S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]
D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]
D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]
[PubMed]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref]
[PubMed]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]
B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[Crossref]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).
A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
[Crossref]
V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).
K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]
[PubMed]
J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]
C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref]
[PubMed]
J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]
L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]
R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]
M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]
R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]
[PubMed]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref]
[PubMed]
H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref]
[PubMed]
B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi-based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]
C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref]
[PubMed]
M. Tani, S. Matsuura, K. Sakai, and S.-i. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref]
[PubMed]
D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[Crossref]
Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]
R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,” Appl. Phys. Lett. 96(9), 091101 (2010).
[Crossref]
J. Y. Suen, W. Li, Z. D. Taylor, and E. R. Brown, “Characterization and modeling of a terahertz photoconductive switch,” Appl. Phys. Lett. 96(14), 141103 (2010).
[Crossref]
C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]
C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500,” Appl. Phys. Lett. 85(21), 4965 (2004).
[Crossref]
M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]
J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005).
[Crossref]
A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]
T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]
C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]
S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz Spectroscopy of the Bending Vibrations of Acetylene12c2h2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]
K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]
R. Kasalynas, Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]
M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[Crossref]
D. Kostakis, Saeedkia, and M. Missous, “Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55,” IEEE Trans. THz. Sci. Technol. 2(6), 617–622 (2012).
L. Tian and W. Shi, “Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches,” J. Appl. Phys. 103(12), 124512 (2008).
[Crossref]
S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]
V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]
A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D Appl. Phys. 43(27), 273001 (2010).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[Crossref]
B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref]
[PubMed]
M. Mittendorff, M. Xu, R. J. Dietz, H. Künzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]
[PubMed]
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8(4), 256–260 (2013).
[Crossref]
[PubMed]
D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]
S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21(9), 11115–11124 (2013).
[Crossref]
[PubMed]
P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express 21(12), 13896–13905 (2013).
[Crossref]
[PubMed]
K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref]
[PubMed]
K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref]
[PubMed]
J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[Crossref]
[PubMed]
B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[Crossref]
[PubMed]
K. Moon, D. W. Park, I. M. Lee, N. Kim, H. Ko, S. P. Han, D. Lee, J. W. Park, S. K. Noh, and K. H. Park, “Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition,” Opt. Lett. 38(24), 5466–5469 (2013).
[Crossref]
[PubMed]
B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]
E. Castro-Camus, J. Lloyd-Hughes, and M. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71(19), 195301 (2005).
[Crossref]
D. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]
V. Pačebutas, K. Bertulis, A. Bičiūnas, and A. Krotkus, “Low-temperature MBE-grown GaBiAs layers for terahertz optoelectronic applications,” Phys. Status Solidi 6(12), 2649–2651 (2009).
[Crossref]
C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 33–45 (2012).
[PubMed]
V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu, and W. Walukiewicz, “Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers,” Semicond. Sci. Technol. 22(7), 819–823 (2007).
[Crossref]
Y. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC, 2008).
BATOP instruction manual, “Instruction manual and data sheet PCA-40-05-10-800-x”, http://www.batop.com/products/terahertz/photoconductive-antenna/photoconductive-antenna-800nm.html .
C. A. Balanis, Antenna Theory Analysis and Design (John Wiley & Sons, Canada, 2005).