Abstract

A compact highly sensitive microfiber coupler based reflective micro-force sensor is presented. The device is fabricated by fusing two twisted optical fibers and then connecting two of the pigtails to form a Sagnac loop. The sensor has a high force sensitivity of ~3754 nm/N which is three orders of magnitude larger than traditional optical fiber force sensors, and a low detection limit of ~1.6 µN. The good repeatability is also shown in this paper.

© 2014 Optical Society of America

1. Introduction

Force sensing is of great importance in many applications such as structure inspection of aircraft, civil infrastructure and earthquake monitoring. Recently fiber based force sensors have been developed rapidly because of their insensitivity to electromagnetic fields, light weight, minimal intrusiveness, ease of termination and coupling. Different types of force sensors based on highly birefringent (Hi-Bi) fibers, Mach-Zehnder (M-Z) interferometers, fiber Bragg gratings (FBGs), etc. have been demonstrated. The Hi-Bi fiber force sensor [1] needs to use expensive fiber. The M-Z interferometer-based force sensor [2] has a complicated sensing structure and is hard to be fabricated. Force sensor using FBG [36] mainly operates by monitoring the shift of Bragg wavelength which is caused by applied force. In order to realize the temperature and force discrimination, the FBG based sensor usually has a complicated structure. In addition, FBG is very fragile and the sensitivity of a typical FBG based force sensor is only ~1 nm/N. However, in many practical applications, particularly micro-force measurements, the force sensor should be low-cost, compact, simply structured, easily fabricated as well as highly sensitive and have a low detection limit.

Since a seminal paper published in 2003 [7], microfiber has received a lot of attention because of its low loss, large evanescent field, strong confinement, configurability and robustness. Compact devices based on microfiber such as loop resonators [8], knot resonators [9], and coil resonators [10] have been investigated. Recently, a microfiber FBG based force sensor was demonstrated by Luo et al. [11] with a sensitivity of ~3146 nm/N. But the fabrication method using focused ion beam (FIB) leads to a high cost and low production. Moreover, the fragile structure and high loss (~13 dB) limit its application. In 2009, a broadband single mode microfiber coupler (MFC) was demonstrated by Jung et al. [12]. MFCs have many applications in optical communication [13], wavelength measurement [14] and sensing [15] due to their good performance and low cost. In reference [15], Ding et al. demonstrated a compact thermometer based on a MFC tip for high temperature sensing. The device had a large loss (~20 dB) mainly because of the poor reflection at the tip end face. Further processing is needed to enhance the reflection of MFC tip [16]. In this paper, a low loss miniature highly sensitive force sensor based on a MFC is presented. We constructed a Sagnac loop to reflect the light and gained a low loss of ~1 dB which was mainly due to the insertion loss caused by the bare fiber adaptors. The fabricated device has the advantages of low cost (made by commercial single-mode fibers), simple structure (fused optical fiber coupler), compact size (microfiber based device), easily fabricating (flame-brushing method) as well as high sensitivity (~3754 nm/N) and low detection limit (< 1.6 μN).

2. Theoretical analysis

Figure 1 shows the schematic of a MFC. MFCs are manufactured by laterally fusing and tapering two twisted optical fibers. A MFC comprises two conical transition regions, a central uniform waist region and four input/output ports: light injected into ports P1 or P2 exits from ports P3 and P4.

 

Fig. 1 Schematic of a MFC.

Download Full Size | PPT Slide | PDF

The MFC can be assumed as a weakly fused coupler, approximated by two touching cylindrical waveguides. The coupling coefficients for the x and y polarizations are given by [17]:

Cx=23/2(n12n02)1/2U2(2n12V+1)n13a(π)V7/2
Cy=23/2(n12n02)1/2U2(2n12V1)n13a(π)V7/2
where n1 and n0 refer to the refractive indices of silica and air, a denotes the diameter of one of the microfibers, U = 2.405 and V = [(2πa)/λ](n12n02)1/2.

