Abstract

In this work, we investigate the plasmon-induced optical and magneto-optical anisotropies in the large-area square-ordered Co antidots film. It shows that both the outline of reflectivity spectrum and Kerr spectrum are significantly modified by surface plasmon polarition (SPP) resonances. Moreover, the magnitude of Kerr angle reaches to about 10 minutes at the azimuthal angle 45°, which is over 3 times of that of pure Co film. These phenomena are attributed to the SPP resonances with different diffraction orders of reciprocal lattice vectors.

© 2014 Optical Society of America

1. Introduction

Surface plasmons (SPs) are the collective electronic oscillation at the interface between metal and dielectric materials [1]. In recently years, SPs have derived various interdisciplines and applications, for example, nano-lasers [2, 3], bio-sensors [4, 5], plasmonic tweezers [69], chiral and negative refractivity materials [10, 11], etc. By introducing surface plasmons into magneto-optics, the so-called magneto-plasmonics has become a hotspot of research in last decade. The combination of ferromagnetism and plasmonics in the magneto-plasmonic materials can result in many novel experimental phenomena. For example, by changing the way SPs excited, in turn changing the way electrons and photons oscillate and interact, we can manipulate the magneto-optical (MO) response of the magneto-plasmonic materials. In the magneto-optical Kerr effect (MOKE) experiments, the excitation of SPs can significantly enhance either the magnitude of Kerr angle in the longitudinal [12] and polar [13] configuration or the relative reflectivity change in the transversal [14] configuration. Moreover, by manipulating the in-phase or out-phase relationship between localized SPs and the electromagnetic wave, the sign of Kerr angle can reverse [15]. On the other hand, the properties of SPs are tunable in the ferromagnetic materials due to the time-reversal symmetry breaking by an applying magnetic field along the light propagation direction [16].

Among the several methods to excite SP resonances, utilizing the periodically patterned structures [12, 14] which can support propagating surface plasmon polaritons by fulfilling the wavevector match condition from the reciprocal lattice vectors, is the most convenient way.

The anisotropic effect, that originated from the breaking of system symmetry in the periodically patterned ferromagnetic materials, namely magneto-plasmonic crystals [17], is another way to manipulate the MOKE through SPs.

Researchers preferred to utilize the nanosphere lithography to fabricate the periodic patterned samples [1821]. M.V. Sapozhnikov [20] and Z.L. Han [19] both studied the Co corrugated film by depositing metal onto the close-packed polystyrene spheres. The latter found that the anisotropy of magneto-optical response in the range of tens of micrometers at wavelength λ = 633nm. E.T. Papaioannou [22] and J.F. Torrado [23] also investigated the anisotropic effects in the hexagonal Ni and Fe antidots arrays. However, due to the intrinsic properties of nanosphere lithography, the samples are limited to hexagonal symmetry and because of the lack of centimeter-level order, the anisotropic effects are usually covered by the average effect of short-range domains with different packing orientations. Other fabrication methods were also used, like anodic alumina template [13, 24], ion beam etching [25], etc. However, most of them are incapable to reach both large-area order and nanoscale size feature in a convenient and inexpensive way.

2.Fabrication

In the present work 1cm × 1cm square-order cobalt antidots film with 412nm × 412nm period was prepared. The interference photolithography [24, 2628], which is a fast way to produce designed patterns over a large area without any defects, is chosen to fabricate our antidots sample. We will demonstrate that the optical and magneto-optical response of Co antidots film is strongly anisotropic, and the Kerr angle is significantly enhanced by SPPs.

First, broadband anti-reflection(BAR, Brewer Science, WiDE-15B) layer was spin-coated on a silicon substrate at 3000rpm, in order to prevent any unnecessary light reflection from the substrate, otherwise it would deform and blur the interference pattern. Then the coated film was baked at 180 °C for two minutes on a hot plate, allowing for the second spin-coating of the negative photo resist (NPR) (Allresist, AR-4740) at 4000 rpm. After that the film with 180nm NPR was baked at 95 °C for one minute. To obtain periodical NPR antidots pattern, a Lloyd’s Mirror interference lithography system with a 325nm wavelength He-Cd laser was used. The NPR film was exposed in the interference illumination twice before and after a 90° rotation normal to the sample surface in order to produce square lattice pattern. The Co antidots film with 60nm height was produced by depositing Co on the NPR antidots pattern using DC magnetron sputtering. The SEM images of the final Co antidots pattern are shown in Fig. 1(a) (small-scale) and Fig. 1(b) (large-scale). The film has good periodicity with highly reproduced NPR antidots pattern. The inter-antidots space and antidots diameters can be easily controlled by the interference parameters, and the thickness of Co antidots film can be controlled by sputtering time. Figure 1(c) depicts the structure diagram of the cross-section of the films. There are double layers in the sample, the top layer is the Co antidots array and the bottom layer is the Co disks array. Since Co is high damping, the top layer can effectively prevent light from penetrating to the bottom layer, thus we simply exclude the bottom layer from discussion. It has also been confirmed by the COMSOL simulations in Fig. 4.

