Abstract

Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR) is a promising approach since it offers shot-noise limited precision/accuracy, high resolution and high sensitivity. We demonstrate a scanning imaging system based on a frequency-comb calibrated FMCW LADAR and real-time digital signal processing. This system can obtain three-dimensional images of a diffusely scattering surface at stand-off distances up to 10.5 m with sub-micrometer accuracy and with a precision below 10 µm, limited by fundamental speckle noise. Because of its shot-noise limited sensitivity, this comb-calibrated FMCW LADAR has a large dynamic range, which enables precise mapping of scenes with vastly differing reflectivities such as metal, dirt or vegetation. The current system is implemented with fiber-optic components, but the basic system architecture is compatible with future optically integrated, on-chip systems.

© 2014 Optical Society of America

1. Introduction

Since its inception in the 1960’s, Laser Ranging and Detection (LADAR) has become a mainstay for providing accurate surface profiling and mapping. Where the simplest LADAR relies on time-of-flight of a laser pulse off of a target, more sophisticated approaches, including those that rely on a frequency-modulated continuous wave laser (FMCW), can provide even higher sensitivity through coherent detection and higher resolution, precision, and accuracy through high optical bandwidths [1]. With the recent advent of high slew rate frequency agile lasers and the continuing advancement of fiber optic components in the telecom band around 1550 nm, FMCW LADARs have achieved range resolutions below 100 µm and range accuracy well below 1 µm [24]. Furthermore, the heterodyne nature of FMCW LADAR allows for very sensitive detection of weak signals scattered from rough surfaces at a distance. With this level of performance, developing FMCW LADAR techniques can compete with state-of the art surface profiling and imaging systems.

Here, we demonstrate a scanning imaging FMCW LADAR whose range measurements are referenced directly to the tooth spacing of a free-running frequency comb. In that way, the measured range is directly traceable to the rf standard used to measure the frequency comb tooth spacing, rather than to a physical artifact such as an interferometer or etalon, whose properties can change with environmental conditions. The comb-calibrated FMCW LADAR imaging system is based on the design of Ref. [4], where single point ranging to a target was demonstrated using a fast-swept laser with 1 THz bandwidth. Here, we have implemented the design with all polarization maintaining fiber to reduce sensitivity towards environmental perturbations, incorporated a fast steering mirror (FSM) to scan the beam across a surface, and implemented real-time digital signal processing of the signals to produce real-time range measurements at 2000 points per second limited by the optical sweep rate of the cw laser. The final imaging system combines the high intrinsic sensitivity of FMCW LADAR with the high accuracy associated with direct comb-ranging [512], thereby opening up the capability of high-resolution, high-accuracy surface profiling at large standoff distances. The system operates near the fundamental limits imposed by speckle phase noise [13]. For a 10 m standoff, we show that the precision (here defined as the standard deviation) can be below 10 µm and the accuracy well below 1 µm (for a specular reflection). In addition the system operates under ambient lighting conditions and offers a high dynamic range in return power and high sensitivity making it capable of measuring different reflecting surfaces with the same precision (with returns as low as ~110 dB below the launched power).

In this work, we demonstrate three-dimensional surface profiles with megapixel images of multiple objects including machined aluminum, footprints, a shoe tread, a flower, and a cactus. Figure 1 and Fig. 2 show 3D surface profiles that emphasize the application in forensics. In forensic science, casts of impression evidence are still a widely used technique [1416]. Casts are labor intensive, difficult to cross-reference, and can destroy the evidence especially on soft ground. Figure 1 shows a close-in photo of a footprint in dirt (taken at a few meters) and a 3D image of the same footprint taken at 10.5 meter distance. In this case, the calibrated 3D image reveals more details of the footprint than the photo, along with the structure of the dirt itself. The actual shoe tread was also measured at 10.5 m range, as shown in Fig. 2. The power levels were not adapted between measurements, demonstrating that the FMCW LADAR offers sufficient dynamic range in return power to capture the aluminum tabletop, the impression in dirt and the rubber in a single measurement. The shoe tread shows individual wear marks from a bicycle pedal. Such marks are important to capture since they can link a specific shoe to a crime scene.

 figure: Fig. 1

Fig. 1 (a) Photograph of a footprint in dirt, acquired at close range. (b) Calibrated 3D surface image of the same footprint in dirt acquired at z0 = 10.568 m stand-off. This image contains 1.12 Mpixels.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 (a) Photograph of the tread of the shoe used in Fig. 1. (b) Calibrated 3D image of the shoe tread revealing the crests and valleys of the rubber sole, along with the worn mark of a bike pedal, acquired at z0 = 10.587 m standoff. The 3D nature of the data is best observed in a movie (see Media 1).

Download Full Size | PPT Slide | PDF

Where other techniques may offer good performance in specific cases, FMCW LADAR shows generally high performance and flexibility across differing applications. Interferometry, for example, can potentially offer nm-scale precision while profiling a surface but at a cost of range ambiguity on the order of a wavelength. Multi-wavelength and synthetic wavelength interferometry offer increased range non-ambiguity [1719], but interferometric methods in general require an artifact (such as a corner cube) in contact with the surface being profiled. FMCW LADAR is in many ways similar to swept source optical coherence tomography (OCT) [20], except it operates at much larger standoff distances. In digital holography [21], light scattered from an object is combined with a reference beam to produce an interference pattern (hologram) on an image array. Where this technique is rapid, it achieves accuracies around 0.7 mm [22]. Structured light is another rapid, camera-based technique but is potentially difficult for use in field locations as it requires specific, calibrated illumination patterns [23].

In contrast, FMCW LADAR, with its combined unique abilities, can successfully produce high-accuracy 3D profiles of a variety of surfaces, including impressions in soil, feature-rich surfaces as encountered in vegetation and biology, and complex fragile mechanical devices at large standoff distances, in ambient light, and in flexible configurations. The synthetic aperture approach [24] to achieve high lateral resolution can also be implemented with FMCW LADAR [25]. Furthermore, FMCW LADAR exploits technologies leveraged from the fiber optic telecommunication industry and can similarly benefit from the increased integration of optical components onto chips. Although the current design is implemented in fiber optics, future FMCW LADAR could easily take advantage of future chip-based frequency combs, swept lasers, and electro-optic scanners [2629].