Figure 2 demonstrates the structure of our device. We connect ports P3 and P4 together to form a Sagnac loop. If light entering the input port P1 is unpolarized, the normalized power at the output port P2 can be described by:

P2=12{1+cos[2(Cx¯+Cy¯)Lcoupler]cos[2(Cx¯Cy¯)Lcoupler]}
where Lcoupler is the coupling length of the MFC, Cx¯ and Cy¯ are the values of Eqs. (1) and (2) averaged over the whole coupling region. Because of the large modal size and the relatively small overlap, the contribution of the transition regions is negligible.

 

Fig. 2 Structure of the miniature MFC Sagnac loop.

Download Full Size | PPT Slide | PDF

Equations (1)(3) exposit that the output power depends on the wavelength λ, refractive index n1, coupling length Lcoupler, and coupler radial size 2a. A longitudinal mechanical force f applied to the device will induce both refractive index n1 and coupling length Lcoupler to change, which can be predicted by following formulas [11, 18, 19]:

ΔLcouplerLcoupler=εcoupler=fEAcoupler
Δn1n1=fEAcoupler×P
P=n122[p12ν(p11+p12)]
where E is the Young’s modulus of the fiber material, εcoupler is the applied strain on coupling region, and Acoupler is the area of coupling region cross section which can be calculated by Acoupler = 2π(a/2)2, ν is the Poisson ratio, p11 and p12 are the components of Pockel’s strain-optical tensor of the fiber material, respectively. P is the effective photo-elastic coefficient.

The force dependence of the device output spectrum around 1550 nm can be evaluated by assuming first 1 × 10−4 N and then 2 × 10−4 N longitudinal mechanical forces are applied on the device, respectively. We assume Lcoupler = 1 cm, a = 1.6 μm, p11 = 0.113, p12 = 0.252, ν = 0.17, and E = 73 GPa in our caculation, respectively. The refractive index n1 and coupling length Lcoupler will then vary with the force and result in the change of the output spectrum. Figure 3 shows the output power variation under three different mechanical forces. The peak wavelength has a blueshift of ~734 pm when the force increases from 0 N to 2 × 10−4 N, with an average sensitivity of ~3670 nm/N.

 

Fig. 3 The calculated output power from port P2 under three different mechanical forces.

Download Full Size | PPT Slide | PDF

We then calculate the dependence of force sensitivity S on the microfiber diameter a around 1550 nm wavelength. As revealed in Fig. 4, S increases quickly with the decreasing diameter.

 

Fig. 4 The calculated force sensitivity as a function of the microfiber diameter a. A smaller diameter will cause a higher sensitivity. Inset: cross section of the MFC coupling region in the “weakly fusing” approximation.

Download Full Size | PPT Slide | PDF

3. Experiment and discussion

First, a MFC was fabricated from two standard telecom optical fibers (SMF-28, Corning, NY, USA) using the flame brushing method [20]. Figures 5(a) and 5(b) illustrate the microscope images of the MFC: the diameter of each coupled microfiber was ~1.6 µm, the coupling region length was ~1 cm. Then, ports P3 and P4 were connected together using a commercial fusion splicer to form a Sagnac interferometer.

 

Fig. 5 Microscope images of (a) the transition region and (b) coupling region of the MFC, the diameter of each coupled microfiber is ~1.6 µm; (c) Output spectrum at port P2.

Download Full Size | PPT Slide | PDF

The spectral characterization of our device was carried out by connecting a supercontinuum (SC) source (NKT Photonics), with emission over the wavelength range 1200-1700 nm, to port P1 and an optical spectrum analyzer (OSA) (AQ6317C, Yokogawa, Japan) to port P2. The output spectrum at room temperature is presented in Fig. 5(c). It shows a multi-peak pattern due to lower-order symmetric and anti-symmetric supermodes interference in the coupling region. We can see a slow modulation of the spectral envelope which can be explained by the different coupling coefficients for x and y polarizations [21, 22].