 

Fig. 1 Schematic of the Co antidots film sample and light configuration. (a), (b) SEM images of Co antidots film after magnetron sputtering. The period is 412nm and the hole diameter is 175nm. (c) The schematic of p-polarized light in the reflectivity and MOKE measurement.

Download Full Size | PPT Slide | PDF

3. Experiments and discussion

SPPs can be excited by light either in Kretschmann or Otto configuration because the enlarged wavevector of attenuated wave at the total reflection can match the wavevector of SPPs. However, the more convenient way to excite SPPs is to introduce periodic structure where the reciprocal vectors will do the compensation. The dispersion relation of SPPs at the interface between Co film and dielectric can be written as

kspp(λ)=2πλεdεmεd+εm
where λ is the wavelength of incident light, and εd, εm are the relative permittivities of dielectric and Co. For the conservation of in-plane wave vector, the matching condition of the periodic square lattice can be written as
|Re(kspp(λ))|=|k(λ)+m2πai+n2πaj|
where Re(kspp) is the real part of the wavevector of SPP, a is period, and k is the in-plane wavevector of incident light, and (m, n) are the two-dimensional diffraction orders of reciprocal lattice vectors. Compared with the 1D periodic structures [14, 29], the matching condition for the 2D periodic structures is more complicated as the azimuthal angle φ of incident light changes. Figure 2 shows the simulation result of the relationship between the directional angles (θ, φ) and the wavelength of light, which excites SPPs with different diffraction orders in the Co antidots film. When φ = 0°, the result is same as the 1D periodic structure, as shown in Fig. 2(a). Only the (−1, 0) diffraction order related SPPs can occur in the visible range, while SPPs of higher diffraction orders can only be excited by ultraviolet light, no matter what the incident angle θ is. When we fix the incident angle at 45° and rotate the azimuthal angle, there are three diffraction orders involved in the visible range: (−1, 0), (0, −1), (−1, −1), as shown in Fig. 2(b). The light wavelength that excites SPPs of (−1, 0) diffraction order decreases with increasing φ (from 0° to 45°), and the (0, −1) diffraction order related SPPs increase with φ from (0° to 45°). They eventually meet with each other around 570nm at φ = 45°. The (−1, −1) diffraction order related SPPs show a relatively weak dependence on the azimuthal angle and overlap with (0, −1) diffraction order related SPPs around φ = 32.4°.

 

Fig. 2 Simulation result of incident light’s wavelengths that need to excite SPP resonances with different diffraction orders. (a) when azimuthal angle is fixed at 0°, the relationship between wavelengths and incident angles. (b) when incident angle is fixed at 45°, the relationship between wavelengths and azimuthal angles. Notice that the lines about (−1, −1) and (0, −1) orders are intersecting at φ = 32.4°, λ = 493.5nm.

Download Full Size | PPT Slide | PDF

To prove the excitation of SPPs, the reflectivity spectrum of p-polarized light [Fig. 1(c)] with different incident angles (θ = 45°, 50°, 55°, 60°, 65°) and different azimuthal angles (φ = 0°, 30°, 45°) (corresponding to the vertical dash lines in Fig. 2), was investigated. The optical anisotropy is clearly observed. When φ = 0°, there are two reflectivity minima (Wood’s anomalies [30]) appearing in the visible range [Fig. 3(a)]. According to Fig. 2(a), the Wood’s anomaly around 403nm comes mainly from the (−1, −1) diffraction order related SPPs and partly from the (0, −1) diffraction order related SPPs, while the strong reflectivity minimum of Wood’s anomaly round 698nm is distinctively attributed to the (−1, 0) diffraction order related SPP resonance.