The article is organized as follows. Section 2 describes the system and processing in more detail. Section 3 analyzes the various limitations to the range precision for a pixel. The current system operates very close to the fundamental limit set by speckle phase noise, as discussed in Ref [13]. Finally Section 4 provides some additional three-dimensional surface profiles measured with the system.

2. System description

2.1 Overview

In its simplest form, FMCW LADAR relies on a perfectly linear frequency swept continuous wave (cw) laser source; the laser is scattered off of a target and the return light compared to the source light. The comparison reveals an optical frequency difference proportional to the range between the source and target. The accuracy and precision rely completely on the system calibration of the ideally perfectly linear frequency sweep. Historically, this linearization is performed by comparison with an artifact such as an interferometer [3032]. Such systems have shown good performance however their performance is limited by the interferometer, which itself needs calibration to provide absolute system accuracy, and furthermore is subject to environmental effects such as temperature, air pressure, vibration, humidity, and other effects. Here, we instead calibrate a non-linearly swept laser directly against a free-running frequency comb, which has a perfect equidistant tooth spacing; the instantaneous phase between the swept cw laser and comb’s teeth is recorded during the source sweep, and this information (along with a “count” of the comb’s repetition frequency against a rf-standard) is used to linearize the source sweep in the signal processing stage of the range measurement [4,3335].

2.2 Experimental setup

The experimental setup is shown in Fig. 3(a).. The frequency swept laser is a microelectromechanical systems (MEMS) based external cavity diode laser centered around f0~192 THz (1560 nm) with a linewidth of around 1.5 MHz corresponding to a coherence length of around 70 m [36]. This laser is swept quasi-sinusoidally over a bandwidth B = 1 THz at a rate fm = 1 kHz, ideally giving an optical frequency offlaser(t)~f0+B/2cos(2πfmt). The sweep rate (chirp) is αnom(t)~dflaser/dt=Bfmπsin(2πfmt), with a maximum measured amplitude αmax = 3.4 PHz/s. As discussed later (see also Fig. 4), the frequency sweep is not perfectly sinusoidal and must be directly measured. Light from this source is split into two paths, one serves as a local reference and the other is launched as a free beam through an expander. This beam is scattered off the target, superimposed with local reference light and converted to a voltage with a photodiode.

 figure: Fig. 3

Fig. 3 (a) Overview of the FMCW LADAR setup used for 3D imaging. The light from a frequency-swept laser is split into a measurement and a local reference path. Objects (here a flower) are scanned with a fast steering mirror (FSM). Simultaneously a small portion of the swept laser’s output is heterodyned against a mode-locked laser (free running comb) and detected in phase and quadrature (I/Q) to extract the instantaneous frequency used to calibrate the frequency sweep rate. (b) Block diagram of the data processing, which is implemented on a field-programmable gate array (FPGA). AGC: automatic gain control. After extracting the radial range, it is converted (together with the FSM angle readings) to Cartesian coordinates, resulting in a 3D point cloud. (c) Linearized ‘range spectrum’ as discussed in the text. One specific range measurement is extracted as the center of mass of the peak, here just below 4 m. Some spurious reflections are visible just below 7.5 m; they originate among others from the circulator used to couple the light in and out into the free-space section. The inset shows the FPGA output, consisting of 8 points across the range peak, with a spacing of ~ΔR = 150 µm. The black trace shows a distorted range spectrum obtained assuming flaser is a pure sine wave.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Instantaneous modulation frequency of swept laser, green measurement, dashed-black pure sine-wave. The update rate is 0.5 ms and the shaded area corresponds to 1 sweep, hence one range-measurement. Top: difference between the sine-modulation and measured frequency.

Download Full Size | PPT Slide | PDF

2.3 Processing

The swept laser field can be written asE(t)=|E|e2πiφ(t), and the resulting heterodyne voltage between the local reference and the return signal is then

VLADAR(t)cos[φ(t)φ(tΔtobj)]cos[Δtobjdφ(tΔtobj/2)dt]=cos[2πΔtobjflaser(tΔtobj/2)]
where Δtobj is the time delay to the surface and back (with respect to the local reference branch). For a linear optical sweep rate α the swept laser frequency flaser(t)=f0+αt can be substituted in Eq. (1) andΔtobj can then be directly extracted from the measured beat frequency of VLADAR(t) (typically through a Fourier transform with respect to time of VLADAR(t)).

Here, the frequency sweep is not linear and instead we directly measureflaser(t). In this way, the laser can be swept at its maximum rate, allowing for the much higher acquisition rate required to form 3D images. We then regard the measured LADAR signal as a function of flaser, rather than time and Fourier transform the measured heterodyne signal with respect to flaser. (Strictly speaking, Eq. (1) ignores higher-order terms of the Taylor expansion in the phase, but they lead to negligible errors [37], provided of course the instantaneous laser frequency is measured simultaneously with the LADAR signal.) The hence obtained range spectrum is:

F(R)=B/2B/2VLADAR(flaser)ej4πflaserc1Rdflaser
where the integral is across the laser’s optical sweep bandwidth B and we have rewritten the time delay in terms of the range given as R=Δtobjc/2, where c is the speed of light in air. The resulting spectrumF(R)from a surface will have a signal with a width (i.e. range resolution) ofΔR=c/(2B) centered at the range to the surface (with respect to the local reference delay), see for example, Fig. 3(c).

Ideallyflaser(t)would simply be given by the laser’s sinusoidally varying electrical drive voltage. However, hysteresis and other nonlinearities in the device cause the laser’s output sweep to deviate from the drive voltage. Figure 4 shows the real modulation frequency of the swept laser as measured against the frequency comb, as well as the deviations from the sinusoidal drive voltage. The deviations can lead to strong range-spectrum distortions. For example, Fig. 3(c) compares a broadened range signal where the laser sweep is assumed to follow a perfect sine wave to a bandwidth-limited range signal where the laser is properly calibrated against the frequency comb throughout the sweep.