The measurement setup is shown in Fig. 6. The device was held on two stretch stages. Port P1 was connected to the broadband light source (NKT, SuperK Versa) and port P2 was connected to the OSA (Ando AQ6317C). Light from the source goes through the sample and then into the OSA. As we controlled the stages to move away from each other, a longitudinal force would be applied on the coupler and thus influence the refractive index and coupling length. As the force changed the lengths of both the coupling region and pigtails:

Lcoupler+Lpigtail=Lfiber
ΔLcoupler+ΔLPigtail=Lstretch
where Lcoupler and Lpigtail refer to the length of coupler region and fiber pigtails between the two stretch stages. Lfiber is the total length of the above two parts, i.e. the distance between the two stretch stages. In our experiment Lfiber = 1.3 cm. ΔLcoupler and ΔLpigtail are the length changes of the coupling and pigtail regions, respectively. The forces applied to the coupling region and to the pigtail region are equal [18]:
εcouplerEAcoupler=εpigtailEApigtail
where Acoupler and Apigtail are the cross sectional areas of coupling and pigtail regions, respectively. εcoupler and εpigtail refer to the applied strain on the relevant region. Then the relationship between the stretched distance and the force can be predicted by using Eqs. (4) and (7)(9). In our experiment, each stage moved 1 μm per-step, Lstretch = 2 μm, thus the applied force f increased 5.86 × 10−5 N per-step.

 

Fig. 6 Schematic of the measurement setup.

Download Full Size | PPT Slide | PDF

Figure 7 reports the output spectrum of the device under different forces. When the applied force rises from 4.10 × 10−4 N to 5.27 × 10−4 N, the peak wavelength blueshifts from 1552.96 nm to 1552.53 nm.

 

Fig. 7 Output spectrum of the device around the peak wavelength 1553 nm under different forces.

Download Full Size | PPT Slide | PDF

The sensitivity is defined as the wavelength shift associated to the force change. Figure 8 illustrates the peak wavelength shift against the applied force. In this experiment, the applied force varied from 0 N to 7.03 × 10−4 N (i.e. the stretched length rose from 0 μm to 24 μm).

 

Fig. 8 Wavelength shift dependence on the stretched length. The red and blue curves refer to increasing and decreasing forces, respectively.

Download Full Size | PPT Slide | PDF

The force sensitivity S is ~3754 nm/N, which is three orders of magnitude larger than that of traditional optical fiber force sensors. The explanation for the difference between the theoretical calculation and experimental data could be the imperfect weakly fused coupler simplification in theory and the refractive index error. The sensor detection limit can be defined as δλ0/S, where δλ0 is the smallest measureable wavelength shift. Generally, δλ0 is limited by instrument resolution and is assumed as 1/50 of the full width at half maximum (FWHM) of the monitored resonance. The sensor detection limit was estimated to be ~1.6 µN for a FWHM of ~0.3 nm. Lower detection limit (~nN) possibly can be achieved with better instruments and optimized fabrication.

The force measurement repeatability was also evaluated by recording spectra with increasing and decreasing forces. As we can see from Fig. 8, data from the two curves coincide with each other, showing that the device has a good repeatability.

4. Conclusion

In this paper, we demonstrate a compact highly-sensitive microfiber coupler based reflective micro-force sensor. The device is fabricated by fusing two twisted optical fibers (SMF-28) and then connecting two of the pigtails to form a Sagnac loop. The sensor has a high force sensitivity of ~3754 nm/N with a good repeatability around the wavelength of 1553 nm, about three orders of magnitude larger than that of traditional optical fiber force sensors. The device has a large potential in many applications such as micro-force detection, structure inspection of aircraft and earthquake monitoring.

Acknowledgments

This work is supported by National 973 program under contract No. 2012CB921803 and 2011CBA00205, NSFC program No. 11074117 and National Science Fund for Excellent Young Scientists Fund (61322503) and National Science Fund for Distinguished Young Scholars (61225026). The authors also acknowledge the support from PAPD and the Fundamental Research Funds for the Central Universities. The authors thank Wei Guo, Bi-cai Zheng, and Guang-hao Shao for their kindly help.