 

Fig. 3 Reflectivity spectrum of the Co antidots film at different incident angles: θ = 45°, 50°, 55°, 60°, 65° and different azimuthal angles: φ = 0°(a), 30°(b), 45°(c).

Download Full Size | PPT Slide | PDF

According to Fig. 3(a), when the incident angle rotates from 45° to 65°, the Wood’s anomaly around wavelength 403nm seldom shifts. This is coincident with the simulation result in Fig. 2(a), which shows that, when incident angle is larger than 45°, the incident wavelengths that excite (−1, −1), (0, −1) diffraction orders related SPPs almost don’t change. However, the Wood’s anomaly around 698nm changes significantly, though it is also in keeping with the (−1, 0)-diffraction-order spectrum in Fig. 2(a). That is because the SPPs are more vulnerable to the x directional diffraction order when y directional diffraction order is absent (see red line in Fig. 2(a)).

When φ = 30°, the two minima get closer as shown in Fig. 3(b). This is coincident with the simulation results in Fig. 2(b), in which the (0, −1) and (−1, −1) diffraction orders’ spectra get closer with increasing φ. When φ reaches to 45°, the two minimum nearly coincide. Thus, we clearly confirm that the minimum around 490nm in Fig. 3(b) is caused by the combination of (−1, −1) and (0, −1) diffraction orders’ SPP resonances. For the same reason, in Fig. 3(c), the minimum at shorter wavelength 502nm is related to (−1, −1) order distinctively, and the minimum at longer wavelength 555nm is contributed by the combination of (−1, 0) and (0, −1) diffraction orders.

The COMSOL simulation results of the intensity of E field at two resonant positions also prove the excitation of SPPs, as shown in Fig. 4. The geometric model for simulation is exactly the same as the sample except for the absence of the BAR layer. At the surface of antidots film [Fig. 4(b)(d)], the patterns of |E| distribution show a wave-like configuration which is clearly originated from SPPs. In addition, since the |E| at the bottom layer is much less than that of top layer, thus it is reasonable to neglect the effect of the bottom layer [Fig. 4(c), 4(e)].

 

Fig. 4 COMSOL simulation results of the intensity of E field |E|. (a)(b)(c) are the |E| distributions when azimuthal angle φ is 0° and wavelength of incident light λ is 698nm, while (d)(e) are at φ = 45° and λ = 502nm. The incident angle is 45°. (a) |E| in the xz plane. (b)(d) |E| at the surface of the top layer. (c)(e) |E| at the surface of the bottom layer. The arc arrows and the dot-dash lines in (a) indicate the cross-sectional positions of (b)(c)(d)(e) in xz plane. And the arrow and the dot-dash line in (b) indicates the cross-sectional position of (a) in xy plane.

Download Full Size | PPT Slide | PDF

It is known that the electric field near the surface of metal is redistributed when SPPs are excited, leading to the energy accumulation inside the metal, consequently strengthening the overall MO responses, such as enhancing the Kerr angle in longitudinal MOKE (LMOKE). Previous works mainly focused on the combination of noble metals and magnetic materials, which induces SPPs and provides magnetic moment individually. Here we simply use Co film with antidots arrays pattern to excite SPP resonances.

The magneto-optical response of the Co antidots film induced by p-polarized incident light in LMOKE is shown in Fig. 5 which shows the Kerr angle spectrum with different azimuthal angles in the spectral range from 430nm to 710nm. When φ = 0° and there is no SPP resonance, as depicted in Fig. 5(a), the Kerr spectrum of Co antidots film is smooth, just like the pure Co film. However, a peak appears at about 700nm, which is related to the (−1, 0) diffraction order’s SPPs.

 

Fig. 5 Longitudinal MOKE spectrum at the wavelengths among 430nm-710nm at θ = 45° and different azimuthal angles: φ = 0°(a), 20°(b), 30°(c), 40°(d), 45°(e).