As shown in Fig. 3(b), this data processing is carried out in a field-programmable gate array (FPGA), returning one range measurement every 0.5 ms (for each optical frequency sweep of the laser, as indicated by the shaded area of Fig. 4). The input digitizer to the FPGA is sampled synchronously with the comb repetition frequency fr ~207 MHz. The Nyquist condition leads to a range window of ±(fr/2c/2αmax)=±4.5mrelative to the local reference branch, where αmax is the amplitude maximum of the optical sweep rate. For our present measurements we coarsely set the reference branch delay to obtain free-space range measurements between ~2 m and ~11 m.

The processing of the delay time measurement Δtobjis clocked with the free-running comb’s repetition rate. This repetition rate is also simultaneously counted against a rf –standard (maser). Since the optical sweep is calibrated against this free-running comb the accuracy of the rf-standard is transferred to the range measurementΔtobj. The comb offset frequency is not actively monitored, however it can be shown that the contribution of offset frequency drift to the overall fractional range uncertainty is negligible or below 2 × 10−7 (see Ref [4].). This contributes ~2 µm to our overall range uncertainty at 10.5 meters.

The processing of the delay time measurement Δtobjis clocked with the free-running comb’s repetition rate. This repetition rate is also simultaneously counted against a rf –standard (maser). Since the optical sweep is calibrated against this free-running comb the accuracy of the rf-standard is transferred to the range measurementΔtobj. The comb offset frequency is not actively monitored, however it can be shown that the contribution of offset frequency drift to the overall fractional range uncertainty is negligible or below 2 × 10−7 (see Ref [4].) This contributes ~2 µm to our overall range uncertainty at 10.5 meters.

The processing related to Eq. (2) requires that the LADAR signal and instantaneous frequency are processed with the same time offsets. Otherwise, relative time offsets combined with the nonlinear sweep will cause range errors and broadening of the spectrum. This time offset is adjusted in the FPGA code and through cable lengths. We measure a range error of 80 nm per ns of time delay mismatch at a 10.5 meter range, corresponding to < 2 μm range error over a ± 15 cm depth range R.

2.4 Two-dimensional scanning and image formation

The FSM allows for a radial mapping of a surface in R, with the FSM angles ϕ and Ө (see Fig. 3(a)). Figure 5 shows data from a flat cast-iron lapping plate, oriented perpendicularly to the incident laser beam as measured at a stand-off z0 = 10.54 m. The radial range R across the surface is measured in a lateral scanning pattern as the angle ϕ is steered with a triangular voltage (to raster the beam back and forth across in x), and Ө is swept with a slow ramp voltage (slow displacement in y). The selection of the scanning pattern and speed is governed by trade-offs between covered surface, measurement time, lateral resolution and speckle noise (see Section 3.2); all those are further linked to the laser’s spot size on the target. In the case of the cast-iron plate in Fig. 5, the stand-off distance was ~10.5 m and the total covered surface ~200 mm x 100 mm, the measured diffraction-limited radius of the spot size at 1/e is ω0=175μm (limited by the beam expander’s 50 mm lens diameter). The number of measurement points per ϕ -triangle were 2500 and per Ө sweep were 400, giving a total of 106 points.

 figure: Fig. 5

Fig. 5 (a) Photograph of a flat granite surface and flat cast iron lapping plate, placed at a stand-off of z0 = 10.539 m. (b) Schematic of lateral scanning pattern. The black dots indicate the spot position, and are smaller than the actual spot size to clearly show the scanning pattern. The red dot indicates the spot size, illustrating the beam overlap for each pixel as described in the text. For visual clarity, a 15 pixel horizontal scan is depicted (the presented images are based on 2500 × 400 pixel scans). (c) 3D surface image of the cast iron lapping plate (dashed box in panel (a)) without removal of geometric factors. (d) Same as (c) after calibration of the geometrical factors, revealing a flat surface as expected. (The surface profile of the granite surface is discussed later in Fig. 11.) (e) Histogram of the range measurements on the lapping plate, for a 1D scan consisting of 1 million points along the lateral x-axis after removing a small tilt (blue trace) and all points (as seen in (d)) covering 742,000 points, after removing a tilt in x and y (green trace). Also shown are the analytical solutions expected due to speckle-induced phase noise (black dashed lines), as discussed in Section 3.2.

Download Full Size | PPT Slide | PDF

The geometrical factors coming from the radial scanning lead to an apparent curvature of the flat plate: R varies by ~470 µm over ~100 mm coverage in x (or y). It is hence necessary to convert ϕ, Ө and R to Cartesian coordinates x, y and z. Treating ϕ, Ө, R as spherical coordinates and applying the usual transformation to Cartesian coordinates is not sufficient since the FSM angle drive voltages are not linear with respect to the actual FSM angles ϕ, Ө. Therefore, we calibrated ϕ and Ө against the pixel position, x0(ϕ,θ),y0(ϕ,θ), z0 on a focal plane array IR camera at known distance z0 to obtain a 9 × 9 calibration look-up table. The Cartesian coordinates are then obtained as x=x0(ϕ,θ)R/r0,y=y0(ϕ,θ)R/r0, z=z0(ϕ,θ)R/r0, where r0=z20+x20(ϕ,θ)+y20(ϕ,θ). This look up table can then be applied to any point cloud translating the simultaneously recorded FSM monitor voltages (see Fig. 3(b)) through bilinear interpolation into a calibrated Cartesian (x, y, z) surface as seen in Fig. 5(d).

3. Ranging precision

The following sub-sections discuss and define different precision limitations found in the presented FMCW-LADAR system.