References and links

1. S. Huang, F. Luo, and Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994). [CrossRef]  

2. K. S. Lau, T. L. Chan, and K. H. Wong, “Force measurement by visibility modulated fiber optic sensor,” Appl. Opt. 38(34), 7163–7164 (1999). [CrossRef]  

3. W. Zhang, X. Dong, Q. Zhao, G. Kai, and S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001). [CrossRef]  

4. L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, and X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006). [CrossRef]  

5. B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, and X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008). [CrossRef]  

6. J. Hao, Z. Cai, J. H. Ng, Y. Gong, and P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006). [CrossRef]  

7. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef]   [PubMed]  

8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006). [CrossRef]  

9. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006). [CrossRef]  

10. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photonics Technol. Lett. 19(19), 1481–1483 (2007). [CrossRef]  

11. W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012). [CrossRef]  

12. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009). [CrossRef]   [PubMed]  

13. Y. Jung, R. Chen, R. Ismaeel, G. Brambilla, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21(20), 24326–24331 (2013). [CrossRef]   [PubMed]  

14. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “Resolution improvement of a ratiometric wavelength measurement system by using an optical microfibre coupler,” in 2012Symposium onPhotonics and Optoelectronics (SOPO), (Shanghai, 2012), pp. 1–4. [CrossRef]  

15. M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012). [CrossRef]   [PubMed]  

16. M. Ding, P. Wang, J. Wang, and G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014). [CrossRef]  

17. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985). [CrossRef]  

18. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013). [CrossRef]   [PubMed]  

19. O. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Strain sensitivity control of fiber Bragg grating structures with fused tapers,” Appl. Opt. 46(36), 8578–8582 (2007). [CrossRef]   [PubMed]  

20. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef]   [PubMed]  

21. M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985). [CrossRef]  

22. J. D. Love and M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

References

  • View by:
  • |
  • |
  • |

  1. S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
    [CrossRef]
  2. K. S. Lau, T. L. Chan, K. H. Wong, “Force measurement by visibility modulated fiber optic sensor,” Appl. Opt. 38(34), 7163–7164 (1999).
    [CrossRef]
  3. W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
    [CrossRef]
  4. L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
    [CrossRef]
  5. B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
    [CrossRef]
  6. J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
    [CrossRef]
  7. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  9. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  10. F. Xu, G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photonics Technol. Lett. 19(19), 1481–1483 (2007).
    [CrossRef]
  11. W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
    [CrossRef]
  12. Y. Jung, G. Brambilla, D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  13. Y. Jung, R. Chen, R. Ismaeel, G. Brambilla, S.-U. Alam, I. P. Giles, D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21(20), 24326–24331 (2013).
    [CrossRef] [PubMed]
  14. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “Resolution improvement of a ratiometric wavelength measurement system by using an optical microfibre coupler,” in 2012Symposium onPhotonics and Optoelectronics (SOPO), (Shanghai, 2012), pp. 1–4.
    [CrossRef]
  15. M. Ding, P. Wang, G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
    [CrossRef] [PubMed]
  16. M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
    [CrossRef]
  17. F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
    [CrossRef]
  18. C. R. Liao, D. N. Wang, Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [CrossRef] [PubMed]
  19. O. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, F. M. Araújo, “Strain sensitivity control of fiber Bragg grating structures with fused tapers,” Appl. Opt. 46(36), 8578–8582 (2007).
    [CrossRef] [PubMed]
  20. G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  21. M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
    [CrossRef]
  22. J. D. Love, M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

2014

M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
[CrossRef]

2013

2012

M. Ding, P. Wang, G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[CrossRef] [PubMed]

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

2009

2008

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

2007

2006

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

2004

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2001

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

1999

1994

S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
[CrossRef]

1985

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
[CrossRef]

J. D. Love, M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

Alam, S.-U.

Araújo, F. M.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Brambilla, G.

Cai, Z.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

Chan, T. L.

Chen, R.

Chen, Y.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

DiGiovanni, D. J.

Ding, M.

M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
[CrossRef]

M. Ding, P. Wang, G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[CrossRef] [PubMed]

Dong, B.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Dong, X.

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

Dulashko, Y.

Ferreira, L. A.

Finazzi, V.

Fini, J. M.

Frazão, O.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Giles, I. P.

Gong, Y.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

Guerreiro, A.

Guo, T.

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Hale, A.

Hall, M.

J. D. Love, M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

Hao, J.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Huang, G.

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

Huang, S.

S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
[CrossRef]

Hussey, C. D.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Ismaeel, R.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jin, L.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Jung, Y.

Kai, G.

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

Kou, J. L.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Lau, K. S.

Liao, C. R.

Liao, T.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Liu, J.