Download Full Size | PPT Slide | PDF

With azimuthal angle φ increasing, there are two Kerr angle peaks appear in the visible range. One is at shorter wavelength, and the other is at longer wavelength [Fig. 5(c)]. The two peaks move towards each other [Fig. 5(b) and 5(c)], and at last coincide in the middle wavelength around 525nm when φ reaches to 45° [Fig. 5(e)]. According to Fig. 2(b) and Fig. 3, peak 1 mainly comes from the (0, −1) diffraction order and partly from the (−1, −1) order, due to relatively weak resonance amplitudes of higher diffraction orders’ SPPs. On the other hand, peak 2 is exclusively induced by (−1, 0)-diffraction-order SPPs. The two peaks merge into a single peak around 525nm at φ = 45°. The reason why the two reflectivity minima in Fig. 3(c) (θ≤65°) don’t coincide with each other, maybe that the wave band breadth of resonances for LMOKE is wider than that of the reflectivity’s minima. While increasing azimuthal angle, the Kerr angles of the two peaks gradually increase, and a maximum appears at wavelength 550nm at φ = 45°, the Kerr rotation angle reaches to 10 minutes, almost 3 times stronger than pure Co film. The result indicates that the interplay between SPP and LMOKE can significantly change the outline of LMOKE spectrum, and shows strong anisotropic effect.

4. Conclusion

In conclusion, we have fabricated large-area Co antidots film with long-range order. The absorption dips in reflectivity spectra and the Kerr angles in the MOKE spectra show significant anisotropic phenomena when changing the azimuthal angle. These phenomena are directly related to the resonance of SPPs with different diffraction orders, at the same time, Kerr angles are significantly enhanced at these resonances.

Acknowledgments

This work is supported by the National Key Project of Fundamental Research of China (Grant Nos. 2012CB932304 and 2010CB923404), the Natural Science Foundation of China (Grant Nos. 11374146 and U1232210) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References and links

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]   [PubMed]  

2. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]  

3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef]   [PubMed]  

4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef]   [PubMed]  

5. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef]   [PubMed]  

6. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef]   [PubMed]  

7. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef]   [PubMed]  

8. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004). [CrossRef]  

9. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]  

10. D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef]   [PubMed]  

11. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef]   [PubMed]  

12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]  

13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]  

14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]  

15. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). [CrossRef]   [PubMed]  

16. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013). [CrossRef]   [PubMed]  

17. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]  

18. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009). [CrossRef]  

19. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, and Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011). [CrossRef]  

20. M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, and D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010). [CrossRef]  

21. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, and A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011). [CrossRef]   [PubMed]  

23. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010). [CrossRef]  

24. J. Oh and C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]  

25. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]  

26. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999). [CrossRef]  

27. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011). [CrossRef]   [PubMed]  

28. C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, and R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999). [CrossRef]  

29. A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012). [CrossRef]  

30. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
    [CrossRef]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  5. B. Sepúlveda, A. Calle, L. M. Lechuga, G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
    [CrossRef] [PubMed]
  6. W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  7. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
    [CrossRef] [PubMed]
  8. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
    [CrossRef]
  9. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  10. D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
    [CrossRef] [PubMed]
  11. D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
    [CrossRef]
  13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
    [CrossRef]
  14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
    [CrossRef]
  15. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
    [CrossRef] [PubMed]
  16. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
    [CrossRef] [PubMed]
  17. G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
    [CrossRef]
  18. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
    [CrossRef]
  19. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
    [CrossRef]
  20. M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
    [CrossRef]
  21. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).
  22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
    [CrossRef] [PubMed]
  23. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
    [CrossRef]
  24. J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008).
    [CrossRef]
  25. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [CrossRef]
  26. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
    [CrossRef]
  27. D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
    [CrossRef] [PubMed]
  28. C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
    [CrossRef]
  29. A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
    [CrossRef]
  30. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [CrossRef]

2013 (3)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

2012 (2)

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

2011 (6)

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

2010 (4)

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

2009 (3)

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008).
[CrossRef]

2007 (1)

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

2006 (1)

2004 (2)

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

1902 (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Abraham, M. C.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Ai, J. H.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Åkerman, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

B. Sepúlveda, A. Calle, L. M. Lechuga, G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Baryshev, A. V.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[CrossRef]

Berini, P.

P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

Bonanni, V.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Bonetti, S.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Bykov, D. A.

Calle, A.

Carter, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Chen, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Chetvertukhin, A. V.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Ctistis, G.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

De Leon, I.

P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, H. F.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Dmitriev, A.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Dolgova, T. V.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

Doskolovich, L. L.

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Du, J.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eliseev, A. A.

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

Enger, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Ermolaeva, O. L.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Ezhov, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

Farhoud, M.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Fedyanin, A. A.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

Ferrera, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Fumagalli, P.