3.1 Precision limits from SNR

The ranging precision in a FMCW LADAR has a statistical limit of ΔR/(SNRrms), where ΔR=c/(2B)is the range resolution and SNRrms is the electrical root-mean-square signal to noise ratio. As a coherent LADAR, SNRrms can be close to shot noise limited (and thus proportional to the square root of the optical return power). Figure 6 shows the experimentally achieved precision as a function of return power (for an eye-safe output power level of 9 mW) while ranging to a single point on a brushed metal plate placed at z0 = 10.5 m. A precision below 10 µm is maintained down to return powers as low as ~75 fW, which corresponds to a signal attenuation of ~110 dB relative to the launched optical power of 9 mW. However, the precision does not follow the expected dependence of ΔR/(SNRrms) but rather reaches a floor of ~3 µm. This floor is higher than for the static system of Ref. [4] and is due to the introduction of the FSM that, even at a fixed position, will have small variations leading to small Doppler piston-like motion and additional speckle induced phase noise.

 figure: Fig. 6

Fig. 6 Precision as a function of return power while ranging to a single point on a brushed metal plate at a stand-off of 10.5 m. Each point is reported as the standard deviation of 28 measurements taken within 14 ms (filled circles). The measured SNR of the range beat (black line, right axis) can be as good as 75.5 dB at high return power (see also Fig. 3(c)).

Download Full Size | PPT Slide | PDF

3.2 Precision limits from speckle-induced phase noise

Any diffusely scattering surface with roughness σz illuminated with coherent light with wavelength λ<σz will exhibit speckle. Speckle is the far-field intensity pattern produced by the mutual interference of a set of random wave fronts [38]. Thus, any coherent laser ranging system mapping a diffusely scattering surface is subject to speckle. The speckle-induced intensity in ranging was studied before, see eg Refs. [3941]. Speckle-related errors in self-mixing interferometry are discussed in Refs. [42,43]. However, the limiting factor in our system is speckle-induced phase noise. Intensity noise is suppressed by the large supported intensity dynamic range and an automatic-gain-control in the processing. Speckle causes an additional phase noise in the return signal that effectively appears in the argument of the cosine in Eq. (1). As discussed in [13], this additional speckle phase noise can lead to large apparent outliers in the range distribution for an otherwise nominally flat surface. In fact, the resulting distribution of measured range values does not follow a Gaussian distribution as one might expect but rather follow the distribution [13,44]

PT(δz)=kσz22(σz2+δz2)3/2for|δz|<ΔR/2PT(δz)=0for|δz|>ΔR/2
with a truncation given by the intrinsic resolution of the system, and where δz=zz0is the error in the measured range from the true value z0, σz is the one-standard deviation surface roughness (which is assumed to be Gaussian), and k is a normalization factor. The speckle-induced precision limit is the standard deviation of this distribution [13],
δz2σz2{ln(ΔR/σz)1}forΔR/σz1
giving, for instance, δz23σz2(5μm)2 for a typical 3-µm surface roughness with B = 1 THz, corresponding to an excess variance of z2.

The predictions of Eq. (3) are compared to measurements in Fig. 5(e). There is a good agreement, with the expected truncation at ~150 μm. For a single lateral scan, the corresponding surface roughness was σz = 5 µm. Note that this δz2 is a property of the surface and the extracted surface roughness σz agrees with surface roughness measurements derived by other means; it is not an intrinsic error of the FMCW LADAR system. The histogram for the full surface shows a broader central peak due to a ~7 µm imperfection in the xyz calibration (see Section 3.4).

3.3 Precision limits from speckle-induced frequency noise

For the scanning system, there is an additional contribution to the overall precision that results from the time-dependence of the speckle phase as the beam is scanned across the surface. The derivative of this time-dependent speckle phase contributes additional “pseudo-doppler” noise to the measured frequency of the heterodyne signal, and therefore to the range. For slow scan speeds this effect is negligible but becomes significant for higher scan speeds. Previously, we analyzed this effect in terms of the normalized scan speed, which is defined as Vscan=vx/(w0/fm), i.e. the lateral scan speed vx in m/s normalized to one beam diameter per frequency sweep of the swept laser. Here, the sweep in x gives Vscan=0.23, which gives no additional contribution to the precision limit set by the speckle induced phase noise, based on Fig. 3 of Ref. [13].

3.4 Systematic error from spherical to Cartesian coordinate transformation

From Fig. 5(e), the spread in ranges is increased from 5 µm to 8 µm when going from a 1D lateral scan to a full 2D lateral scan covering a surface; we attribute the additional uncertainty to an error of roughly 6 µm in the radial to Cartesian coordinate calibration, although there could also be slight variations in the surface flatness. In addition, over the entire surface of ~210 mm × 100 mm we measure a slight, ± 7 µm twist. Assuming the plate to be flat, we therefore attribute a maximum ~7 µm systematic uncertainty to the imperfect transformation from spherical to Cartesian coordinates (due to small variations in the FSM motion not captured in our calibration process).

3.5 Uncertainty due to time-dependent variations in the overall air path

The overall 10 m air-path distance and the fiber optic path of the local reference branch vary due to refractive index changes during an image acquisition and these variations will be incorrectly assigned to the measured surface. The long term uncertainty (Allan variance) as measured at 10.5 m in our laboratory is shown in Fig. 7, while ranging to a single point on a brushed metal surface. This uncertainty reaches ~1 µm at 500 seconds (8.3 minutes), which is the time it takes to generate typical surface scans as presented in this paper. This uncertainty is attributed to temperature-driven optical path variation in air and fiber. However, these effects could be corrected for with knowledge of the local temperatures.

 figure: Fig. 7

Fig. 7 Uncertainty (Allan deviation) of a 2.5 hour long measurement (2 × 107 points, 0.5 ms per point) ranging to a single point on a brushed Aluminum surface placed at 10.5 m stand-off distance.