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

Lu, Y. Q.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Luo, F.

S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
[CrossRef]

Luo, W.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Miao, Y.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Ng, J. H.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

Pan, Y.

S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
[CrossRef]

Payne, D. N.

M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
[CrossRef]

Payne, F. P.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Richardson, D. J.

Santos, J. L.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Silva, S. F. O.

Sumetsky, M.

Tong, L. M.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Varghese, P.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

Varnham, M. P.

M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
[CrossRef]

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wang, D. N.

Wang, J.

M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
[CrossRef]

Wang, P.

M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
[CrossRef]

M. Ding, P. Wang, G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[CrossRef] [PubMed]

Wang, Y.

Wong, K. H.

Xu, F.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

F. Xu, G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photonics Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

Xue, L.

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yataki, M. S.

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
[CrossRef]

Yuan, S.

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

Zeng, X.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Zhang, W.

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

Zhao, L.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Zhao, Q.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, “Demonstration of optical microfiber knot resonator,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Electron. Lett.

J. Hao, Z. Cai, J. H. Ng, Y. Gong, P. Varghese, “Simultaneous temperature and lateral force measurement using simple arc-shaped FBG sensor module,” Electron. Lett. 42(25), 1446–1447 (2006).
[CrossRef]

F. P. Payne, C. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

M. S. Yataki, D. N. Payne, M. P. Varnham, “All-fibre polarising beamsplitter,” Electron. Lett. 21(6), 249–251 (1985).
[CrossRef]

J. D. Love, M. Hall, “Polarisation modulation in long couplers,” Electron. Lett. 21, 519–521 (1985).

IEEE Photonics Technol. Lett.

W. Zhang, X. Dong, Q. Zhao, G. Kai, S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technol. Lett. 13(12), 1340–1342 (2001).
[CrossRef]

L. Xue, Q. Zhao, J. Liu, G. Huang, T. Guo, X. Dong, “Force sensing with temperature self-compensated based on a loop thin-wall section beam,” IEEE Photonics Technol. Lett. 18(1), 271–273 (2006).
[CrossRef]

F. Xu, G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photonics Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

M. Ding, P. Wang, J. Wang, G. Brambilla, “FIB-milled gold-coated singlemode-multimode-singlemode fiber tip refractometer,” IEEE Photonics Technol. Lett. 26(3), 239–241 (2014).
[CrossRef]

J. Intell. Mater. Syst. Struct.

S. Huang, F. Luo, Y. Pan, “A fiber optic sensor for measuring distributed forces,” J. Intell. Mater. Syst. Struct. 5(3), 427–431 (1994).
[CrossRef]

J. Lightwave Technol.

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Sens. Actuators A Phys.

B. Dong, Q. Zhao, L. Zhao, L. Jin, Y. Miao, T. Liao, X. Zeng, “Simultaneous measurement of temperature and force based on a special-strain-function-chirped FBG,” Sens. Actuators A Phys. 147(1), 169–172 (2008).
[CrossRef]

Other

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “Resolution improvement of a ratiometric wavelength measurement system by using an optical microfibre coupler,” in 2012Symposium onPhotonics and Optoelectronics (SOPO), (Shanghai, 2012), pp. 1–4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a MFC.

Fig. 2
Fig. 2

Structure of the miniature MFC Sagnac loop.

Fig. 3
Fig. 3

The calculated output power from port P2 under three different mechanical forces.

Fig. 4
Fig. 4

The calculated force sensitivity as a function of the microfiber diameter a. A smaller diameter will cause a higher sensitivity. Inset: cross section of the MFC coupling region in the “weakly fusing” approximation.

Fig. 5
Fig. 5

Microscope images of (a) the transition region and (b) coupling region of the MFC, the diameter of each coupled microfiber is ~1.6 µm; (c) Output spectrum at port P2.

Fig. 6
Fig. 6

Schematic of the measurement setup.

Fig. 7
Fig. 7

Output spectrum of the device around the peak wavelength 1553 nm under different forces.

Fig. 8
Fig. 8

Wavelength shift dependence on the stretched length. The red and blue curves refer to increasing and decreasing forces, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L coupler + L pigtail = L fiber

Metrics