)

2010 (1)

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

2008 (3)

2007 (5)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

2006 (3)

D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006).
[Crossref] [PubMed]

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[Crossref]

2005 (5)

2004 (2)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, and R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett. 29(10), 1108–1110 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002).
[Crossref]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

2000 (2)

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

1995 (1)

1993 (1)

1990 (2)

M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990).
[Crossref]

M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
[Crossref]

1988 (1)

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

1981 (1)

Adamietz, F.

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

Aers, G. C.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Amano, M.

M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990).
[Crossref]

M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
[Crossref]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

Bermel, P.

Bidault, S.

Blau, G.

Boeglin, A.

Brasselet, S.

Bravo-Abad, J.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Chang, C.-F.

Chen, S.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Chen, Z.

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

Cheung, I. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Chien, F. S.-S.

Chiu, C. H.

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Chu, S.-W.

T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008).
[Crossref] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Coutaz, J. L.

Cowan, A. R.

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005).
[Crossref]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28(24), 2500–2502 (2003).
[Crossref] [PubMed]

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002).
[Crossref]

Cunningham, B. T.

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[Crossref]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[Crossref]

Dalacu, D.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Dorkenoo, K. D.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Fort, A.

Frédérick, S.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Fujita, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[Crossref]

Gaylord, T. K.

Genty, G.

Gindre, D.

Gouya, J.

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Hirao, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

Hsu, C. C.

Huang, C.

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Jiang, W.

Joannopoulos, J. D.

Johnson, S. G.

Kaino, T.

M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
[Crossref]

M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990).
[Crossref]

Kajzar, F.

Kan, H.-C.

Karvinen, P.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Kauranen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Kitaoka, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Kuittinen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

Lai, N. D.

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Lee, C.-T.

Lee, Y.-W.

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Liang, W. P.

Lin, C. H.

Lin, C.-Y.

Lin, J. H.

Liu, T.-M.

T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008).
[Crossref] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Mager, L.

Magnusson, R.

Maldonado, T. A.

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Matsumoto, S.

M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
[Crossref]

Matsuoka, N.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

McCutcheon, M. W.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Moharam, M. G.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Mondia, J. P.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Pomerantz, M.

Poole, P. J.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Popov, E.

Priambodo, P. S.

Purvinis, G.

Quail, J. C.

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

Raimond, A.

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Rieger, G. W.

J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008).
[Crossref] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Rodriguez, A.

Rodriguez, V.

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Roux, J. F.

Saari, A.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Si, J.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

Siltanen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Simon, H. J.

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Soljacic, M.

Sourisseau, C.

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

Sun, C.-K.

T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008).
[Crossref] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Tsai, H.-J.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Tsai, T.-H.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Tseng, C.-Y.

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Vahimaa, P.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

van Driel, H. M.

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Wang, C.-H.

Wang, S. S.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Williams, R. L.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yeh, S.-C.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Young, J. F.

J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008).
[Crossref] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28(24), 2500–2502 (2003).
[Crossref] [PubMed]

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002).
[Crossref]

Zhang, W.

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[Crossref]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Zhou, M.

Zyss, J.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[Crossref]

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[Crossref]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[Crossref]

Chem. Phys. Lett. (1)

M. Amano, T. Kaino, and S. Matsumoto, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170(5-6), 515–517 (1990).
[Crossref]

J. Appl. Phys. (1)

M. Amano and T. Kaino, “Second-order nonlinearity of a novel diazo-dye-attached polymer,” J. Appl. Phys. 68(12), 6024–6028 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

F. Lagugné-Labarthet, F. Adamietz, V. Rodriguez, and C. Sourisseau, “Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating,” J. Phys. Chem. B 110(28), 13689–13693 (2006).
[Crossref] [PubMed]

J. Struct. Biol. (1)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[Crossref] [PubMed]

Nano Lett. (1)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Opt. Commun. (1)

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique,” Opt. Commun. 185(4-6), 467–472 (2000).
[Crossref]

Opt. Express (9)

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, “Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories,” Opt. Express 13(2), 505–510 (2005).
[Crossref] [PubMed]

T.-M. Liu, Y.-W. Lee, C.-F. Chang, S.-C. Yeh, C.-H. Wang, S.-W. Chu, and C.-K. Sun, “Imaging polyhedral inclusion bodies of nuclear polyhedrosis viruses with second harmonic generation microscopy,” Opt. Express 16(8), 5602–5608 (2008).
[Crossref] [PubMed]

D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006).
[Crossref] [PubMed]

J. H. Lin, N. D. Lai, C. H. Chiu, C.-Y. Lin, G. W. Rieger, J. F. Young, F. S.-S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16(11), 7832–7841 (2008).
[Crossref] [PubMed]

J. H. Lin, C.-Y. Tseng, C.-T. Lee, H.-C. Kan, and C. C. Hsu, “Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating,” Opt. Express 21(20), 24318–24325 (2013).
[Crossref] [PubMed]

N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005).
[Crossref] [PubMed]

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref] [PubMed]

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express 18(12), 12298–12303 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (3)

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65(8), 085106 (2002).
[Crossref]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76(24), 245104 (2007).
[Crossref]

H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silivered quartz grating,” Phys. Rev. B 38(11), 7408–7414 (1988).
[Crossref]

Phys. Rev. Lett. (3)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[Crossref]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20(9), R41–R56 (2005).
[Crossref]

Other (5)

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

Http://refractiveindex.info/?group = GLASSES&material = FK51A.

J. Turunen, In Micro-optics: Elements, Systems, and Applications, edited by H. P. Herzig (Taylor & Francis, 1997), Chap. 2.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic cross-section of the azo-polymer RWG structure and the molecular structure of the azo-polymer. The rectangle-shaped dash line (red color) defines the unit cell used for simulations. (b) Cross-section view and top view (inset) of the SEM image of the fabricated RWG structure before depositing the azo-polymer layer.
Fig. 2
Fig. 2 Experimental setup for THG and SHG spectra measurement. λ/2: half-wave plate, L: lens and P: polarizer.
Fig. 3
Fig. 3 Experimental ((a) and (b)) and calculated ((c) and (d)) transmission spectra of the pure TiO2 and azo-polymer RWGs for TM and TE polarizations. The calculated transmission spectra were obtained by the rigorous coupled-wave analysis (RCWA) method. The parameters used in this calculation are Λ = 840 nm, d = 230 nm, TTiO2 = 180 nm, nTiO2 = 2.0, TSU8 = 1.05 µm, nSU8 = 1.55, ng = 1.48, Tazo = 0.65 µm, nazo = 1.53, and Δλ = 0.1 nm.
Fig. 4
Fig. 4 Experimental SHG and THG spectra obtained from the pure TiO2 RWG (black line) and the azo-polymer RWG (red line) for the TM (a) and TE (b) polarizations. Inset shows the visible transmission spectra of the azo-polymer RWG for the TM (a) and TE (b) polarizations.
Fig. 5
Fig. 5 Calculated electric-field intensity distributions normalized to the incident intensity of resonant modes (TM, λ = 1247.3 nm) (a), (TM, λ = 1337.7 nm) (b), (TE, λ = 1250.4 nm) (c) and (TE, λ = 1367.6 nm) (d) of the azo-poymer RWG.

Tables (1)

Tables Icon

Table 1 Summary of the measured and simulated TE and TM resonance wavelengths in the pure TiO2 and azo-polymer RWGs.

Metrics