Download Full Size | PPT Slide | PDF

3.6 Overall uncertainty (precision)

Table 1 summarizes and quantifies the different error sources affecting the achievable precision per point at 10 m standoff. The dominant fundamental uncertainty is given by speckle noise, which is a fundamental limit to any coherent laser ranging system mapping a diffusely scattering target. True Doppler motions will cause range error, but these are suppressed for our high optical sweep rates (3.4 PHz/s) and can be alleviated through different techniques such as specialized processing [45], averaging up and down sweeps (as was done with opposite chirped pulses [8]), or with a vibrometer [46] co-aligned with the FMCW-LADAR light.

Tables Icon

Table 1. Precision of each sample point, evaluated at 10-m standoff distances.

Taking all the above mentioned effects into account an overall uncertainty (summed in quadrature) of 9.5 µm is achievable at 10 m stand-off with a comb-calibrated FMCW LADAR applied to 3D imaging. The achieved accuracy while ranging to a specular target is below 1 µm as shown in Ref [4], and is effectively limited by knowledge of the speed-of-light in the ambient air conditions.

4. High precision 3D images at a stand-off

We acquired multiple high-resolution three-dimensional surface profiles of various different objects. Typically, the system acquired 1 million pixel images, which takes ~8.3 minutes at the current 2000 point/second measurement rate. Figure 1 and Fig. 2 showed example images of both a shoe tread and a footprint. In this section we give additional examples of 3D surface profiles.

Figure 8 shows images of a machined Aluminum step block measured at a stand-off of 4.75 m. The block has a flat surface with the NIST logo as an ‘imprint’ followed by 7 staircase steps of varying step-heights, ranging from ~30 µm to 10 mm. Figure 8(c) compares a cross-section extracted from the 3D image to a measurement carried out with a coordinate measuring machine (CMM). These CMM truth data were obtained with a contact probe for 44 measurement points on the flat part of the step block and 36 points on each step, whereas the comb-calibrated non-contact FMCW LADAR provides a calibrated profile, containing ~1 million points. The standard deviation of the difference (red crosses) between the averaged LADAR measurements and CMM measurements is ~2 µm, the difference does not depend on the step height. The first 3 steps, (inset, Fig. 8(c)) were measured to have step heights of 110 µm, 30 µm and 100 µm. In other words, the LADAR is capable of measuring a step of 30 µm and a step of 10 mm with the same precision.

 figure: Fig. 8

Fig. 8 (a) Photograph of an Al-step block with the NIST logo imprinted and a quarter located on the lower left corner. (b) False colored, 3D surface image of the step block, along with a quarter on the bottom left, measured by our FMCW LADAR system at a stand-off of z0 = 4.760 m. (c) The average of 30 cross-sections in the x-direction from the FMCW LADAR image (green trace) is compared to an average of 12 measurement points taken with a CMM (blue crosses). The inset shows an expanded view of the first 3 steps; note that the second step size is only ~30 µm. The difference (error) between the LADAR and the CMM (red crosses) has a standard deviation below 2 µm.

Download Full Size | PPT Slide | PDF

Figure 9 shows a 1 Megapixel image of a piston head measured at a stand-off of 10.5 m. After subtracting a piecewise polynomial fit to remove the overall shape (as no truth data was available), the residuals (green trace in Fig. 9(c)) show a clear dependence on the object slope. This noise level is due to the range-depth covered by the beam spot on a slanted surface. In other words, the range distribution of Eq. (3) assumed the illuminated surface range depth was below the system range resolution ΔR. However, if the surface is significantly slanted, then the illuminated range depth within the laser spot is larger, given roughly by ΔRsurface=Dspottanβ, where β is the slant angle and Dspot = 700 µm is the measured 1/e2 spot diameter at 10.5 m stand-off. When ΔRsurface exceeds ΔR, the FMCW LADAR will return a single range value with a standard deviation on the order of 0.1-0.2 ΔRsurface. For this system, the uncertainty increases at a rate of about ~1.7 µm/degree of slant. In the cases of the flat cast iron lapping plate (Fig. 5) and the Al-step block (Fig. 8) the maximum surface slant is less than 0.6 degree, resulting in a negligible uncertainty increase due to the slant.

 figure: Fig. 9

Fig. 9 (a) Photo of a motorbike (Ducati 1975) piston head. (b) False colored, calibrated, 1 Mpixel 3D image measured at a stand-off of z0 = 10.587 m. (c) A cross section in y (blue trace), shows the smoothly varying surface. A piecewise fit of the cross section to a polynomial gives the residual (green trace) that show increased spread for regions of slanted surfaces. This additional spread follows the expected values due to the true range depth of the surface within the beam spot (red trace).

Download Full Size | PPT Slide | PDF

Figure 10 shows the top of the same piston head as in Fig. 9, measured at closer stand-off distance of 4 m. (Note that this closer distance was not chosen based on SNR considerations, but solely to decrease the diffraction limited spot size to 1/e2 spot diameter of 300 µm for higher lateral resolution.) The image clearly reveals an imprinted serial number, with an imprint depth of ~100 µm.

 figure: Fig. 10

Fig. 10 Top of piston head from Fig. 9 revealing the imprinted numbers. This reduced area consists of a 1 Mpixel point cloud, as measured at z0 = 3.701 m stand-off. The overall curvature of the piston head is also evident.

Download Full Size | PPT Slide | PDF

In Fig. 11(a), the false colored, calibrated 3D surface profile of the flat granite plate from Fig. 5(a) is shown. Even though the granite is mechanically polished to a flat surface, the LADAR signal penetrates the surface occasionally picking up different reflection from underlying grain boundaries within the bulk of the granite. (Granite is a conglomerate of quartz and other minerals.) The histogram in Fig. 11(b) shows a sharp peak given by the polished surface, which follows the analytical model of the range distribution given in Eq. (3) for σz = 12 µm, and a tail extending into the granite. This tail is fit with a double exponential having a first exponential constant of 0.8 mm and a second of 40 µm. This penetration is also seen in Fig. 11(a) as spikes penetrating the surface.

 figure: Fig. 11

Fig. 11 (a) Calibrated false colored 3D surface image of a flat granite plate (see photo in Fig. 5(a)) at a stand-off of z0 = 10.476 m. (b) Histogram of the granite showing the optical penetration into the plate (blue) along with a fit to the expected distribution of Eq. (3). for a flat surface with roughness σz~12 µm (black) and a second, double-exponential fit (red) that captures the penetration into the plate.