Ganshina, E. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

Garcia-Martin, A.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Giersig, M.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Goksor, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

González-Díaz, J. B.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Gösele, U.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Grunin, A. A.

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

Gusev, S. A.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Han, Z. L.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hillenbrand, R.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Hjörvarsson, B.

Huang, L.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Hwang, M.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Inoue, M.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Kalish, A. N.

Kall, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Kapaklis, V.

Khokhlova, L. V.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Kroll, N.

D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[CrossRef] [PubMed]

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Lechuga, L. M.

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Li, J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Liu, X. H.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Liu, Z.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Lochtefeld, A. J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Melander, E.

Murphy, T. E.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Napolskii, K. S.

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Navas, D.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Nielsch, K.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nogués, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Oh, J.

J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008).
[CrossRef]

Pakizeh, T.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Papaioannou, E. T.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

Pappas, S. D.

Patoka, P.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[CrossRef] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Pirzadeh, Z.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Ram, R. J.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Rogov, V. V.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Ross, C. A.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Sapoletova, N. A.

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

Sapozhnikov, M. V.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Savas, T.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Schattenburg, M.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Schattenburg, M. L.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Sepúlveda, B.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Shi, L.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Shi, Z.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Smirnov, D. A.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[CrossRef] [PubMed]

Smith, H. I.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Thompson, C. V.

J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008).
[CrossRef]

Torrado, J. F.

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

Troitskii, B. B.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

Uchida, H.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vavassori, P.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Vázquez, M.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Walsh, M.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Wang, Z. L.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Wehrspohn, R. B.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

Wei, S. J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wood, R.

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Xia, Y. J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zhan, P.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhdanov, A. G.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Zhou, S. M.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

Zi, J.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Zvezdin, A. K.

Adv. Mater. (3)

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007).
[CrossRef]

J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008).
[CrossRef]

D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[CrossRef]

Appl. Phys. Lett. (4)

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009).
[CrossRef]

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011).
[CrossRef]

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010).
[CrossRef]

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

J. Magn. Magn. Mater. (1)

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (2)

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999).
[CrossRef]

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999).
[CrossRef]

Nano Lett. (3)

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[CrossRef]

Nat Commun (1)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Phys. Rev. Lett. (3)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[CrossRef]

D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).
[CrossRef] [PubMed]

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Phys. Status. Solidi. RRL (1)

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010).
[CrossRef]

Science (1)

D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Co antidots film sample and light configuration. (a), (b) SEM images of Co antidots film after magnetron sputtering. The period is 412nm and the hole diameter is 175nm. (c) The schematic of p-polarized light in the reflectivity and MOKE measurement.

Fig. 2
Fig. 2

Simulation result of incident light’s wavelengths that need to excite SPP resonances with different diffraction orders. (a) when azimuthal angle is fixed at 0°, the relationship between wavelengths and incident angles. (b) when incident angle is fixed at 45°, the relationship between wavelengths and azimuthal angles. Notice that the lines about (−1, −1) and (0, −1) orders are intersecting at φ = 32.4°, λ = 493.5nm.

Fig. 3
Fig. 3

Reflectivity spectrum of the Co antidots film at different incident angles: θ = 45°, 50°, 55°, 60°, 65° and different azimuthal angles: φ = 0°(a), 30°(b), 45°(c).

Fig. 4
Fig. 4

COMSOL simulation results of the intensity of E field |E|. (a)(b)(c) are the |E| distributions when azimuthal angle φ is 0° and wavelength of incident light λ is 698nm, while (d)(e) are at φ = 45° and λ = 502nm. The incident angle is 45°. (a) |E| in the xz plane. (b)(d) |E| at the surface of the top layer. (c)(e) |E| at the surface of the bottom layer. The arc arrows and the dot-dash lines in (a) indicate the cross-sectional positions of (b)(c)(d)(e) in xz plane. And the arrow and the dot-dash line in (b) indicates the cross-sectional position of (a) in xy plane.

Fig. 5
Fig. 5

Longitudinal MOKE spectrum at the wavelengths among 430nm-710nm at θ = 45° and different azimuthal angles: φ = 0°(a), 20°(b), 30°(c), 40°(d), 45°(e).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k spp (λ)= 2π λ ε d ε m ε d + ε m
| Re( k spp (λ)) |=| k (λ)+m 2π a i+n 2π a j |

Metrics