Download Full Size | PPT Slide | PDF

The large dynamic range in return power of the comb-calibrated LADAR is emphasized in Fig. 12. The scene consisting of a cactus, a ceramic plate and the optical table is mapped in one measurement. The scene covers a ~(120 mm)3 cube in x,y and z. In Fig. 12(c), one branch of the cactus is shown acquired at a closer stand-off of 4 m to allow for sufficient lateral resolution to clearly image individual cactus spikes, which have a diameter of ~75 µm.

 figure: Fig. 12

Fig. 12 (a) Photograph of cactus taken at a close-in range. (b) Calibrated 3D surface image acquired at z0 = 10.587 meters standoff covering a volume of ~(120 mm)3. (c) Individual branch of the cactus, measured at 4 m standoff, revealing the spikes of ~75 µm diameter.

Download Full Size | PPT Slide | PDF

5. Conclusions

We presented a comb-calibrated FMCW LADAR that can be applied to 3D mapping of diffusely scattering surfaces at over 10 meters of stand-off. The system linearization is based on a free running comb, which is used as a frequency ruler. The processing is carried out in real time in an FPGA. The overall achieved uncertainty is at the ppm level and there is no need for continued calibration since the accuracy can be tracked back to the continuously monitored repetition frequency of a free-running comb, and hence to an rf standard. The system offers a high sensitivity (low return powers of 75 fW), has a high dynamic range in return power achieving the same precision with 70 dB variation in return power. We provided some example calibrated 3D images that reveal fine details captured in ambient lighting at 10 meter-scale stand-offs. This basic system is potentially useful for different applications, such as precision machining, precision assembly of components or forensics.

Acknowledgments

We acknowledge helpful comments from P. Williams and C. Cromer and funding from DARPA EPHI and NIST. We also acknowledge ACT Denver for technical assistance.

References and links

1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001). [CrossRef]  

2. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009). [CrossRef]   [PubMed]  

3. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010). [CrossRef]   [PubMed]  

4. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013). [CrossRef]   [PubMed]  

5. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]  

6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]  

7. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011). [CrossRef]   [PubMed]  

8. M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011). [CrossRef]   [PubMed]  

9. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012). [CrossRef]   [PubMed]  

10. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011). [CrossRef]   [PubMed]  

11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef]   [PubMed]  

12. K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011). [CrossRef]   [PubMed]  

13. E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014). [CrossRef]   [PubMed]  

14. M. R. Bennett, D. Huddart, and S. Gonzalez, “Preservation and Analysis of Three-Dimensional Footwear Evidence in Soils: The Application of Optical Laser Scanning,” in Criminal and Environmental Soil Forensics, K. Ritz, L. Dawson, and D. Miller, eds. (Springer Netherlands, 2009), pp. 445–461.

15. D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012). [CrossRef]   [PubMed]  

16. U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007). [CrossRef]   [PubMed]  

17. A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010). [CrossRef]  

18. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013). [CrossRef]   [PubMed]  

19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008). [CrossRef]   [PubMed]  

20. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013). [CrossRef]   [PubMed]  

21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef]   [PubMed]  

22. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999). [CrossRef]   [PubMed]  

23. K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).

24. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005). [CrossRef]   [PubMed]  

25. S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012). [CrossRef]   [PubMed]  

26. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014). [CrossRef]  

27. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012). [CrossRef]   [PubMed]  

28. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008). [CrossRef]  

29. C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. G. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in CLEO, OSA Technical Digest (Optical Society of America, 2014), p. STh4O.3.

30. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009). [CrossRef]   [PubMed]  

31. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999). [CrossRef]   [PubMed]  

32. Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011). [CrossRef]   [PubMed]  

33. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010). [CrossRef]  

34. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009). [CrossRef]  

35. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012). [CrossRef]  

36. D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, “External cavity diode lasers tuned with silicon MEMS,” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 (2002), pp. 97–98.

37. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993). [CrossRef]  

38. J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer, 1984), Vol. 9.

39. A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010). [CrossRef]   [PubMed]  

40. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28(13), 2657–2665 (1989). [CrossRef]   [PubMed]  

41. Z. W. Barber, J. R. Dahl, T. L. Sharpe, and B. I. Erkmen, “Shot noise statistics and information theory of sensitivity limits in frequency-modulated continuous-wave ladar,” J. Opt. Soc. Am. A 30(7), 1335–1341 (2013). [CrossRef]   [PubMed]  

42. S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013). [CrossRef]  

43. S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014). [CrossRef]   [PubMed]  

44. P. Pavliček and J. Soubusta, “Theoretical Measurement Uncertainty of White-Light Interferometry on Rough Surfaces,” Appl. Opt. 42(10), 1809–1813 (2003). [CrossRef]   [PubMed]  

45. B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012). [CrossRef]   [PubMed]  

46. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012). [CrossRef]  

References

  • View by:

  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  2. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]
  3. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
    [Crossref] [PubMed]
  4. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  5. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  7. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  8. M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
    [Crossref] [PubMed]
  9. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  10. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  12. K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
    [Crossref] [PubMed]
  13. E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
    [Crossref] [PubMed]
  14. M. R. Bennett, D. Huddart, and S. Gonzalez, “Preservation and Analysis of Three-Dimensional Footwear Evidence in Soils: The Application of Optical Laser Scanning,” in Criminal and Environmental Soil Forensics, K. Ritz, L. Dawson, and D. Miller, eds. (Springer Netherlands, 2009), pp. 445–461.
  15. D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
    [Crossref] [PubMed]
  16. U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
    [Crossref] [PubMed]
  17. A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
    [Crossref]
  18. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [Crossref] [PubMed]
  19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  20. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  22. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [Crossref] [PubMed]
  23. K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).
  24. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [Crossref] [PubMed]
  25. S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
    [Crossref] [PubMed]
  26. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
    [Crossref]
  27. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
    [Crossref] [PubMed]
  28. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  29. C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. G. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in CLEO, OSA Technical Digest (Optical Society of America, 2014), p. STh4O.3.
  30. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  31. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
    [Crossref] [PubMed]
  32. Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
    [Crossref] [PubMed]
  33. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
    [Crossref]
  34. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
    [Crossref]
  35. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
    [Crossref]
  36. D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, “External cavity diode lasers tuned with silicon MEMS,” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 (2002), pp. 97–98.
  37. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [Crossref]
  38. J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer, 1984), Vol. 9.
  39. A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
    [Crossref] [PubMed]
  40. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28(13), 2657–2665 (1989).
    [Crossref] [PubMed]
  41. Z. W. Barber, J. R. Dahl, T. L. Sharpe, and B. I. Erkmen, “Shot noise statistics and information theory of sensitivity limits in frequency-modulated continuous-wave ladar,” J. Opt. Soc. Am. A 30(7), 1335–1341 (2013).
    [Crossref] [PubMed]
  42. S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
    [Crossref]
  43. S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
    [Crossref] [PubMed]
  44. P. Pavliček and J. Soubusta, “Theoretical Measurement Uncertainty of White-Light Interferometry on Rough Surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref] [PubMed]
  45. B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
    [Crossref] [PubMed]
  46. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
    [Crossref]

2014 (3)

2013 (5)

2012 (7)

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
[Crossref] [PubMed]

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
[Crossref]

B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

2011 (5)

2010 (5)

Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

2009 (4)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

2000 (1)

1999 (2)

1994 (1)

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

1989 (1)

Abreu, M.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Albertini, N.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Arai, K.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Baumann, E.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Beck, S. M.

Belmonte, A.

Berg, T.

Berkovic, G.

Bhardwaj, A.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Bloch, E.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Buck, J. R.

Buck, U.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Buell, W. F.

Cable, A. E.

Cabral, A.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Coddington, I.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Coldren, L. A.

Crouch, S.

Cui, M.

Dahl, J. R.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Davy-Jow, S.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Decker, S. J.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Delfyett, P. J.

Deschênes, J.-D.

Dickinson, R. P.

Donati, S.

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Erkmen, B. I.

Fujimoto, J. G.

Gatt, P.

Giorgetta, F. R.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Greenfield, N.

Griffith, Z.

Grulkowski, I.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Howard, L.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Inaba, H.

Jayaraman, V.

Jiang, J.

Johansson, L. A.

Jüptner, W.

Kaylor, B.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Knabe, K.

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Komar, D. A.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Kozlowski, D. A.

Krause, B. W.

Le Floch, S.

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Letalick, D.

Lévêque, S.

Leyva, V.

Li, Y.

Liu, J. J.

Liu, T.-A.

Lu, M.

Marechal, N. J.

Martini, G.

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Matsumoto, H.

Minoshima, K.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Naether, S.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nguyen, D.

Ozdur, I.

Park, H.

Pavlicek, P.

Pedrini, G.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Piracha, M. U.

Potsaid, B.

Rakuljic, G.

Rebordao, J. M.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Reibel, R. R.

Ren, L.

Renhorn, I.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Rodwell, M. J.

Roos, P. A.

Salvadé, Y.

Santoyo, F. M.

Satyan, N.

Schedin, S.

Schnars, U.

Schuhler, N.

Shafir, E.

Shapiro, J. H.

Sharpe, T. L.

Sinclair, L. C.

Sivananthan, A.

Soubusta, J.

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Steinvall, O.

Stejskal, A.

Stone, J. A.

Swann, W. C.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Tambosso, T.

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Thali, M. J.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Tiemann, B. G.

Tiziani, H. J.

Urbach, H. P.

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Vasilyev, A.

Wei, H.

Wright, T. J.

Wu, X.

Yariv, A.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (13)

A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
[Crossref] [PubMed]

D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28(13), 2657–2665 (1989).
[Crossref] [PubMed]

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

P. Pavliček and J. Soubusta, “Theoretical Measurement Uncertainty of White-Light Interferometry on Rough Surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref] [PubMed]

B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
[Crossref] [PubMed]

Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[Crossref] [PubMed]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[Crossref] [PubMed]

S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
[Crossref] [PubMed]

J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

J. Forensic Sci. (1)

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Nat. Photonics (5)

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Opt. Eng. (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Opt. Express (7)

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
[Crossref] [PubMed]

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
[Crossref] [PubMed]

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Other (5)

M. R. Bennett, D. Huddart, and S. Gonzalez, “Preservation and Analysis of Three-Dimensional Footwear Evidence in Soils: The Application of Optical Laser Scanning,” in Criminal and Environmental Soil Forensics, K. Ritz, L. Dawson, and D. Miller, eds. (Springer Netherlands, 2009), pp. 445–461.

C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. G. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in CLEO, OSA Technical Digest (Optical Society of America, 2014), p. STh4O.3.

D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, “External cavity diode lasers tuned with silicon MEMS,” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 (2002), pp. 97–98.

K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer, 1984), Vol. 9.

Supplementary Material (1)

Media 1: MP4 (4135 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Photograph of a footprint in dirt, acquired at close range. (b) Calibrated 3D surface image of the same footprint in dirt acquired at z0 = 10.568 m stand-off. This image contains 1.12 Mpixels.
Fig. 2
Fig. 2 (a) Photograph of the tread of the shoe used in Fig. 1. (b) Calibrated 3D image of the shoe tread revealing the crests and valleys of the rubber sole, along with the worn mark of a bike pedal, acquired at z0 = 10.587 m standoff. The 3D nature of the data is best observed in a movie (see Media 1).
Fig. 3
Fig. 3 (a) Overview of the FMCW LADAR setup used for 3D imaging. The light from a frequency-swept laser is split into a measurement and a local reference path. Objects (here a flower) are scanned with a fast steering mirror (FSM). Simultaneously a small portion of the swept laser’s output is heterodyned against a mode-locked laser (free running comb) and detected in phase and quadrature (I/Q) to extract the instantaneous frequency used to calibrate the frequency sweep rate. (b) Block diagram of the data processing, which is implemented on a field-programmable gate array (FPGA). AGC: automatic gain control. After extracting the radial range, it is converted (together with the FSM angle readings) to Cartesian coordinates, resulting in a 3D point cloud. (c) Linearized ‘range spectrum’ as discussed in the text. One specific range measurement is extracted as the center of mass of the peak, here just below 4 m. Some spurious reflections are visible just below 7.5 m; they originate among others from the circulator used to couple the light in and out into the free-space section. The inset shows the FPGA output, consisting of 8 points across the range peak, with a spacing of ~ΔR = 150 µm. The black trace shows a distorted range spectrum obtained assuming flaser is a pure sine wave.
Fig. 4
Fig. 4 Instantaneous modulation frequency of swept laser, green measurement, dashed-black pure sine-wave. The update rate is 0.5 ms and the shaded area corresponds to 1 sweep, hence one range-measurement. Top: difference between the sine-modulation and measured frequency.
Fig. 5
Fig. 5 (a) Photograph of a flat granite surface and flat cast iron lapping plate, placed at a stand-off of z0 = 10.539 m. (b) Schematic of lateral scanning pattern. The black dots indicate the spot position, and are smaller than the actual spot size to clearly show the scanning pattern. The red dot indicates the spot size, illustrating the beam overlap for each pixel as described in the text. For visual clarity, a 15 pixel horizontal scan is depicted (the presented images are based on 2500 × 400 pixel scans). (c) 3D surface image of the cast iron lapping plate (dashed box in panel (a)) without removal of geometric factors. (d) Same as (c) after calibration of the geometrical factors, revealing a flat surface as expected. (The surface profile of the granite surface is discussed later in Fig. 11.) (e) Histogram of the range measurements on the lapping plate, for a 1D scan consisting of 1 million points along the lateral x-axis after removing a small tilt (blue trace) and all points (as seen in (d)) covering 742,000 points, after removing a tilt in x and y (green trace). Also shown are the analytical solutions expected due to speckle-induced phase noise (black dashed lines), as discussed in Section 3.2.
Fig. 6
Fig. 6 Precision as a function of return power while ranging to a single point on a brushed metal plate at a stand-off of 10.5 m. Each point is reported as the standard deviation of 28 measurements taken within 14 ms (filled circles). The measured SNR of the range beat (black line, right axis) can be as good as 75.5 dB at high return power (see also Fig. 3(c)).
Fig. 7
Fig. 7 Uncertainty (Allan deviation) of a 2.5 hour long measurement (2 × 107 points, 0.5 ms per point) ranging to a single point on a brushed Aluminum surface placed at 10.5 m stand-off distance.
Fig. 8
Fig. 8 (a) Photograph of an Al-step block with the NIST logo imprinted and a quarter located on the lower left corner. (b) False colored, 3D surface image of the step block, along with a quarter on the bottom left, measured by our FMCW LADAR system at a stand-off of z0 = 4.760 m. (c) The average of 30 cross-sections in the x-direction from the FMCW LADAR image (green trace) is compared to an average of 12 measurement points taken with a CMM (blue crosses). The inset shows an expanded view of the first 3 steps; note that the second step size is only ~30 µm. The difference (error) between the LADAR and the CMM (red crosses) has a standard deviation below 2 µm.
Fig. 9
Fig. 9 (a) Photo of a motorbike (Ducati 1975) piston head. (b) False colored, calibrated, 1 Mpixel 3D image measured at a stand-off of z0 = 10.587 m. (c) A cross section in y (blue trace), shows the smoothly varying surface. A piecewise fit of the cross section to a polynomial gives the residual (green trace) that show increased spread for regions of slanted surfaces. This additional spread follows the expected values due to the true range depth of the surface within the beam spot (red trace).
Fig. 10
Fig. 10 Top of piston head from Fig. 9 revealing the imprinted numbers. This reduced area consists of a 1 Mpixel point cloud, as measured at z0 = 3.701 m stand-off. The overall curvature of the piston head is also evident.
Fig. 11
Fig. 11 (a) Calibrated false colored 3D surface image of a flat granite plate (see photo in Fig. 5(a)) at a stand-off of z0 = 10.476 m. (b) Histogram of the granite showing the optical penetration into the plate (blue) along with a fit to the expected distribution of Eq. (3). for a flat surface with roughness σz~12 µm (black) and a second, double-exponential fit (red) that captures the penetration into the plate.
Fig. 12
Fig. 12 (a) Photograph of cactus taken at a close-in range. (b) Calibrated 3D surface image acquired at z0 = 10.587 meters standoff covering a volume of ~(120 mm)3. (c) Individual branch of the cactus, measured at 4 m standoff, revealing the spikes of ~75 µm diameter.

Tables (1)

Tables Icon

Table 1 Precision of each sample point, evaluated at 10-m standoff distances.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V L A D A R ( t ) cos [ φ ( t ) φ ( t Δ t o b j ) ] cos [ Δ t o b j d φ ( t Δ t o b j / 2 ) d t ] = cos [ 2 π Δ t o b j f l a s e r ( t Δ t o b j / 2 ) ]
F ( R ) = B / 2 B / 2 V L A D A R ( f l a s e r ) e j 4 π f l a s e r c 1 R d f l a s e r
P T ( δ z ) = k σ z 2 2 ( σ z 2 + δ z 2 ) 3 / 2 for | δ z | < Δ R /2 P T ( δ z ) = 0 for | δ z | > Δ R /2
δ z 2 σ z 2 { ln ( Δ R / σ z ) 1 } for Δ R / σ z 1

Metrics